Elektroniczne Systemy Przetwarzania Energii

Wielkość: px
Rozpocząć pokaz od strony:

Download "Elektroniczne Systemy Przetwarzania Energii"

Transkrypt

1 Elektroniczne Systemy Przetwarzania Energii

2 Zagadnienia ogólne Przedmiot dotyczy zagadnień Energoelektroniki - dyscypliny na pograniczu Elektrotechniki i Elektroniki.

3 Elektrotechnika zajmuje się: przetwarzaniem energii elektrycznej w inne formy energii i odwrotnie; przesyłaniem energii elektrycznej na odległość; przekształcaniem wielkości (np. napięć lub prądów) związanych z energią elektryczną (m. in. z użyciem elementów elektronicznych, wtedy mówimy o energoelektronice)

4 Elektronika zajmuje się głównie przetwarzaniem sygnałów elektrycznych używanych do przesyłania, magazynowania i przetwarzania informacji. Specyficzne dla elektroniki jest ponadto używanie elementów półprzewodnikowych (niegdyś lampowych) do realizacji przetwarzania przebiegów elektrycznych.

5 W wielu układach elektronicznych nie chodzi o przetwarzanie informacji lecz energii (lub mocy) elektrycznej. Można mówić o dwóch częściach elektroniki: a) elektronika sygnałowa, b) elektronika mocowa, inaczej energoelektronika (power electronics).

6 Rozwój energoelektroniki wynika z wielu czynników, na przykład: szybki rozwój urządzeń będących odbiornikami energii elektrycznej; rozwój alternatywnych źródeł energii (fotowoltaiczne, wiatrowe), doskonalenie technik magazynowania energii elektrycznej (akumulatory, superkondensatory),

7 potrzeba zwiększania sprawności układów przetwarzania energii, wymaganie czystości energii elektrycznej minimalizacja emisji zakłóceń, wzrost zapotrzebowania na urządzenia UPS (uninterrupted power supply).

8 Pojęcia energii i mocy elektrycznej Energia (W) zdolność do wykonania pracy. Jednostki: J, kwh. Zmiana energii: wykonanie pracy lub przepływ ciepła.

9 Praca mechaniczna do B w wyniku działania siły F: przeniesienie ciała od A W P B A F ds

10 Na ładunek Q w polu elektrycznym E działa siła: Praca: F Q E B W Q E ds Q E ds Q V PE AB A B A

11 Moc (p): szybkość zmian energii (np. szybkość wykonywania pracy). Jednostka wat (W). p dw dt 1W 1J 1sek p d dt Q V AB

12 W stałym polu: p dq dt V AB i u Dla zmiennego pola dodatkowo: prąd przesunięcia (efekty pojemnościowe), pole magnetyczne (efekty indukcyjne).

13 W ogólności: i(t), u(t); - moc chwilowa p( t) i( t) u( t) P śr 1 T - moc średnia T 0 p( t) dt 1 T T 0 i( t) u( t) dt

14 Dla przebiegów okresowych, pojęcie wartości skutecznych (root mean square rms). X rms 1 T T 0 x( t) 2 dt

15 Dla x( t) X m sin( t ), gdzie 2 T otrzymujemy: X rms X m 2

16 Napięcie w sieci energetycznej (Europa): U V ; U V rms m

17 Jeśli i(t) i u(t) w odbiorniku są okresowe to moc pozorna P A (apparent power) wynosi: P A I rms U rms

18 Moc średnia P śr dla przebiegów okresowych nazywa się też mocą czynną. Współczynnik mocy (power factor PF) dla przebiegów okresowych:

19 PF P P śr A T u 2 T 0 u( t) ( t) dt i( t) T dt i 2 ( t) dt 0 0 Zawsze: PF 1. PF określa się zwykle dla odbiorników zasilanych z sieci energetycznej.

20 Załóżmy: u( t) U sin m t Przebieg i(t) odkształcony, przedstawiamy szeregiem Fouriera : i( t) I i ( t)... i ( t) 0 1 n...

21 Składnik i n (t) ma pulsację n. Moc czynna w tym przypadku: P śr 1 T T u( t) i1 ( t) I 0 u( t) u( t) in ( t) 0 n 2 dt

22 Tylko pierwszy składnik w nawiasie kwadratowym jest niezerowy (niezależnie od różnicy faz). Przyjmijmy: i ( t) I sin( t 1 m1 )

23 Wtedy: P śr U m U I 2 m T m1 I T m1 0 cos sin U t rms sin( I 1rms t cos ) dt

24 Z drugiej strony: P śr PF U rms I rms Zatem: PF I I 1rms rms cos

25 Przypadek idealny: oba czynniki równe jedności. Pierwszy gdy przebieg prądu zawiera tylko pierwszą harmoniczną (nie ma zniekształceń). Drugi gdy = 0 (nie ma przesunięcia fazy między przebiegami prądu i napięcia).

26 PF = 1 dla takiego odbiornika energii, który jest widziany przez sieć zasilającą jako liniowy rezystor (element liniowy i bezinercyjny).

27 Pierwszy czynnik wzoru PF I I 1rms rms cos można powiązać ze współczynnikiem zawartości harmonicznych (total harmonic distortion THD). THD I rms I 3rms... I nrms... I 1rms

28 Można pokazać, że: I rms I I rms nrms I... Dla prądu pobieranego z sieci zazwyczaj I 0 = 0, stąd: THD I 2 rms I 1rms I 2 1rms

29 i w konsekwencji: PF THD cos

30 Wymaganie wobec urządzeń zasilanych z sieci: PF bliski jedności. Korektory PF pasywne i aktywne.

31 System energoelektroniczny. P A, P R itd. moce średnie.

32 Sprawność energetyczna: P 0 1 P A P S P A P S P E P R P 0 P S, P E na ogół małe.

33 P A P R P 0 P P 0 A 1 P P R A P R P 0 1 1

34 Pożądane: 1, czyli P R << P 0. Inna miara jakości: P 0 P R 1 i zdeterminowane przez strukturę układu i sposób sterowania.

35 Przy ustalonym : P 0 P R. P R zamieniana na ciepło, P E emitowana w formie fal EM lub przebiegów zakłócających sieć energetyczną.

