MOCE I KOMPENSACJA W UKŁADACH Z NIESINUSOIDALNYMI PRZEBIEGAMI PRĄDU I NAPIĘCIA. Leszek S. Czarnecki, Fellow IEEE

Podobne dokumenty
Automatyka-Elektryka-Zakłócenia, No.6, 2011, pp MOCE I KOMPENSACJA W OBWODACH Z ODKSZTAŁCONYMI I NIESYMETRYCZNYMI PRZEBIEGAMI PRĄDU I NAPIĘCIA

Moce i Kompensacja w Obwodach z Niesinusoidalnymi Przebiegami Prądu i Napięcia

MOCE I KOMPENSACJA W OBWODACH Z ODKSZTAŁCONYMI I NIESYMETRYCZNYMI PRZEBIEGAMI PRĄDU I NAPIĘCIA

Automatyka-Elektryka-Zakłócenia MOCE I KOMPENSACJA W OBWODACH Z ODKSZTAŁCONYMI I NIESYMETRYCZNYMI PRZEBIEGAMI PRĄDU I NAPIĘCIA

JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów. Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

CZY MOC CZYNNA JEST MOCĄ UŻYTECZNĄ I ZA CO POWINNIŚMY PŁACIĆ?

PORÓWNANIE WYBRANYCH ALGORYTMÓW STEROWANIA TRÓJFAZOWEGO RÓWNOLEGŁEGO FILTRU AKTYWNEGO

HYBRID ACTIVE POWER FILTER UNDER DISTORTED MAINS VOLTAGE CONDITIONS HYBRYDOWY ENERGETYCZNY FILTR AKTYWNY W WARUNKACH ODKSZTAŁCONEGO NAPIĘCIA SIECI

Zasady rozliczeń za pobór a skutki ekonomiczne przesyłania

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Application of Matrix Notation for the Analysis of Power Changes in a 3 phase Circuit

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH

Problematyka mocy biernej w instalacjach oświetlenia drogowego. Roman Sikora, Przemysław Markiewicz

Wspomnienie o Profesorze Stanisławie Fryzem i refleksje nad Jego miejscem w teorii mocy

Pomiar strat nietechnicznych energii elektrycznej z wykorzystaniem nowoczesnych technik diagnostycznych

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Elektroniczne Systemy Przetwarzania Energii

WSPÓŁCZYNNIK MOCY I SPRAWNOŚĆ INDUKCYJNYCH SILNIKÓW JEDNOFAZOWYCH W WARUNKACH PRACY OPTYMALNEJ

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

PN-EN :2012

Sposoby poprawy jakości dostawy energii elektrycznej

THE IMPACT OF FREQUENCY FLUCTUATION IN POWER LINES ON HYBRID ACTIVE POWER FILTER

BADANIE WPŁYWU SUBHARMONICZNYCH NA PRACĘ TRANSFORMATORA JEDNOFAZOWEGO W STANIE OBCIĄŻENIA

Revenue Maximization. Sept. 25, 2018

Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego.

POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012

APARATURA POMIAROWA SERII V MEASURING INSTRUMENTS V-SERIES

ZESPOLONA TRANSFORMATA FOURIERA PRĄDÓW LUB NAPIĘĆ UKŁADU TRÓJFAZOWEGO OPARTA NA PRZEKSZTAŁCENIU CLARKE I ROZSZERZONYM PRZEKSZTAŁCENIU FORTESCUE

NOWE TOPOLOGIE I STEROWANIE OBWODÓW WEJŚCIOWYCH PRZEMIENNIKÓW CZĘSTOTLIWOŚCI ŚREDNIEGO NAPIĘCIA UMOŻLIWIAJĄCE ICH SZEROKIE ZASTOSOWANIE

Odbiorniki nieliniowe problemy, zagrożenia

Eliminacja wpływu napędów dużych mocy na sieć zasilającą

PARAMETRY TECHNICZNE DEKLAROWANE PRZEZ PRODUCENTA POTWIERDZONE BADANIAMI / RATINGS ASSIGNED BY THE MANUFACTURER AND PROVED BY TESTS

ANALIZA JAKOŚCI ENERGII ELEKTRYCZNEJ

REGULATOR NAPIĘCIA DC HYBRYDOWEGO ENERGETYCZNEGO FILTRU AKTYWNEGO DC BUS VOLTAGE CONTROLLER IN HYBRID ACTIVE POWER FILTER

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

PORÓWNANIE ALGORYTMÓW STEROWANIA ENERGETYCZNYMI FILTRAMI AKTYWNYMI COMPARISON OF ACTIVE POWER FILTER CONTROL ALGORITHMS

7 Dodatek II Ogólna teoria prądu przemiennego

PRACA RÓWNOLEGŁA PRĄDNIC SYNCHRONICZNYCH WZBUDZANYCH MAGNESAMI TRWAŁYMI

POMIARY WSKAŹNIKÓW JAKOŚCI DOSTAWY ENERGII ELEKTRYCZNEJ


Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny

OKREŚLENIE OBSZARÓW ENERGOOSZCZĘDNYCH W PRACY TRÓJFAZOWEGO SILNIKA INDUKCYJNEGO

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

SKŁADOWE MOCY I ICH ROZDZIAŁ MIĘDZY RÓWNOLEGLE PRACUJĄCE PRĄDNICE NA PROMIE PASAŻERSKO-SAMOCHODOWYM Z NAPĘDEM ELEKTRYCZNYM

Jakość dostawy energii elektrycznej w badaniach i dydaktyce

Zarządzanie sieciami telekomunikacyjnymi

Przetworniki. Przetworniki / Transducers. Transducers. Przetworniki z serii PNT KON PNT CON Series Transducers

Convolution semigroups with linear Jacobi parameters

Metoda szacowania poziomu emisji harmonicznych

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ

JAKOŚĆ ENERGII ELEKTRYCZNEJ - PROCES ŁĄCZENIA BATERII KONDENSATORÓW

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

RE8RA11B przemysłowy przekaźnik czasowy s - typ C - 24 V AC/DC - 1 Z/O

Wykaz symboli, oznaczeń i skrótów

PORÓWNANIE PARAMETRÓW JAKOŚCI ENERGII ELEKTRYCZNEJ LINII ZASILAJĄCEJ ZAKŁAD PRZEMYSŁOWY PRZED I PO KOMPENSACJI MOCY BIERNEJ

LABORATORIUM PODSTAW ELEKTROTECHNIKI Kompensacja mocy biernej

HARMONICZNE W PRĄDZIE ZASILAJĄCYM WYBRANE URZĄDZENIA MAŁEJ MOCY I ICH WPŁYW NA STRATY MOCY

Hard-Margin Support Vector Machines

Kod przedmiotu: EZ1C Numer ćwiczenia: Kompensacja mocy i poprawa współczynnika mocy w układach jednofazowych

Egzamin maturalny z języka angielskiego na poziomie dwujęzycznym Rozmowa wstępna (wyłącznie dla egzaminującego)

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Elektrotechnika teoretyczna

Współczesne układy kompensacji mocy biernej Jaworzno marzec 2010 r.