36 Klasyfikacja układów energoelektronicznych A. O działaniu ciągłym, B. Kluczowane (większość).

37 A małe sprawności ( < 50%, często tylko kilkanaście %). B duże sprawności ( > 50%, czasem > 90%).

38 Inny podział, odniesiony głównie do układów typu B) nazywanych przekształtnikami (power converters):

39 a) AC DC (prostowniki rectifiers), b) DC DC (przetwornice napięcia stałego DC-DC converters), c) AC AC (cyklokonwertery cycloconverters, frequency converters), d) DC AC (falowniki inverters).

40 Modulacja szerokości impulsów (Pulse width modulation PWM) PWM najważniejsza z technik impulsowego przetwarzania mocy. Najprostszy przypadek:

41

42 Klucz przełączany okresowo (okres T). T t ON t OFF t ON D T t OFF (1 D) T t ON klucz zwarty, t OFF rozwarty. D współczynnik wypełnienia (duty ratio, duty factor)

43

44 Wartość średnia u 1 : T 1 u1 u1( t) T 0 dt D U WE Jeśli filtr idealnie dolnoprzepustowy, to: u0 u1 D U WE t ON T U WE

45 Regulacja u 0 przez zmiany t ON czyli zmiany szerokości impulsów, przy ustalonym T. Tutaj: u 0 < U WE. Dołączenie diod i elementów gromadzących energię pozwala na regulację u 0 także powyżej U WE.

46 Inne techniki impulsowe w energoelektronice Wzmacniacze klasy E Element aktywny kluczowany przebiegiem wejściowym. Napięcie wyjściowe filtrowane.

47

II. Elementy systemów energoelektronicznych

II. Elementy systemów energoelektronicznych II. Elementy systemów energoelektronicznych II.1. Wstęp. Główne grupy elementów w układach impulsowego przetwarzania mocy: elementy bierne bezstratne (kondensatory, cewki, transformatory) elementy przełącznikowe

Bardziej szczegółowo

Stabilizatory impulsowe

Stabilizatory impulsowe POITECHNIKA BIAŁOSTOCKA Temat i plan wykładu WYDZIAŁ EEKTRYCZNY Jakub Dawidziuk Stabilizatory impulsowe 1. Wprowadzenie 2. Podstawowe parametry i układy pracy 3. Przekształtnik obniżający 4. Przekształtnik

Bardziej szczegółowo

Podzespoły i układy scalone mocy część II

Podzespoły i układy scalone mocy część II Podzespoły i układy scalone mocy część II dr inż. Łukasz Starzak Katedra Mikroelektroniki Technik Informatycznych ul. Wólczańska 221/223 bud. B18 pok. 51 http://neo.dmcs.p.lodz.pl/~starzak http://neo.dmcs.p.lodz.pl/uep

Bardziej szczegółowo

Elektronika przemysłowa

Elektronika przemysłowa Elektronika przemysłowa Kondycjonery energii elektrycznej Katedra Energoelektroniki, Napędu Elektrycznego i Robotyki Wydział Elektryczny, ul. Krzywoustego 2 PAN WYKŁADU Definicja kondycjonera energii elektrycznej

Bardziej szczegółowo

Przekształtniki impulsowe prądu stałego (dc/dc)

Przekształtniki impulsowe prądu stałego (dc/dc) Przekształtniki impulsowe prądu stałego (dc/dc) Wprowadzenie Sterowanie napięciem przez Modulację Szerokości Impulsów MSI (Pulse Width Modulation - PWM) Przekształtnik obniżający napięcie (buck converter)

Bardziej szczegółowo

12. Zasilacze. standardy sieci niskiego napięcia tj. sieci dostarczającej energię do odbiorców indywidualnych

12. Zasilacze. standardy sieci niskiego napięcia tj. sieci dostarczającej energię do odbiorców indywidualnych . Zasilacze Wojciech Wawrzyński Wykład z przedmiotu Podstawy Elektroniki - wykład Zasilacz jest to urządzenie, którego zadaniem jest przekształcanie napięcia zmiennego na napięcie stałe o odpowiednich

Bardziej szczegółowo

Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego.

Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. 1. Moc odbiorników prądu stałego Prąd płynący przez odbiornik powoduje wydzielanie się określonej

Bardziej szczegółowo

JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów. Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów. Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Źródła odkształcenia prądu układy przekształtnikowe Źródła odkształcenia prądu układy

Bardziej szczegółowo

Prąd przemienny - wprowadzenie

Prąd przemienny - wprowadzenie Prąd przemienny - wprowadzenie Prądem zmiennym nazywa się wszelkie prądy elektryczne, dla których zależność natężenia prądu od czasu nie jest funkcją stałą. Zmienność ta może związana również ze zmianą

Bardziej szczegółowo

Przyrządy i układy mocy studia niestacjonarne, sem. 4 lato 2016/17. dr inż. Łukasz Starzak

Przyrządy i układy mocy studia niestacjonarne, sem. 4 lato 2016/17. dr inż. Łukasz Starzak Przyrządy i układy mocy studia niestacjonarne, sem. 4 lato 2016/17 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik

Bardziej szczegółowo

Przerywacz napięcia stałego

Przerywacz napięcia stałego Przerywacz napięcia stałego Efektywna topologia układu zmienia się w zależności od stanu łącznika Łukasz Starzak, Przyrządy i układy mocy, lato 2018/19 1 Napięcie wyjściowe przerywacza prądu stałego Przełączanie

Bardziej szczegółowo

Przyrządy i układy mocy studia niestacjonarne, sem. 4 lato 2018/19. dr inż. Łukasz Starzak

Przyrządy i układy mocy studia niestacjonarne, sem. 4 lato 2018/19. dr inż. Łukasz Starzak Przyrządy i układy mocy studia niestacjonarne, sem. 4 lato 2018/19 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik

Bardziej szczegółowo

Część 5. Mieszane analogowo-cyfrowe układy sterowania

Część 5. Mieszane analogowo-cyfrowe układy sterowania Część 5 Mieszane analogowo-cyfrowe układy sterowania Korzyści z cyfrowego sterowania przekształtników Zmniejszenie liczby elementów i wymiarów układu obwody sterowania, zabezpieczeń, pomiaru, kompensacji

Bardziej szczegółowo

R 1 = 20 V J = 4,0 A R 1 = 5,0 Ω R 2 = 3,0 Ω X L = 6,0 Ω X C = 2,5 Ω. Rys. 1.

R 1 = 20 V J = 4,0 A R 1 = 5,0 Ω R 2 = 3,0 Ω X L = 6,0 Ω X C = 2,5 Ω. Rys. 1. EROELEKR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 9/ Rozwiązania zadań dla grupy elektrycznej na zawody stopnia adanie nr (autor dr inŝ. Eugeniusz RoŜnowski) Stosując twierdzenie

Bardziej szczegółowo

WIELOPOZIOMOWY FALOWNIK PRĄDU

WIELOPOZIOMOWY FALOWNIK PRĄDU Leszek WOLSKI WIELOPOZIOMOWY FALOWNIK PRĄDU STRESZCZENIE W pracy przedstawiono koncepcję budowy i pracy wielopoziomowego falownika prądu i rozwiązanie techniczne realizujące tę koncepcję. Koncepcja sterowania

Bardziej szczegółowo

IMPULSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM

IMPULSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM Instrukcja do ćwiczenia laboratoryjnego. IMPSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM Przekształtnik impulsowy z tranzystorem szeregowym słuŝy do przetwarzania energii prądu jednokierunkowego

Bardziej szczegółowo

Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki

Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Temat ćwiczenia: Przetwornica impulsowa DC-DC typu boost

Bardziej szczegółowo

Eliminacja wpływu napędów dużych mocy na sieć zasilającą

Eliminacja wpływu napędów dużych mocy na sieć zasilającą Eliminacja wpływu napędów dużych mocy na sieć zasilającą Zakres prezentacji Oddziaływanie napędów dużych mocy na sieć zasilającą Filtr aktywny AAF firmy Danfoss Filtr aktywny AAF w aplikacjach przemysłowych

Bardziej szczegółowo

Gdy wzmacniacz dostarcz do obciążenia znaczącą moc, mówimy o wzmacniaczu mocy. Takim obciążeniem mogą być na przykład...

Gdy wzmacniacz dostarcz do obciążenia znaczącą moc, mówimy o wzmacniaczu mocy. Takim obciążeniem mogą być na przykład... Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Gdy wzmacniacz dostarcz do obciążenia znaczącą moc, mówimy

Bardziej szczegółowo

Impulsowe przekształtniki napięcia stałego. Włodzimierz Janke Katedra Elektroniki, Zespół Energoelektroniki

Impulsowe przekształtniki napięcia stałego. Włodzimierz Janke Katedra Elektroniki, Zespół Energoelektroniki Impulsowe przekształtniki napięcia stałego Włodzimierz Janke Katedra Elektroniki, Zespół Energoelektroniki 1 1. Wstęp 2. Urządzenia do przetwarzanie energii elektrycznej 3. Problemy symulacji i projektowania

Bardziej szczegółowo

Podstawowe układy energoelektroniczne

Podstawowe układy energoelektroniczne WYKŁAD 3 Podstawowe układy energoelektroniczne Podział ze względu na charakter przebiegów wejściowych i wyjściowych Przebieg wejściowy Przemienny (AC) Przemienny (AC) Stały (DC) Stały (DC) Przebieg wyjściowy

Bardziej szczegółowo

Miernictwo I INF Wykład 13 dr Adam Polak

Miernictwo I INF Wykład 13 dr Adam Polak Miernictwo I INF Wykład 13 dr Adam Polak ~ 1 ~ I. Właściwości elementów biernych A. Charakterystyki elementów biernych 1. Rezystor idealny (brak przesunięcia fazowego między napięciem a prądem) brak części

Bardziej szczegółowo

1. Wiadomości ogólne o prostownikach niesterowalnych

1. Wiadomości ogólne o prostownikach niesterowalnych . Wiadomości ogólne o prostownikach niesterowalnych Układy prostownikowe niesterowalne są przekształtnikami statycznymi. Średnia wartość napięcia wyprostowanego, a tym samym średnia wartości prądu i mocy

Bardziej szczegółowo

42 Przekształtniki napięcia stałego na napięcie przemienne topologia falownika napięcia, sterowanie PWM

42 Przekształtniki napięcia stałego na napięcie przemienne topologia falownika napięcia, sterowanie PWM 42 Przekształtniki napięcia stałego na napięcie przemienne topologia falownika napięcia, sterowanie PWM Falownikami nazywamy urządzenia energoelektroniczne, których zadaniem jest przetwarzanie prądów i

Bardziej szczegółowo

MODEL SYMULACYJNY JEDNOFAZOWEGO PROSTOWNIKA DIODOWEGO Z MODULATOREM PRĄDU

MODEL SYMULACYJNY JEDNOFAZOWEGO PROSTOWNIKA DIODOWEGO Z MODULATOREM PRĄDU POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS No 99 Electrical Engineering 2019 DOI 10.21008/j.1897-0737.2019.99.0006 Łukasz CIEPLIŃSKI *, Michał KRYSTKOWIAK *, Michał GWÓŹDŹ * MODEL SYMULACYJNY JEDNOFAZOWEGO

Bardziej szczegółowo

Rys. 1. Przebieg napięcia u D na diodzie D

Rys. 1. Przebieg napięcia u D na diodzie D Zadanie 7. Zaprojektować przekształtnik DC-DC obniżający napięcie tak, aby mógł on zasilić odbiornik o charakterze rezystancyjnym R =,5 i mocy P = 10 W. Napięcie zasilające = 10 V. Częstotliwość przełączania

Bardziej szczegółowo

Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści

Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, 2015 Spis treści Przedmowa 7 Wstęp 9 1. PODSTAWY ELEKTROTECHNIKI 11 1.1. Prąd stały 11 1.1.1. Podstawowe

Bardziej szczegółowo

Część 6. Mieszane analogowo-cyfrowe układy sterowania. Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 2011/12