BADANIA GENERATORA INDUKCYJNEGO WZBUDZANEGO KONDENSATORAMI OBCIĄŻENIE NIESYMETRYCZNE

RADIO DISTURBANCE Zakłócenia radioelektryczne


KOREKCJA WSKAZAŃ NIEPRAWIDŁOWO PODŁĄCZONEGO LICZNIKA W UKŁADZIE ARONA

Medical electronics part 10 Physiological transducers

Rachunek lambda, zima

JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów

Stargard Szczecinski i okolice (Polish Edition)

Karta Katalogowa Catalogue card

ANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH

Cracow University of Economics Poland

BADANIE WPŁYWU SUBHARMONICZNYCH NAPIĘCIA NA PRACĘ TRANSFORMATORA JEDNOFAZOWEGO

METODY BADAŃ POMIAROWYCH W WIEJSKICH STACJACH TRANSFORMATOROWYCH

RADIO DISTURBANCE Zakłócenia radioelektryczne

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

ANALIZA WPŁYWU PRZEKRACZANIA DOPUSZCZALNYCH WARTOŚCI WSPÓŁCZYNNIKA MOCY W SIECI NN NA PRACĘ SYSTEMU ELEKTROENERGETYCZNEGO

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

POMIARY I ANALIZA WSKAŹNIKÓW JAKOŚCI ENERGII ELEKTRYCZNEJ

PARAMETRY TECHNICZNE DEKLAROWANE PRZEZ PRODUCENTA POTWIERDZONE BADANIAMI / RATINGS ASSIGNED BY THE MANUFACTURER AND PROVED BY TESTS 393 V LOVOS-10/280

d J m m dt model maszyny prądu stałego

PARAMETRY TECHNICZNE DEKLAROWANE PRZEZ PRODUCENTA POTWIERDZONE BADANIAMI / RATINGS ASSIGNED BY THE MANUFACTURER AND PROVED BY TESTS

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

Impedancje i moce odbiorników prądu zmiennego

ZASADY ZALICZANIA PRZEDMIOTU:

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS

Improving Power Quality in AC Supply Grids

Wymagania bezpieczeństwa dotyczące elektrycznych przyrządów pomiarowych, automatyki i urządzeń laboratoryjnych Część 1: Wymagania ogólne

4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

3-Phase Transformer magnetization current test

Przegląd topologii i strategii sterowania układów do poprawy jakości energii elektrycznej UPQC

Tychy, plan miasta: Skala 1: (Polish Edition)

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Transkrypt:

MOCE I KOMPENSACJA W UKŁADACH Z NIESINUSOIDALNYMI PRZEBIEGAMI PRĄDU I NAPIĘCIA Leszek S. Czarnecki, Fellow IEEE Internet Page: www.lsczar.info Research >>> Selected papers

Moc pozorna w układach trójfazowych, trójprzewodowych Trzy definicje mocy pozornej: SA URIRUSISUTIT G 2 2 S P Q B 2 2 2 2 2 2 S U U U I I I R S T R S T Która jest poprawna?

P = 72.3 kw Ideal P = 72.3 kw S S U I U I U I 83. 8 kva A G R R S S T T 2 2 S S P Q 72. 3 kva B 2 2 2 2 2 2 S S U U U I I I 220 3 190. 2 2 102. 7 kva R S T R S T P S P. A 086 S G A P 1 B P 071. S S G Jaką wartość ma współczynnik mocy? B

Powszechnie stosowane równanie mocy 2 2 2 S P Q z mocą czynną: T T 1 1 T T RR SS TT 0 0 f =R,S,T P p() t dt [ u i u i u i ] dt U I cos i mocą bierną: Q U I sin f =R,S,T f f f f f f narzuca geometryczną definicję mocy pozornej S. Przy innych definicjach równanie mocy nie jest spełnione

Ocena i wybór definicji mocy pozornej S ze względu na straty energii w źródle zasilania i wspólczynnik mocy: L.S. Czarnecki: Energy Flow and Power Phenomena in Electrical Circuits: Illusions and Reality, Archiv fur Elektrotechnik, (82), No. 4, pp. 10-15, 1999.

S A = S G = S B =100 kva A = G = B =1 S A = 119 kva, A = 0.84 S G = 100 kva, G = 1 S B = 149 kva, B = 0.67 Definicja geometryczna 2 2 S P Q jest błędna

S A = 119 kva, A = 0.84 S G = 100 kva, G = 1 S B = 149 kva, B = 0.67 S A = S G = S B =149 kva A = G = B = 0.67 2 2 2 2 2 2 S U U U I I I R S T R S T Definicje S U R I R U S I S U T I T, 2 2 S P Q są błędne

P = 72,3 kw, Q = 0 2 2 2 2 2 2 S U U U I I I 220 3 190, 2 2 102, 7 kva R S T R S T Powszechnie stosowane równanie mocy 2 2 2 S P Q nie jest spełnione

Jeśli równanie 2 2 2 S P Q jest błędne, trzeba znaleźć nowe równanie mocy!!! L.S. Czarnecki: Equivalent Circuits of Unbalanced Loads Supplied with Symmetrical and Asymmetrical Voltage and their Identification, Archiv fur Elektrotechnik, 78 pp. 165-168, 1995.