Część 6. Mieszane analogowo-cyfrowe układy sterowania. Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 2011/12 Część 6 Mieszane analogowo-cyfrowe układy sterowania 1 Korzyści z cyfrowego sterowania przekształtników Zmniejszenie liczby elementów i wymiarów układu Sterowanie przekształtnikami o dowolnej topologii

Bardziej szczegółowo

MODEL SYMULACYJNY ENERGOELEKTRONICZNEGO ZASILACZA AWARYJNEGO UPS O STRUKTURZE TYPU VFI

MODEL SYMULACYJNY ENERGOELEKTRONICZNEGO ZASILACZA AWARYJNEGO UPS O STRUKTURZE TYPU VFI POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 91 Electrical Engineering 2017 DOI 10.21008/j.1897-0737.2017.91.0011 Michał KRYSTKOWIAK* Łukasz CIEPLIŃSKI* MODEL SYMULACYJNY ENERGOELEKTRONICZNEGO

Bardziej szczegółowo

Wykaz symboli, oznaczeń i skrótów

Wykaz symboli, oznaczeń i skrótów Wykaz symboli, oznaczeń i skrótów Symbole a a 1 operator obrotu podstawowej zmiennych stanu a 1 podstawowej uśrednionych zmiennych stanu b 1 podstawowej zmiennych stanu b 1 A A i A A i, j B B i cosφ 1

Bardziej szczegółowo

Funkcje sterowania cyfrowego przekształtników (lista nie wyczerpująca)

Funkcje sterowania cyfrowego przekształtników (lista nie wyczerpująca) Funkcje sterowania cyfrowego przekształtników (lista nie wyczerpująca) tryb niskiego poboru mocy przełączanie źródeł zasilania łagodny start pamięć i zarządzanie awariami zmiana (nastawa) sygnału odniesienia

Bardziej szczegółowo

Zaawansowana analiza mocy i jakości energii z wykorzystaniem wielokanałowych, synchronicznych systemów rejestracji danych firmy Dewetron

Zaawansowana analiza mocy i jakości energii z wykorzystaniem wielokanałowych, synchronicznych systemów rejestracji danych firmy Dewetron Zaawansowana analiza mocy i jakości energii z wykorzystaniem wielokanałowych, synchronicznych systemów rejestracji danych firmy Dewetron mgr inż. Adrian Drzazga, Inżynier Aplikacyjny Wielokanałowe, synchroniczne

Bardziej szczegółowo

Stabilizatory ciągłe

Stabilizatory ciągłe POLITECHNIKA BIAŁOSTOCKA Temat i plan wykładu WYDZIAŁ ELEKTRYCZNY Jakub Dawidziuk Stabilizatory ciągłe 1. Wprowadzenie 2. Podstawowe parametry i układy pracy 3. Stabilizatory parametryczne 4. Stabilizatory

Bardziej szczegółowo

Impedancje i moce odbiorników prądu zmiennego

Impedancje i moce odbiorników prądu zmiennego POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Impedancje i moce odbiorników prądu zmiennego (E 6) Opracował: Dr inż.

Bardziej szczegółowo

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu Wykład 7 7. Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu M d x kx Rozwiązania x = Acost v = dx/ =-Asint a = d x/ = A cost przy warunku = (k/m) 1/. Obwód

Bardziej szczegółowo

Laboratorium Podstaw Elektroniki. Badanie przekształtnika podwyższającego napięcie. Opracował: dr inż. Rafał Korupczyński

Laboratorium Podstaw Elektroniki. Badanie przekształtnika podwyższającego napięcie. Opracował: dr inż. Rafał Korupczyński Laboratorium Podstaw Elektroniki Badanie przekształtnika podwyższającego napięcie Opracował: dr inż. Rafał Korupczyński Zakład Gospodarki Energetycznej, Katedra Podstaw Inżynierii.Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Przyrządy i układy mocy studia niestacjonarne, sem. 4 lato 2017/18. dr inż. Łukasz Starzak

Przyrządy i układy mocy studia niestacjonarne, sem. 4 lato 2017/18. dr inż. Łukasz Starzak Przyrządy i układy mocy studia niestacjonarne, sem. 4 lato 2017/18 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik

Bardziej szczegółowo

Odbiorniki nieliniowe problemy, zagrożenia

Odbiorniki nieliniowe problemy, zagrożenia Odbiorniki nieliniowe problemy, zagrożenia Dr inż. Andrzej Baranecki, Mgr inż. Marek Niewiadomski, Dr inż. Tadeusz Płatek ISEP Politechnika Warszawska, MEDCOM Warszawa Wstęp Odkształcone przebiegi prądów

Bardziej szczegółowo

Sposoby poprawy jakości dostawy energii elektrycznej

Sposoby poprawy jakości dostawy energii elektrycznej Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Zbigniew HANZELKA Sposoby poprawy jakości dostawy energii elektrycznej Październik 2018 SPOSOBY REDUKCJI WAHAŃ NAPIĘCIA U U N X Q U 2 N =

Bardziej szczegółowo

Table of Contents. Table of Contents UniTrain-I Kursy UniTrain Kursy UniTrain: Energoelektronika. Lucas Nülle GmbH 1/7

Table of Contents. Table of Contents UniTrain-I Kursy UniTrain Kursy UniTrain: Energoelektronika. Lucas Nülle GmbH 1/7 Table of Contents Table of Contents UniTrain-I Kursy UniTrain Kursy UniTrain: Energoelektronika 1 2 2 3 Lucas Nülle GmbH 1/7 www.lucas-nuelle.pl UniTrain-I UniTrain is a multimedia e-learning system with

Bardziej szczegółowo

Część 1. Przekształtniki elektroniczne

Część 1. Przekształtniki elektroniczne Część 1 Przekształtniki elektroniczne Elektronika mocy Elektronika mocy (energoelektronika; power electronics) jest gałęzią elektroniki zajmującą się przekształcaniem energii elektrycznej za pomocą przyrządów

Bardziej szczegółowo

Wszystkie parametry dokładności podane dla pracy w temperaturze 23 C ±1 C (73,4 F ±1,8 F) Od 0 do 50 C (od 32 do 122 F) ±0,15% odczytu na C