Każdy odbiornik trójfazowy zasilany napięciem sinusoidalnym ma równoważny odbiornik o konfigracji Jeśli napięcie jest symetryczne, każdy odbiornik ma nieskończenie wiele odbiorników równoważnych o konfigracji

Wartość skuteczna wektora trójfazowego x x () t x X = x() t = x () t = x 2Re X e 2ReX e R R R S S S xt() t xt X T j t j t 1 1 Moc czynna symetrycznego urządzenia trójfazowego T T 2 2 2 2 R S T i P R 1 ( i i i ) dt = R T 0 i = 1 ( ir is it ) dt i i i T R S T 0 2 2 2 2 2 2 jest wartością skuteczna prądu trójfazowego

Leszek.S. Czarnecki: Orthogonal Decomposition of the Current in a Three-phase Non-linear Asymmetrical Circuit with Nonsinusoidal Voltage, IEEE Transactions on Instrumentation and Measurement, Vol. IM-37, No. 1, pp. 30-34, 1988. W obwodach jednofazowych: S u i W obwodach trójfazowych: S u i Definicja Buchholtz a dla obwodów z przebiegami sinusoidalnymi B 2 2 2 2 2 2 S U U U I I I R S T R S T

U U U R S U R = U # U T = U U T S RS ST TR Y + Y Y = Y = G + jb, ST TR RS e e e ( Y Y Y ) = A, * Admitancja równoważna Admitancja niezrównoważenia i j t # e e j t 1 1 2ReI e 2Re{( G U jb U AU ) e } i i i r a 1 = 2Re{ G U } e j t e 1 = 2Re{ jb U } e # j t e j t 1 u = 2Re{ AU e } -Prąd czynny -Prąd bierny -Prąd niezrónoważemia (Unbalanced current) i i i i a r u

Ortogonalność wektorów trójfazowych T x+ y = 1 [ ( t)+ ( t)] dt + 2(, ) + T x y x x y y 0 2 2 2 Wektory x i y są wzajemnie ortogonalne jeśli ich iloczyn skalarny jest równy zeru T 1 T ( xy, ) = () t () t dt 0 T x y 0 Wówczas: 2 2 x+ y = x + y. Iloczyn skalarny (x,y) można wyznaczyć znając wektory zespolonych wartości skutecznych X i Y, * * * R R S S T T R R S S T T ( x, y) = ( x, y ) + ( x, y ) + ( x, y ) = Re{ X Y + X Y + X Y } = Re{ X Y } T *

i ia ir iu T * T * 2 a r Ia Ir GeU jbeu jbg e e u ( i, i) = Re{ } = Re{ ( )} = Re{ } = 0 T * T * a u a u Ge A ( i, i ) = Re{ I I } = Re{ U ( U # ) } = 0 T * T * r u r u jbe A ( i, i ) = Re{ I I } = Re{ U ( U # ) } = 0. Wektory prądu czynnego, biernego i prądu niezrównoważenia są wzajemnie ortogonalne 2 2 2 2 a r u i i i i

Prądy: i i i r a 1 = 2Re{ G U } e j t e 1 = 2Re{ jb U } e # j t e j t 1 u = 2Re{ AU e } nazywa się składowymi fizycznymi wektora prądu liniwego odbiornika trójfazowego Teorię mocy opartą na tym rozkładzie, nazwano Teorią mocy składowych fizycznych prądu Ang.: Currents Physical Components (CPC) power theory

Równanie mocy odbiornika trójfazowego zasilanego symetrycznym i sinusoidalnym napięciem 2 2 2 2 2 a r u i i i i u 2 2 2 2 S = P + Q +D P = i u G u Q D a = i u B u u r e e 2 2 2 Moc czynna Moc bierna = i u A u Moc niezrównoważenia

u = 220 3 381 V i = 361, 5 2 511 A Y Y RS 0 1 j18 090, j 030, 095, e S Z R G jb e Y 090, j 030S, e e RS A Y * j 42 RS 095, e S 0 i G u = 0,90 381 = 343 A a r u e i B u = 0,30381 = 114 A e i A u = 0,95381 = 361 A 2 2 2 2 2 2 a r u i i i i 343 114 361 511 A S = 195 kva, P = 131 kw, Q = 43 kvar, D = 138 kva

Kompensacja prądu biernego i prądu niezrównoważenia P S i a a 2 u 2 r 2 i i i B T T T e ( ST TR RS) 0 A j( T T T ) = 0 * ST TR RS Rozwiązanie ze względu na susceptancje kompensatora T T T RS ST TR ( 3Re{ A} Im{ A} B )/3 (2 Im{ A} B )/3 e (- 3 Re{ A} Im{ A} B )/3 e e

T T T RS ST TR ( 3Re{ A} Im{ A} B )/3 0.30S ( 2 Im{ A} B )/3 = 0.52S e (- 3 Re{ A} Im{ A} B ) / 3 = -0.52 S e e i 343 A, i 114 A, i 361 A a r u i 343 A, i 0, i 0, a r u

a u r 2 2 2 2 S = P +Q +D e e 2 2 P = i u G u Moc czynna Q = i u B u Moc bierna 2 D = i u A u Moc niezrwnoważenia To równanie mocy jest poprawne tylko dla odbiornika liniowego, czasowo-niezmienniczego (LTI), zasilanego napięciem symetrycznym i sinusoidalnym Aby je uogólnić na odbiorniki LTI z niesinusoidalnym napięcie zasilania, niezbędna jest poprawna teoria mocy obwodów jednofazowych zasilanych niesinusoidalnie.

Steinmetz experiment: 1892 2 2 2 P Q S?????

Poprawność równania mocy w warunkach niesinusoidalnych zakwestionował Steinmetz w 1892 roku, Do lat osiemdziesiątych, po 90 latach rozwoju teorii mocy, jej stan wyglądał jak poniżej 1927: Budeanu: 1931: Fryze: 2 2 S P Q D S 2 2 2 P Q F 2 1971: Shepherd: S S Q Q = u i S 1975: Kusters: 2 R 2 S 2 2 B 2 2 S P Q Q K 2 r 2 B F S Q = U I sin Q = u i K = n1 n n rf Q u i r rc n 1979: Depenbrock: 1984: Czarnecki: 2 2 2 2 2 S P Q V N 2 2 2 2 S P Q D s 1

1927 C.I. Budeanu, Professor of Bucharest University, Romania, introduced definition of the reactive power Q QB = UnInsinn n1 P 2 Q 2 S 2 B Budeanu concluded that there is also other power associated with the waveform distortion, and introduced a new power quantity, called Distortion Power 2 2 2 D = S ( P Q ) Budeanu's power equation has the form: 2 2 S P Q D B B 2 2 1987 L.S. Czarnecki: What is Wrong with the Budeanu s Concept of Reactive and Distortion Powers and Why it should be Abandoned, IEEE Trans. on Instrumentation and Measurements

Question: Is the Budeanu s Reactive Power a measure of energy oscillation? un() t 2Uncosn1t For a single harmonic: i () t 2I cos( n t ) The instantaneous power: p n n n 1 n dwn () t un() t in() t Pn (1cos2 n1t) Qn sin2n1t dt P n = U n I n cos n Q n = U n I n sin n Q n is an amplitude of the energy oscillation At distorted voltages and currents: N ut () u (), t n0 n N it () i () t n n0 => N Q U I sin Q B N n n n n n1 n1 Qn < > 0, QB could be equal to zero, even if Qn 0 Budeanu's Reactive Power is no measure of energy oscillation 25

ut ( ) = 2(100sint 25sin3 t) V Why Budeanu definition of reactive power Q is wrong? 1 1 n= 1 0 0 1 1 it ( ) = 2 [25 sin ( t 90 ) 100 sin (3 t 90 )] A Q= U I sin 1002510025 (-1) = 0 n n n There are energy oscillations in spite of zero Budeanu s reactive power Q

Why Budeanu s definition of Distortion power D is wrong? D 2 2 2 2 2 2 = S -P -Q = 1 2 U r U s Yr - Ys rn sn ut ( ) = 2(100sint 50sin3 t) V 1 1 D= 0 if for each r, s: Y r Y s...(1) j 2 Y1 Y3 1e S it ( ) 2 [100 sin( 1t ) 50 sin(3 1t )] A 2 2 The load current is distorted in spite of zero distortion power, D

ut ( ) = 2(100sint 30sin3 t) V 1 1 The load current is not distorted, meaning it () = aut ( ) jn n n n n if I =au e Y U, Y n ae Y Y jn 1 3...(2) j 1 j 3 1 e 4 4 2 j 2 S j j3 2 2 j 3 j 1 1 e 1 e 4 4 2 2 3 1 it ( ) = 2[50sin( 1t ) 15sin(3 1t ) ut ( T ), 2 2 2 4 S 1 j 3 2 1 j 2 DU1U 3 Y1Y3 10025 e e 2. 5 kva 2 2 Load current is not distorted in spite of non zero distortion power, D

Power factor improvement and Budeanu s reactive power N 2 N Pn 2 N Qn 2 N n U n=0 n 0 n U n1 n n=1 i i ( ) ( ), but in Budeanu Theory: Q = Q n ut () = 2(100sint 25sin3 t)v 1 1 n= 1 0 0 1 1 it ( ) = 2 [25 sin ( t 90 ) 100 sin (3 t 90 )] A Q= U I sin 1002510025 (-1) = 0 n n n Budeanu s reactive power is useless for compensator design

1931 S. Fryze, Professor of Lwow University, Poland, defined the reactive power in a time-domain, based on the load current orthogonal decomposition into active and reactive currents i = i a + i rf ia() t = P u() t = G 2 e u(), t irf() t = i() t ia() t u 1 T T z 0 i () t i () t dt ( i,i ) 0 a rf a rf 2 i i i a 2 rf 2 Fryze's Power Equation: Fryze s definition of reactive power: S P Q 2 2 2 F F Q = u i rf 1997 L.S. Czarnecki: Budeanu and Fryze: Two frameworks for Interpreting Power Properties of Circuits with Nonsinusoidal Voltages and Currents, Archiv fur Elektrotechnik

Fryze's Power Equation S 2 P 2 Q 2 F i = i a + i rf i a - Active current i rf - Reactive current We know that the following phenomena may contribute to the power factor deterioration 1. Energy oscillations 2. Bi-directional flow of active power 3. Harmonic generation in the load 4. Change of the load conductance with frequency 5. Load unbalance Fryze s Power Theory does not explain the effect of these power phenomena on the power factor 31

Question: Does the Fryze s Power Theory provide fundamentals for the power factor improvement? ut ( ) 100 2 (sin t sin3 t) V 1 1 P = 10 kw Q = 10 kvar S = 14.1 kva = 0.71 Q = 0 S = 10 kva = 1 Q = 8 kvar S = 12.7 kva = 0.78 These loads cannot be distinguished with respect to Fryze's powers. They differ as to the possibility of their compensation Fryze's Power Theory does not enable us to draw conclusions as to the possibility of the load compensation with a reactive compensator

Opinion: Fryze s power theory provides fundamentals for switching compensator control i = i a + i rf i a - active current is useful component i rf - reactive current is useless component

Illustration: e 100 2 sin1t V j 50 2 sin3 t A 1 i 2(20sin t 40sin 3 t) A 1 1 u 2(80sin t 40sin 3 t) V 1 1 P = 1600-1600 = 0 i () t P a 2 u ut () 0 According to Fryze's Power Theory, total compensation requires that the current i rf is reduced to zero This is a wrong conclusion Only the 3rd order current harmonic should be compensated 34

ut () = U 2 U cos( n t ) 0 n 1 n1 n 1927: Budeanu: 1931: Fryze: 2 2 S P Q D S 2 P 2 Q 2 F 2 1971: Shepherd: S S Q Q = u i S 2 R 2 S 2 2 B 2 2 B F Q = U I sin Q = u i n1 1975: Kusters: S P Q Q Q u i rc K 2 r 2 S K = n n rf r n 1979: Depenbrock: 2 2 2 2 2 S P Q V N 1 1984 r. Czarnecki: 2 2 2 2 S P Q D s

Current Physical Components (CPC) Power Theory of Linear Single-Phase Circuits with Nonsinusoidal Voltages and Currents jn t 1 u U0 2Re Un e n1 jn t 1 i G0U0 2Re YU n ne n1 i = i a + i s + i r i G u, G P u a e e 2 s 0 e 0 n e n1 jn 1t ir 2Re jbnune n1 i ( G G ) U 2Re ( G G ) U e n jn t 1 Active current Scattered current Reactive current 36

G n 1 R = Re{ Yn} = Re = R+ jn L R n L 2 2 1 +( 1 ) G 0 = 1 S, G 1 = 0,5 S, G 2 = 0,2 S, G 3 = 0,1 S, G 4 = 0,06 S.