Wszystkie parametry dokładności podane dla pracy w temperaturze 23 C ±1 C (73,4 F ±1,8 F) Od 0 do 50 C (od 32 do 122 F) ±0,15% odczytu na C Cęgowy miernik jakości energii Fluke 345 Wyświetlacz Zasilanie Przeciętna Ŝywotność akumulatora Zasilacz BE345 Kolorowy wyświetlacz transmisyjny LCD o wymiarach 320 x 240 pikseli (przekątna 70 mm) z 2

Bardziej szczegółowo

Odbiór energii z modułu fotowoltaicznego

Odbiór energii z modułu fotowoltaicznego Odbiór energii z modułu fotowoltaicznego Charakterystyki pracy typowych odbiorników biernych są w większości nieoptymalne dla poboru energii z ogniw fotowoltaicznych Dopasowanie obciążenia: przełączanie

Bardziej szczegółowo

Przekształtniki DC/DC

Przekształtniki DC/DC UWAGA! Teoria Przekształtników zadania zaliczeniowe cz. II ( Przekształtniki impulsowe - PI) 1.Przy rozwiązywaniu każdego zdania należy podać kompletny schemat przekształtnika wraz z zastrzałkowanymi i

Bardziej szczegółowo

Czujniki i Przetworniki

Czujniki i Przetworniki Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych (bud A5, sala 310) Instrukcja dla studentów kierunku Automatyka i Robotyka

Bardziej szczegółowo

TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych

TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych TERAZ O SYGNAŁACH Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Sygnał sinusoidalny Sygnał sinusoidalny (także cosinusoidalny) należy do podstawowych

Bardziej szczegółowo

Cyfrowe sterowanie przekształtników impulsowych lato 2012/13

Cyfrowe sterowanie przekształtników impulsowych lato 2012/13 Cyfrowe sterowanie przekształtników impulsowych lato 2012/13 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik

Bardziej szczegółowo

Zaznacz właściwą odpowiedź (właściwych odpowiedzi może być więcej niż jedna)

Zaznacz właściwą odpowiedź (właściwych odpowiedzi może być więcej niż jedna) EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 0/0 Zadania dla grupy elektrycznej na zawody I stopnia Zaznacz właściwą odpowiedź (właściwych odpowiedzi może być więcej

Bardziej szczegółowo

ĆW. 5: POMIARY WSPÓŁCZYNNIKA ZNIEKSZTAŁCEŃ NIELINIOWYCH

ĆW. 5: POMIARY WSPÓŁCZYNNIKA ZNIEKSZTAŁCEŃ NIELINIOWYCH ĆW. 5: POMIRY WSPÓŁCZYNNIK ZNIEKSZTŁCEŃ NIELINIOWYCH Opracował: dr inż. Jakub Wojturski I. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych zasad pomiaru współczynnika zniekształceń nieliniowych

Bardziej szczegółowo

Prostowniki. Prostownik jednopołówkowy

Prostowniki. Prostownik jednopołówkowy Prostowniki Prostownik jednopołówkowy Prostownikiem jednopołówkowym nazywamy taki prostownik, w którym po procesie prostowania pozostają tylko te części przebiegu, które są jednego znaku a części przeciwnego

Bardziej szczegółowo

W4. UKŁADY ZŁOŻONE I SPECJALNE PRZEKSZTAŁTNIKÓW SIECIOWYCH (AC/DC, AC/AC)

W4. UKŁADY ZŁOŻONE I SPECJALNE PRZEKSZTAŁTNIKÓW SIECIOWYCH (AC/DC, AC/AC) W4. UKŁADY ZŁOŻONE I SPECJALNE PRZEKSZTAŁTNIKÓW SIECIOWYCH (AC/DC, AC/AC) W W2 i W3 przedstawiono układy jednokierunkowe 2 i 3-pulsowe (o jednokierunkowym prądzie w źródle napięcia przemiennego). Ich poznanie

Bardziej szczegółowo

Przekształtniki energoelektroniczne o komutacji zewnętrznej (sieciowej) - podstawy

Przekształtniki energoelektroniczne o komutacji zewnętrznej (sieciowej) - podstawy Przekształtniki energoelektroniczne o komutacji zewnętrznej (sieciowej) - podstawy Klasyfikacja, podstawowe pojęcia Nierozgałęziony obwód z diodą lub tyrystorem Schemat(y), zasady działania, przebiegi

Bardziej szczegółowo

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika.

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika. Zadanie 4. Prostownik mostkowy 6-pulsowy z tyrystorami idealnymi o komutacji natychmiastowej zasilany z sieci 3 400 V, 50 Hz pracuje z kątem opóźnienia załączenia tyrystorów α = 60º. Obciążenie prostownika

Bardziej szczegółowo

Przemienniki częstotliwości i ich wpływ na jakość energii elektrycznej w przedsiębiorstwie wod.-kan.

Przemienniki częstotliwości i ich wpływ na jakość energii elektrycznej w przedsiębiorstwie wod.-kan. Przemienniki częstotliwości i ich wpływ na jakość energii elektrycznej w przedsiębiorstwie wod.-kan. Wrzesień 2017 / Alle Rechte vorbehalten. Jakość energii elektrycznej Prawo, gdzie określona jest JEE

Bardziej szczegółowo

dr inż. Łukasz Starzak

dr inż. Łukasz Starzak Przyrządy półprzewodnikowe mocy Mechatronika, studia niestacjonarne, sem. 5 zima 2015/16 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra

Bardziej szczegółowo

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala

Bardziej szczegółowo

AC/DC. Jedno połówkowy, jednofazowy prostownik

AC/DC. Jedno połówkowy, jednofazowy prostownik AC/DC Przekształtniki AC/DC można podzielić na kilka typów, mianowicie: prostowniki niesterowane; prostowniki sterowane. Zależnie od stopnia skomplikowania układu i miejsca przyłączenia do sieci elektroenergetycznej

Bardziej szczegółowo

- Przetwornica (transformator): służy do przemiany prądu zmiennego na stały (prostownik);

- Przetwornica (transformator): służy do przemiany prądu zmiennego na stały (prostownik); Nazwa systemów VRF w rozwinięciu brzmi Variable Refrigerant Flow, czyli zmienny przepływ czynnika. I rzeczywiście w systemach VRF praktycznie nie ma momentu w którym czynnik płynie w nominalnej wielkości.