Currents i a, i s and i r are mutually orthogonal i = i a + i s + i r i G u a e thus 2 2 2 2 a s r i i i i i ( G G ) U s n0 n e 2 2 n ir B 2 n U 2 n n1 Multiplying the current RMS equation by u 2 2 2 2 2 s S P D Q 38

This decomposition and power equation was developed without any approximation consequently, this decomposition is valid independently on the level of harmonic distortion Illustration j t j5 t 1 1 ut () 50 2Re{100e 20 e }V, 1 rd/s 1 u 11358. V Y 0 = 1 S Y 1 = 0.5 S Y 5 = 0.04 +j2.31 S P 2 G n U n n0,1,5 7516 W 0 j t j89 j5 t 2 2 2 it ( ) 50 2 Re{50e 1 46.2 e e 1 } A, i 50 50 46. 2 84.47 A i G u 6617. A a e G e P u 2 05826. S i ( G G ) U 24. 93 A s n 015,, n e 2 2 n i B U 46. 2 A r n 2 n 2 n 15, i i i i 84. 47 A a 2 s 2 r 2 In real systems the scattered current has relatively small value 39

Reactive current compensation: Lossless shunt reactive compensators do not change active power, P, and conductance G n. G e i G u const. a P u 2 e = const. i ( G G ) U const. s n0 n e 2 2 n The RMS value of the reactive current changes to: A total compensation of the reactive current:, r n1 2 2 n xn n i ( B B ) U, r i 0, if for each n, such that U 0, B B n xn n Conclusion: This decomposition solves the problem of a shunt reactive compensation of linear loads 40

Illustration j t j5 t 1 1 ut ( ) 2 Re{100 e 5e } V 1 = 1 rad/s Y 1 = 0.20 - j0.40 S Y 5 = 0.01 - j0.10 S Y 1 = 0.20 S Y 5 = 0.01 + j1.9 S ia 19.98 A i s 0. 95 A i, 950. A r Y 1 = 0.20 S Y 5 = 0.01 S j t j5 t j t j j5 t 1 1 it () 2Re{20 e 95.e 89 0 1 1 e }A it () 2Re{20 e +0.05 e }A Power factor ia = P = P = S P D Q i i i 2 2 2 2 2 2 s a s r ia 19.98 A i s 0. 95 A i, 0 0867. 0999. r 41

Reactive current minimization Total compensation requires very complex compensators, therefore, it has only a theoretical value. The reactive current can be minimized by two-element reactive compensator B xn n C 1 2 2 1 1 n LC i Min., if d r i 0 d r C >> C 2 nbnun 2 2 2 nn (1 n 1 LCk ) k1 C 2 2 opt nbu n n 1 2 2 3 nn (1 n 1 LCk) The inductance L can be chosen such that no resonance occur. The circuit can operate at close to unity power factor 42

Illustration E 3 = 1% E 1 E 5 = 5% E 1 E 7 = 2% E 1 E 11 = 1% E 1 L = 0 L such that r = 2.5 1 2 nbnun 2 2 2 nn (1 n 1 LCk ) k1 2 2 opt 0 nbu n n 1 2 2 3 nn (1 n 1 LCk) C C 0. 85 C in three steps of iteration

Moce w owodach z odbiornikami generującymi harmoniczne (HGL) e 100 2 sin1t V j 50 2 sin3 t A 1 i 2(20sin t 40sin 3 t) A 1 1 u 2(80sin t 40sin 3 t) V 1 1 i = 44.72 A, u = 89.44 V, S = 4000 VA P = 1600-1600 = 0, Q = 0, D s 0, lecz S 0 Równanie: 2 2 2 2 s S P D Q nie jest poprawne!!!! 44

Lokalizacja źródeł harmonicznych ma krytyczne znaczenie dla projektowania filtrów harmonicznych i kompensatorów harmonicznych

u u, i i, P P n n nn nn nn n P U I cos n n n n 0 0 Ze wzgledu na kierunek przepływu energii harmonicznych zbiór rzędów harmonicznych N może być rozłożony na dwa podzbiory N C, and N G, Jesli 90, nn n Jesli 90, nn n u u, i i, P P n n n nn nn nn C C C C C C u u, i i, P P n n n nn nn nn G G G G G G 0 0 C G u = u C u G, i = i C + i G, P = P C P G 2 2 2 C G u u u 2 2 2 C G i i i

Obwody równoważne: Dla n N C Y G jb n n n I U n n Dla n N G i = i C + i G

Rozkład prądu według CPC: Dla n N C. Y G jb n n n I U n n Dla n N G G PC ec 2 uc ac i G u ec C i = i ac + i sc + i rc + i G Rozkład prądu według Fryzego: G P ef 2 u af i G u ef i = i af + i rf,

Składowe fizyczne prądu odbiornika generującego harmoniczne: i = i ac + i sc + i rc + i G to jest stwarzyszone z odrębnymi zjawiskami fizycznymi Prądy te są wzajemnie ortogonalne 2 2 2 2 2 ac sc rc G i = i + i + i + i

Przykład.. e t t 220 2 cos 1 + 15 2 cos31 V. 1 1 j 20 2 cos5 t 15 2 cos 7 t A N C {1,3} N G {5,7} U U U U 1 1 j45 200.0 V, I 141.42e A 8.4 71.6 3 j j e, I3 e 0 0 13.64 V 4.31 A 0 j101.3 5 e, I5 9.27 V 18.18A 0 j98.1 7 e, I7 9.64 V 13.64A 0 Y 1 = 0.50 j0.50 S Y 3 = 0.10 j0.30 * * C 11 33 P Re{ UI} + Re{ UI} = 20010 W, 2 2 PC uc = U1 U3 200.46 V, G ec = 2 0.4979 S u C PC 2 iac 99.84 A, isc [( GnGeC) Un] 5.44 A, u C n 13, i ( B U ) 100.08 A rc n 13, n n 2 G n 57, 2 n i I 22.73 A

Składowe fizyczne prądu odbiornika LTI zasilanego w trójprzewodowo symetrycznym niesinusoidalnym napięciem u 2Re nn U n e jn t 1 G P u e 2 i a Ge u Active current: Składowa bezużyteczna prądu: i i i i ( i i i ) i = ( i i ) + i i a n a an rn un a an a rn un nn nn nn nn nn

Składowa bezużyteczna prądu: i i i i ( i i i ) i = ( i i ) + i i a n a an rn un a an a rn un nn nn nn nn nn i i i 2Re ( G G ) U e i i s an a en e n nn nn i 2Re jb U r rn en n nn nn # u iun 2Re AnU n nn nn e e jn t 1 jn t 1 Rozkład na składowe fizyczne i ia is ir iu

i ia is ir iu Wartości skuteczne składowych fizycznych: i G u, a e 2 2 s GenGe un nn 2 u An un nn 2 2 r Bn un nn i ( ) i i Prąd rozrzutu pojawia się wtedy, gdy P G e P, G u n 2 en 2 un CPS są wzajemnie ortogonalne, zatem: 2 2 2 2 2 a s r u i i i i i 53

Przykład Rozkłąd na składowe symetryczne nie zależy od poziomu odkształcenia j t j5 t 1 1 ur( t) 2 Re{220 e 44e } V G e = 0.6018 S Y e1 = 0.60 j0.40 S Y e5 = 0.88 + j0.15 S A 1 = 0.83 e -j0.18p S A 5 = 1.12 e -j0.86p S 2 2 2 2 2 2 i i i i 341 198 184 433 A R S T i 237 A a i 21 A s i 153 A r i 327 A u 2 2 2 2 2 2 2 2 a s r u i i i i i 237 21 153 327 433 A 54

Kompensacja reaktancyjna w warumkach niesinusoidalnych Dla harmonicznej rzędu n:. i G u G u ( G G ) u i i cn en n e n en e n an sn i G u cn en n jn t rn en ne i i 1 2Re{ jb U } A jn t 1 un 2Re{ nun e } # B T T T e n( STn TRn RSn) = 0 A j( T T T ) = 0 n STn TRn RSn * >>> T 1 RSn ( s 3Re A Im e ) 3 n An B n T 1 (2 Im A B ) 3 STn n en T 1 TRn ( s 3Re An Im An Ben ) 3 L.S. Czarnecki, "Reactive and unbalanced currents compensation in three-phase circuits under nonsinusoidal conditions," IEEE Trans. Instr. Measur., Vol. IM-38, No. 3, pp. 754-459, June 1989.

Przykład j 60 A1 A7 0.333e S j 60 A5 0.333e S 0 0 T 1 RSn ( s 3Re A Im e ) 3 n An B n T 1 (2 Im A B ) 3 STn n en T 1 TRn ( s 3Re An Im An Ben ) 3

Minimalizacja prądu biernego i prądu niezrównoważenia Kompensator idealny Kompensator zredukowany L.S. Czarnecki, "Minimization of unbalanced and reactive currents in three-phase asymmetrical circuits with nonsinusoidal voltage," Proc. IEE, Vol. 139, Pt. B, No. 4, pp. 347-354, July 1992. d j j T D Przykład:

Składowe fizyczne prądu w obwodach trójfazowych z odbiornikami generującymi harmoniczne Pn URnIRncosRn USnISncos SnUTnITncos Tn 0 0 Jeśli napięcie jesat symetryczne: Ian IRncosRn ISncos SnITncos Tn 0 0

0 Ian IRncosRn ISncos SnITncos Tn 0 Ze wzgledu na kierunek przepływu energii harmonicznych zbiór rzędów harmonicznych N może być rozłożony na dwa podzbiory N C, i N G, Jesli I 0, nn an Jesli I 0, nn an C G i i, u u, P n C n C n nnc nnc nnc i i, u u, P P. n G n G n nng nng nng P C G i i i i, u= u u u, P= P P P. n C G n C G n C G nn nn nn 2 2 2 C G u u u 2 2 2 C G i i i

Dla n N C * Sn enc GenC jbenc 2 n Y u T * n Pn jqn n n S U I PC ec 2 C G iac GeC uc u ic iac isc irc iuc

Dla n N C Dla n N G Składowe fizyczne prądu odbiornika generującego harmoniczne: i iac isc irc iuc ig

Składowe fizyczne są wzajemnie ortogonalne, zatem 2 2 ac 2 sc 2 2 2 rc uc G i i i i i i Ilustracja geometryczna:

Równanie mocy HGL:, 2 2 2 2 2 2 2 C G C G C G E S u i u u i i S S S 2 2 2 2 C uc ic = C sc C uc S P D Q D S u i G G G 2 2 2 2 E uc ig ug ic S Współczynnik mocy: P S P P C G 2 2 2 2 2 2 C sc rc uc G E P D Q D S S

Uwagi dotyczące: Instantaneous Reactive Power p-q Theory Akagi, Nabae, Kanazawa (1983) 64

Clarke Transform: u 3/ 2, 0 ur ur u C 1/ 2, 2 us us i 3/ 2, 0 ir ir i C 1/ 2, 2 is is Instantaneous real or active power: p = u i + u i, Instantaneous imaginary or reactive power q = u i u i

Instantaneous active current: In coordinates: u p 2 2 u u i p u p 2 2 u u i p In phase coordinates: irp i 1 p 23 /, 0 ip C isp ip 1/ 6, 1/ 2 ip Instantaneous reactive current: In, coordinates: In phase coordinates: q 2 2 u u i u u q i q q 2 2 u u irq i 1 q C isq iq

Według Nabae a, który jest głównym autorem IRP p-q Theory: It was developed to enable instantaneous compensation of the reactive power Rzeczywiście, moce chwilowe p & q mogą być obliczone momentalnie co sugeruje wniosek, że właściwości energetyczne odbiorników mogą być też identyfikowane momentalnie (z opóźnieniem potrzebnym jedynie do obliczeń)

Przykład 1 ur 2Ucos t, U = 220 V i 2 Icos( t30 ), I = 95.3 A R Q = 0 0 u ur 3Ucost C u us 3Usint o i ir 3Icos( t 30 ) C i i o R Icos( t30 ) Instantaneous powers, Active: Reactive: Instantaneous currents, Active: Reactive: p u i u i 3 U I[1 cos 2( t30 )] q u i u i 3U Isin 2( t30 ) i Rp 2 0 I [1 cos 2( t 30 )] i 0 Sp 3 cos( t120 ) 0 cost i sint Rq 2 sin2( 30 0 I t ) i 0 Sq 3 sin( t120 ) 0 0 0 For 2( t + 30 ) 90, p = - q Odbiornik czysto rezystancyjny obciąża źródło chwilowym prądem biernym

Przykład 2 ur 2Ucos t, U = 220 V i 2 Icos( t60 ), I = 95.3 A R P = 0 0 o i ir 3Icos( t 60 ) C i i o R Icos( t60 ) Instantaneous powers, Active: Reactive: p u i u i 3 U I[cos(2 t30 )] q u i u i 3 U I[1sin(2 t30 )] 0 0 Instantaneous active current in R line: 0 For 2 t - 30 0, p = - q I 0 0 irp [cos( t30 ) + cos(3t30 )] 6 Odbiornik czysto reaktancyjny obciąża źródło chwilowym prądem czynnym

Wniosek: Para mocy chwilowych p i q, zmierzonych w pewnej chwil t nie określa właściwości energetycznych odbiornika

H. Akagi, E. H. Watanabe and M. Aredes book Instantaneous Power Theory and Applications to Power Conditioning Przedstawili następującą interpretację fizyczną chwilowej mocy biernej q: the imaginary power q is proportional to the quantity of energy that is being exchanged between the phases of the system Fig. ( ) summarizes the above explanations about the real and imaginary powers.