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITEHNIKA BIAŁOSTOKA WYDZIAŁ ELEKTRYZNY KATEDRA AUTOMATYKI I ELEKTRONIKI 5. Wzmacniacze mocy Materiały pomocnicze do pracowni specjalistycznej z przedmiotu: Systemy AD w elektronice TS1422 380 Opracował:

Bardziej szczegółowo

SILNIK INDUKCYJNY STEROWANY Z WEKTOROWEGO FALOWNIKA NAPIĘCIA

SILNIK INDUKCYJNY STEROWANY Z WEKTOROWEGO FALOWNIKA NAPIĘCIA SILNIK INDUKCYJNY STEROWANY Z WEKTOROWEGO FALOWNIKA NAPIĘCIA Rys.1. Podział metod sterowania częstotliwościowego silników indukcyjnych klatkowych Instrukcja 1. Układ pomiarowy. Dane maszyn: Silnik asynchroniczny:

Bardziej szczegółowo

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny prąd stały (DC) prąd elektryczny zmienny okresowo prąd zmienny (AC) zmienny bezokresowo Wielkości opisujące sygnały okresowe Wartość chwilowa wartość, jaką sygnał przyjmuje w danej chwili: x x(t) Wartość

Bardziej szczegółowo

KOMPATYBILNOŚĆ ELEKTROMAGNETYCZNA W APLIKACJACH Z PRZETWORNICAMI CZĘSTOTLIWOŚCI - WYBRANE ZAGADNIENIA OGRANICZANIA ZAKŁÓCEŃ W OBWODACH ZASILANIA

KOMPATYBILNOŚĆ ELEKTROMAGNETYCZNA W APLIKACJACH Z PRZETWORNICAMI CZĘSTOTLIWOŚCI - WYBRANE ZAGADNIENIA OGRANICZANIA ZAKŁÓCEŃ W OBWODACH ZASILANIA KOMPATYBILNOŚĆ ELEKTROMAGNETYCZNA W APLIKACJACH Z PRZETWORNICAMI CZĘSTOTLIWOŚCI - WYBRANE ZAGADNIENIA OGRANICZANIA ZAKŁÓCEŃ W OBWODACH ZASILANIA Andrzej Gizicki 1. WSTĘP Kompatybilność elektromagnetyczna

Bardziej szczegółowo

Rozwój sterowania prędkością silnika indukcyjnego trójfazowego

Rozwój sterowania prędkością silnika indukcyjnego trójfazowego Rozwój sterowania prędkością silnika indukcyjnego trójfazowego 50Hz Maszyna robocza Rotor 1. Prawie stała prędkość automatyka Załącz- Wyłącz metod a prymitywna w pierwszym etapie -mechanizacja AC silnik

Bardziej szczegółowo

ANALIZA PRZEKSZTAŁTNIKÓW ZASILANYCH Z POKŁADOWYCH SIECI PODWYŻSZONEJ CZĘSTOTLIWOŚCI

ANALIZA PRZEKSZTAŁTNIKÓW ZASILANYCH Z POKŁADOWYCH SIECI PODWYŻSZONEJ CZĘSTOTLIWOŚCI ZESZYTY NAUKOWE POLITECHNIKI RZESZOWSKIEJ 288, Mechanika 85 RUTMech, t. XXX, z. 85 (4/13), październik-grudzień 2013, s. 387-395 Tomasz BINKOWSKI 1 Kazimierz BUCZEK 2 Wiesława MALSKA 3 Dariusz SOBCZYŃSKI

Bardziej szczegółowo

Dobór współczynnika modulacji częstotliwości

Dobór współczynnika modulacji częstotliwości Dobór współczynnika modulacji częstotliwości Im większe mf, tym wyżej położone harmoniczne wyższe częstotliwości mniejsze elementy bierne filtru większy odstęp od f1 łatwiejsza realizacja filtru dp. o

Bardziej szczegółowo

PL B1. Układ falownika obniżająco-podwyższającego zwłaszcza przeznaczonego do jednostopniowego przekształcania energii

PL B1. Układ falownika obniżająco-podwyższającego zwłaszcza przeznaczonego do jednostopniowego przekształcania energii PL 215665 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 215665 (13) B1 (21) Numer zgłoszenia: 386084 (51) Int.Cl. H02M 7/48 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Sterowanie przekształtników elektronicznych zima 2011/12

Sterowanie przekształtników elektronicznych zima 2011/12 Sterowanie przekształtników elektronicznych zima 2011/12 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik Informatycznych

Bardziej szczegółowo

Badanie układów prostowniczych

Badanie układów prostowniczych Instrukcja do ćwiczenia: Badanie układów prostowniczych (wersja robocza) Laboratorium Elektroenergetyki 1 1. Cel ćwiczenia Poznanie budowy, zasady działania i właściwości podstawowych układów elektronicznych,

Bardziej szczegółowo

Przykładowe pytania do przygotowania się do zaliczenia poszczególnych ćwiczeń z laboratorium Energoelektroniki I. Seria 1

Przykładowe pytania do przygotowania się do zaliczenia poszczególnych ćwiczeń z laboratorium Energoelektroniki I. Seria 1 ENERGOELEKTRONIKA Laboratorium STUDIA STACJONARNE EEDI-3 Przykładowe pytania do przygotowania się do zaliczenia poszczególnych ćwiczeń z laboratorium Energoelektroniki I. Seria 1 1. Badanie charakterystyk

Bardziej szczegółowo

Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki

Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Temat ćwiczenia: Przetwornica impulsowa DC-DC typu buck

Bardziej szczegółowo

Zasilacz Buforowy ZB IT - Informacja Techniczna

Zasilacz Buforowy ZB IT - Informacja Techniczna Zasilacz Buforowy IT - Informacja Techniczna IT - Informacja Techniczna: ZASILACZ BUFOROWY Strona 2 z 9 1 - PRZEZNACZENIE WYROBU Zasilacz buforowy typu przeznaczony jest do zasilania różnego typu urządzeń