P = E H P da A dw() t dt Wektor Poyinting a P nie może być równoległy do wektora natężenia pola magnetycznego H Wektor Poyinting a P nie może być równoległy do wektora natężenia pola elektrycznego E Interpretacja Akagi ego jest błędna. Energia nie może wirować wokół linii transmisyjnej bądź przepływać między przewodnikami liniami

Teoria Chwilowej Mocy Biernej p-q nie ma znaczenia poznawczego gdyż nie dostarcza interpretacji zjawisk fizycznych Dopiero teoria CPC wyjaśniła sens fizyczny mocy q Jest to wielkość złożona q u i u i QDsin(2 t) Ale nawet ten wynik jest poprawny tylko wtedy, gdy napięcia i prądy są sinusoidalne

Głównym zastosowaniem Teorii Chwilowej Mocy Biernej (TCPB) p-q, są algorytmy sterowania kompensatorów. Według TCMB p-q, kompensator ma kompensować chwilową moc bierną q i składową oscylacyjną chwilowej mocy czynnej p.

L.S. Czarnecki, (2009) Effect of supply voltage harmonics on IRP p-q-based switching compensator control IEEE Trans. on Power Electronics, Vol. 24, No. 2 If the load is an ideal resistive load supplied with nonsinusoidal voltage u = u 1 + u 5 p p+ p PP cos6 t 1 5 6GU1U5 1 j jr 2 2GU1U 5cos61 t U1cos 1t+ U5cos 51t = j 2 2 0 0 S U1+ U5+2U1U5cos6 1t U1cos( 1t120 )+ U5cos(51t120 )

L.S. Czarnecki, Effect of supply voltage asymmetry on IRP p-q - based switching compensator control IET Proc. on Power Electronics, 2010, Vol. 3, No. 1 If the load is an ideal resistive load supplied with asymmetrical voltage u = u p + u n p n p n p p+ p P P 6GU U cos2 t 1 p n p n 2 2 2 GU ( + U ) U U cos1tcos2 1t jr j p2 n2 p n 3 U + U + 2U U cos21t

u U t R 2 1cos 1, R 2 1cos1 2 7 cos 71 i 2 I cos t 2 I cos7 t R 1 1 7 1 u U t U t i = G u p p+ p 3U I 3U I cos6 t q = 0 1 1 1 7 1 p p+ p P 6GU1U7cos6 1 q = 0 These two circuits, different with respect to properties and needed compensation, are identical in terms of IRP p-q Theory

Instantaneous powers p and q are algebraic forms (AF) of the supply voltages and the load currents products Values of p and q powers do not provide information whether their properties come from the supply voltage or from the load current

ROBOCZA, ODBITA I SZKODLIWA MOC CZYNNA

Podstawową wielkością w rozliczeniach energetycznych jest energia dostarczana do jej użytkownika Pdt W a 0 P moc czynna, okres rozliczeniowy, Terminy moc czynna, P oraz moc użyteczna są zwykle traktowane jako synonimy Energia czynna W a jest traktowana zwykle jako energia użyteczna Odbiorcy wielkich ilości energii pokrywają też zwykle dodatkowe koszty wynikające z niskiego współczynika mocy.

Takie podejście do rozliczeń energetycznych pojawiło się na przełomie XIX i XX wieku i obowiązuje do chwili obecnej Przez większość tego okresu energia elektryczna dostarczana była z generatorów synchronicznych produkujących niemal doskonale sinusoidalne i symetryczne napięcie trójfazowe i zużywana była w dominującej części przez odbiorniki liniowe

T 0 ut= () un u u nn 1 h P 1 utitdt () () P1P2P3P 4... T it= () in ii nn 1 h P1 U1I1 0 2 n n n s n n s n P U I ( R I ) I R I 0 Energia do odbiornika dostarczana jest z mocą P 1. jest to robocza moc czynna, P 1 = P w ( P P P... ) = P 2 3 4 r odbita moc czynna P P P w r

Odbiornik o mocy czynnej P generujący harmoniczne musi być zasilany z mocą roboczą P w. P w > P

= 10 deg, R s = 5% of R Moc czynna P = 1000 W Robocza moc czynna P w = 1536 W Odbita moc czynna P r = 536 W Moc strat w zasilaniu: P s = 900 W

Harmoniczne generowane w odbiorniku powodują dodatkowe straty wewnątrz systemu zasilającego. Odbiorca winien płacić za energię roboczą P dt ( PP) dt W W w r w a 0 0 Prąd potrzebny do przenoszenia energii roboczej W w ma większą moc skuteczną od prądu przenoszącego energię czynną W a 2 s r s w P PR I

Robocza i odbita moc czynna w układach trójfazowych, trójprzewodowych u R p u S u T u u u n i R p i S i T i i i n T P 1 dt = (, ) = (, ) + (, ) = P + P T u i u i u i u i 0 T p p n n p n n n n n n n 2 u i si i s i r P (, ) = ( R, ) = R P 0 p n P P P P P w r

Odbiornik niezrównoważony o mocy czynnej P musi być zasilany roboczą mocą czynną P w większą od mocy czynnej

i = 3 159. 1 275. 6A s s Moc strat w źródle 2 2 P = R i = 0. 0658 275. 6 5. 0 kw

0 p UR j 0 U 1 1,, * 208. 9e U S V 0 n 3 1, *, j120 U U 11. 1e T 0 p IR j 0 I 1 1,, * 168. 5e I S A 0 n 3 1, *, j 60 I I 168. 5e T p p p p p Pw P ( u, i ) = 3U I 3208. 9168. 5 105. 6 kw n n n n n* Pr P ( u, i ) = 3Re{ U I } 311. 1168. 5 5. 6 kw w P 3 w 105. 610 uw 3 208. 9 i = 291. 8A Moc strat w źródle 2 2 s s iw r P = R + P = 0. 0658 291. 8 5. 6 11. 2 kw

P P w r > 0 < 0 P w P Rozliczenia energetyczne, których rdzeniem byłby koszt energii roboczej obciążałyby odbiorcę kosztem strat powodowanych asymetrią prądów i harmonicznymi generowanymi w odbiorniku

Rozważmy maszynę indukcyjną zasilaną napięciem asymetrycznym Energia przenoszona przez składową kolejności przeciwnej nie jest przekształcana na energię mechaniczną Tak samo jest wtedy, gdy napięcie zasilania jest odkształcone. P P w r p = P 0 n = P 0 P w P

Strata DOCHODÓW dostawcy energii elektrycznej sprzedawanej odbiorcom powodującym odkształcenie prądu i jego asymetrię jest proporcjonalna do różnicy między mocą roboczą a mocą czynną P = P P w

PRZEPŁATA kosztu energii odbiorcy zasilanego napięciem odkształconym i asymmetrycznym jest proporcjonalna do różnicy między mocą czynną a mocą roboczą P= P P w

Wtedy, gdy podstawą rozliczeń energetycznych jest energia czynna, W a, strona powodująca odkształcenia i asymmetrię nie jest finansowo odpowiedzialna za ich skutki Wtedy, gdy podstawą rozliczeń energetycznych jest energia robocza, W w, strona powodująca odkształcenia i asymmetrię płaci za ich skutki Rozliczenia energetyczne oparte na koszcie energii roboczej, W w mogłyby tworzyć motywacje ekonomiczne do poprawy jakości zasilania i do poprawy jakości obciążenia a tym samym, do oszczędności energii

Pomiar energii roboczej wymaga analizy harmonicznej, ograniczonej jednak do harmonicznej podstawowej prądu i napięcia Systemy energetyczne będą się rozwijały w kierunku systemów inteligentnych, smart grids, wyposażonych w mieniki zdolne do cyfrowej analizy sygnałów, DSP Pomiar energii roboczej W w przez takie mierniki będzie tylko zmianą na poziomie programowym

Główną przeszkodą dla racjonalizacji podstaw rozliczeń energetycznych mogą być - stuletnia tradycja tych rozliczeń na podstawie energii czynnej, - system przepisów, norm i standardów - inercja intelektualna Nie oznacza to jednak, że nie warto podejmować działań w tym kierunku. Systemy energetyczne będą w najbliższej przyszłości podlegały głębokim zmianom. Podstawy rozliczeń energetycznych powinny być jedną z nich

Compensation goals in systems with nonsinusoidal voltages and currents

Compensators & filters are used for the electrical power system (providers & customers together) performance improvement & economic benefits

There are two different entities with different and conflicting goals: Profits maximization at energy delivery Cost of energy use minimization

Loading quality - Reactive current - Scattered current - Unbalanced current - Current distortion - Power variation - Random switching - HF current noise - Voltage distortion - Asymmetry - Voltage RMS variation - Random disturbances - HF voltage noise Supply quality

- Voltage distortion - Asymmetry - Voltage RMS variation - Random disturbances - HF voltage noise Supply quality Loading quality - Reactive current - Scattered current - Unbalanced current - Current distortion - Power variation - Random switching - HF current noise Compensation goals in a very essence are economic, unfortunately, we usually are not able to use optimization procedures for compensator control. It is difficult to express profits reduction in terms of loading quality factors It is difficult to express cost increase in terms of supply quality factors Compensator cost (investment & operation) is also a component in optimization procedure

Therefore, compensation goals are formulated usually as a reduction of some harmful agents of the loading quality or/and the supply quality to a minimum value, or to a level imposed by standards

Usually compensators are used for improvement of degraded loading quality

Compensators are usually used for improvement of degraded loading quality Loading quality - Reactive current - Scattered current - Unbalanced current - Current distortion - Power variation - Random switching - HF current noise Shunt compensators are needed for that

Reduction of the supply current three-phase RMS value i and its distortion is a common objective of shunt compensation

- Voltage distortion - Asymmetry - Voltage RMS variation - Random disturbances - HF voltage noise Degraded supply quality Compensator should be able to reach the specified goals even at degraded supply quality This could be particularly important in micro-grids, which might be weak systems with sources of voltage distortion on the provider side with dominating single-phase Harmonic Generating Loads

The active current according to Fryze power theory is the smallest current of a load which at voltage u(t) has the active power P P ia() t = Geut (), G e = 2. u, The remaining current, rf i () t i() t i () t increases only the supply current RMS value and can be compensated a

e 100 2 sin1t V j 50 2 sin3 1 t A i 2(20sin t 40sin 3 t) A 1 1 u 2(80sin t 40sin 3 t) V 1 1 P = P 1 + P 3 = 1600 1600 = 0 i 0 a What is the objective of compensation in this circuit with zero active current?

The CPC power theory, unlike Fryze, differentiates two directions of energy flow. - One, caused by the distribution voltage harmonics, P n > 0 - Second, caused by the load generated current harmonics, P n < 0 The active current according to CPC power theory is the smallest current of a load which at distribution system originated voltage u D (t) has the active power P D ac i () t G u () t ec C G PC ec 2 uc The useless and harmful current i b = i i ac = i rc + i sc + i G

When the system is weak then shunt compensator affects the load voltage and compensation conditions Compensation can be achieved only in a recursive process When the system is strong, shunt compensator does not affect the load voltage Compensation can be achieved in a single step

Fryze PT approach CPC PT approach Recursive process of compensation converges to the active current as defined in the CPC power theory ac i () t G u () t G ec PC ec 2 uc C

The active current, both according to Fryze and CPC PTs, reproduces the supply voltage distortion and asymmetry i () t G u() t a e i () t G u () t ac ec C i () t G u() t i () t G uc () t a e ac ec In some situations, the compensator has to increase the supply current distortion and asymmetry

There are opinions that the supply current after compensation should have not only the minimum RMS value, but also be sinusoidal and symmetrical Such a current is referred to as working current, i w or i w Sometimes shunt compensators are controlled to achieve such a goal

i () t i () t G u () t w a1 w 1 d G i () t it () i () t w P1 w G1 2 u1 The remaining part of the current can be referred to as a detrimental current When a compensator is to reduce the supply current to the active current (according. to Fryze or CPC PTs definitions) then the compensator current j is orthogonal to the supply voltage u. There is no permanent energy flow to the compensator This is not the case when the working current i w is the goal of compensation

The active power of a switching compensator of purely resistive load is P c = (u, j) = (u, i d ) = (u, (i i 1 )) = (u, i)+(u, i 1 ) = P + P 1 = P h, Compensator has to deliver energy to the system at the rate of P h Switching compensators are not active, but passive devices, thus this energy has to be delivered to the compensator by the current fundamental harmonic

Three-phase, three-wire systems p n 1 1 h e e e e p n w+ 1r 1 h w+ d i i i i i i i Switching compensator current p n d 1r 1 h j i ( i i i ). Compensator current is not orthogonal to the supply voltage n p n n n n w0 1 h 1r 1 h 1 1 h h 1 h ( u, j) = ( u + e + e, i i i ) = ( e, i ) ( e, i ) = P P

Should only the working current remain after compensation???? is a debatable question

i < i a ac w i < i w Energy loss at delivery is lower when the supply current is reduced to the active current than it is reduced to the working current When the supply voltage is nonsinusoidal and asymmetrical, however, then the active current is also nonsinusoidal and asymmetrical

Question as to compensation to the active or to the working current depends on which side is the compensator. It is on the provider or on the consumer side < Energy meter? Working current < Energy meter? Active current