Bardziej szczegółowo

Tytuł Aplikacji: FILTRY AKTYWNE - SKUTECZNA METODA REDUKCJI SKŁADOWYCH WYŻSZYCH HARMONICZNYCH PRĄDU

Tytuł Aplikacji: FILTRY AKTYWNE - SKUTECZNA METODA REDUKCJI SKŁADOWYCH WYŻSZYCH HARMONICZNYCH PRĄDU Poniższy artykuł został w pełni przygotowany przez Autoryzowanego Dystrybutora firmy Danfoss i przedstawia rozwiązanie aplikacyjne wykonane w oparciu o produkty z rodziny VLT Firma Danfoss należy do niekwestionowanych

Bardziej szczegółowo

Prostowniki małej mocy

Prostowniki małej mocy Prostowniki małej mocy Wrocław 3 Wartość sygnału elektrycznego Skuteczna Wartość skuteczna sygnału (MS oot Mean Square) odpowiada wartości prądu stałego, który przepływając przez o stałej wartości, spowoduje

Bardziej szczegółowo

7 Dodatek II Ogólna teoria prądu przemiennego

7 Dodatek II Ogólna teoria prądu przemiennego 7 Dodatek II Ogólna teoria prądu przemiennego AC (ang. Alternating Current) oznacza naprzemienne zmiany natężenia prądu i jest symbolizowane przez znak ~. Te zmiany dotyczą zarówno amplitudy jak i kierunku

Bardziej szczegółowo

Laboratorium Podstaw Elektroniki. Badanie przekształtnika obniżającego napięcie. Opracował: dr inż. Rafał Korupczyński

Laboratorium Podstaw Elektroniki. Badanie przekształtnika obniżającego napięcie. Opracował: dr inż. Rafał Korupczyński Laboratorium Podstaw Elektroniki Badanie przekształtnika obniżającego napięcie Opracował: dr inż. Rafał Korupczyński Zakład Gospodarki Energetycznej, Katedra Podstaw Inżynierii.Cel ćwiczenia. Celem ćwiczenia

Bardziej szczegółowo

Przekształtniki napięcia stałego na stałe

Przekształtniki napięcia stałego na stałe Przekształtniki napięcia stałego na stałe Buck converter S 1 łącznik w pełni sterowalny, przewodzi prąd ze źródła zasilania do odbiornika S 2 łącznik diodowy zwiera prąd odbiornika przy otwartym S 1 U

Bardziej szczegółowo

JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów

JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Wykład nr 5 Spis treści 1.WPROWADZENIE. Źródła odkształcenia napięć i prądów 3.

Bardziej szczegółowo

PLAN PREZENTACJI. 2 z 30

PLAN PREZENTACJI. 2 z 30 P O L I T E C H N I K A Ś L Ą S K A WYDZIAŁ ELEKTRYCZNY KATEDRA ENERGOELEKTRONIKI, NAPĘDU ELEKTRYCZNEGO I ROBOTYKI Energoelektroniczne przekształtniki wielopoziomowe właściwości i zastosowanie dr inż.

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo

X-Meter. EnergyTeam PRZYKŁADOWE SCHEMATY SYSTEMU X-METER. 1 punkt pomiarowy. System nr 1. 2 punkty pomiarowe. System nr 2

X-Meter. EnergyTeam PRZYKŁADOWE SCHEMATY SYSTEMU X-METER. 1 punkt pomiarowy. System nr 1. 2 punkty pomiarowe. System nr 2 PRZYKŁADOWE SCHEMATY SYSTEMU X-METER System nr 1 1 punkt pomiarowy Schemat przedstawia najprostszy / najmniejszy z możliwych systemów z wykorzystaniem urządzenia X-Meter. W tym przypadku system monitoruje

Bardziej szczegółowo

Falownik FP 400. IT - Informacja Techniczna

Falownik FP 400. IT - Informacja Techniczna Falownik FP 400 IT - Informacja Techniczna IT - Informacja Techniczna: Falownik FP 400 Strona 2 z 6 A - PRZEZNACZENIE WYROBU Falownik FP 400 przeznaczony jest do wytwarzania przemiennego napięcia 230V

Bardziej szczegółowo

Temat: PODSTAWY PRZETWARZANIA ENERGII W ODNAWIALNYCH ŹRÓDŁA ENERGII

Temat: PODSTAWY PRZETWARZANIA ENERGII W ODNAWIALNYCH ŹRÓDŁA ENERGII Temat: PODSTAWY PRZETWARZANIA ENERGII W ODNAWIALNYCH ŹRÓDŁA ENERGII 1. Przetwarzanie (wytwarzanie) energii elektrycznej 2. Podział źródeł energii 3. Podstawowe pojęcia z dziedziny elektryczności 1 WYTWARZANIE

Bardziej szczegółowo

Pulse width modulation control of three-phase three-level inverter Sterowanie modulacji szerokości impulsów trójpoziomowego trójfazowego falownika.

Pulse width modulation control of three-phase three-level inverter Sterowanie modulacji szerokości impulsów trójpoziomowego trójfazowego falownika. Krzysztof Sroka V rok Koło Naukowe Techniki Cyfrowej Dr inż. Wojciech Mysiński opiekun naukowy Pulse width modulation control of three-phase three-level inverter Sterowanie modulacji szerokości impulsów

Bardziej szczegółowo

Przegląd topologii i strategii sterowania układów do poprawy jakości energii elektrycznej UPQC

Przegląd topologii i strategii sterowania układów do poprawy jakości energii elektrycznej UPQC rzegląd topologii i strategii sterowania układów do poprawy jakości energii elektrycznej UQC dr inż. iotr L. Fabijański E IV Konferencja ytwórców Energii Elektrycznej i Cieplnej Skawina 25-27 września

Bardziej szczegółowo

XXXIII OOWEE 2010 Grupa Elektryczna

XXXIII OOWEE 2010 Grupa Elektryczna 1. W jakich jednostkach mierzymy natężenie pola magnetycznego: a) w amperach na metr b) w woltach na metr c) w henrach d) w teslach 2. W przedstawionym na rysunku układzie trzech rezystorów R 1 = 8 Ω,

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

Zasilacze: Prostowniki niesterowane, prostowniki sterowane

Zasilacze: Prostowniki niesterowane, prostowniki sterowane Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych Ciężkich Politechnika Warszawska Laboratorium Elektrotechniki i Elektroniki Ćwiczenie E1 - instrukcja Zasilacze: Prostowniki niesterowane, prostowniki

Bardziej szczegółowo

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych Zakres wymaganych wiadomości do testów z przedmiotu Metrologia Ćwiczenie 1 Wprowadzenie do obsługi multimetrów analogowych i cyfrowych budowa i zasada działania przyrządów analogowych magnetoelektrycznych

Bardziej szczegółowo

ANALIZA WARUNKÓW ZASILANIA (JEE) WYBRANE PRZYPADKI

ANALIZA WARUNKÓW ZASILANIA (JEE) WYBRANE PRZYPADKI ANALIZA WARUNKÓW ZASILANIA (JEE) WYBRANE PRZYPADKI dr inż. Andrzej Firlit andrzej.firlit@kaniup.agh.edu.pl Laboratorium JAKOŚĆ ENERGII ENERGETYCZNEJ AGH Kraków ANALIZA PRZYPADKU 1 inwestycja na terenie

Bardziej szczegółowo

ELASTYCZNY SYSTEM PRZETWARZANIA I PRZEKSZTAŁCANIA ENERGII MAŁEJ MOCY DLA MASOWEGO WYKORZYSTANIA W GOSPODARCE ENERGETYCZNEJ KRAJU

ELASTYCZNY SYSTEM PRZETWARZANIA I PRZEKSZTAŁCANIA ENERGII MAŁEJ MOCY DLA MASOWEGO WYKORZYSTANIA W GOSPODARCE ENERGETYCZNEJ KRAJU Warszawa 19 lipca 2011 Centrum Prasowe PAP ul. Bracka 6/8, Warszawa Stowarzyszenie na Rzecz Efektywności ETA i Procesy Inwestycyjne DEBATA UREALNIANIE MARZEŃ NOWE TECHNOLOGIE W ENERGETYCE POZWALAJĄCE ZAMKNĄĆ

Bardziej szczegółowo

Demodulowanie sygnału AM demodulator obwiedni

Demodulowanie sygnału AM demodulator obwiedni Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.12 Demodulowanie sygnału AM demodulator obwiedni 1. Demodulowanie sygnału AM demodulator obwiedni Ćwiczenie to

Bardziej szczegółowo

Silnik indukcyjny - historia

Silnik indukcyjny - historia Silnik indukcyjny - historia Galileo Ferraris (1847-1897) - w roku 1885 przedstawił konstrukcję silnika indukcyjnego. Nicola Tesla (1856-1943) - podobną konstrukcję silnika przedstawił w roku 1886. Oba

Bardziej szczegółowo

Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych

Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 0 Podstawy metrologii 1. Model matematyczny pomiaru. 2. Wzorce jednostek miar. 3. Błąd pomiaru.

Bardziej szczegółowo

Zaznacz właściwą odpowiedź

Zaznacz właściwą odpowiedź EUOEEKTA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej ok szkolny 200/20 Zadania dla grupy elektrycznej na zawody I stopnia Zaznacz właściwą odpowiedź Zadanie Kondensator o pojemności C =

Bardziej szczegółowo

Rysunek 2 [1] Rysunek 3

Rysunek 2 [1] Rysunek 3 UJARZMIĆ HURAGAN Gdy tylko słupek rtęci podskoczy zbyt wysoko, wielu z nas sięga po wentylatory. TakŜe w wypadku pewnych podzespołów elektronicznych, takich jak np. wzmacniacze mocy czy stabilizatory,

Bardziej szczegółowo

PL B1. Układ elektryczny zwiększający odporność izolatorów galwanicznych na wysokonapięciowe zakłócenia wspólne

PL B1. Układ elektryczny zwiększający odporność izolatorów galwanicznych na wysokonapięciowe zakłócenia wspólne PL 214938 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 214938 (13) B1 (21) Numer zgłoszenia: 386192 (51) Int.Cl. H03F 3/387 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 10/16. JAROSŁAW GUZIŃSKI, Gdańsk, PL PATRYK STRANKOWSKI, Kościerzyna, PL

PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 10/16. JAROSŁAW GUZIŃSKI, Gdańsk, PL PATRYK STRANKOWSKI, Kościerzyna, PL PL 226485 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 226485 (13) B1 (21) Numer zgłoszenia: 409952 (51) Int.Cl. H02J 3/01 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Prostowniki. 1. Prostowniki jednofazowych 2. Prostowniki trójfazowe 3. Zastosowania prostowników. Temat i plan wykładu WYDZIAŁ ELEKTRYCZNY

Prostowniki. 1. Prostowniki jednofazowych 2. Prostowniki trójfazowe 3. Zastosowania prostowników. Temat i plan wykładu WYDZIAŁ ELEKTRYCZNY POLITECHNIKA BIAŁOSTOCKA Temat i plan wykładu WYDZIAŁ ELEKTRYCZNY Prostowniki 1. Prostowniki jednofazowych 2. Prostowniki trójfazowe 3. Zastosowania prostowników ELEKTRONIKA Jakub Dawidziuk sobota, 16

Bardziej szczegółowo

WPŁYW PRZEKSZTAŁTNIKA NA MOC ZNAMIONOWĄ TRÓJFAZOWEGO SILNIKA INDUKCYJNEGO

WPŁYW PRZEKSZTAŁTNIKA NA MOC ZNAMIONOWĄ TRÓJFAZOWEGO SILNIKA INDUKCYJNEGO Zeszyty Problemowe Maszyny Elektryczne Nr 8/2 Adam Rogalski Politechnika Warszawska, Warszawa WPŁYW PRZEKSZTAŁTNIKA NA MOC ZNAMIONOWĄ TRÓJFAZOWEGO SILNIKA INDUKCYJNEGO POWER CONVERTER INFLUENCE ON THE

Bardziej szczegółowo

Maszyny elektryczne. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.

Maszyny elektryczne. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Maszyny elektryczne Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Podział maszyn elektrycznych Transformatory - energia prądu przemiennego jest zamieniana w energię

Bardziej szczegółowo