Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu

Podobne dokumenty
LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza

Efekt Faradaya. Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego

Polaryzatory/analizatory

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI

Fizyka elektryczność i magnetyzm

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego

Wyznaczanie stosunku e/m elektronu

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL

Badanie właściwości optycznych roztworów.

Wyznaczanie współczynnika załamania światła

Uniwersytet Warszawski Wydział Fizyki. Badanie efektu Faraday a w kryształach CdTe i CdMnTe

Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych

Wykład 17: Optyka falowa cz.2.

Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa, badanie komórki Pockelsa i Kerra

II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego

Badanie rozkładu pola magnetycznego przewodników z prądem

Ćwiczenie Nr 6 Skręcenie płaszczyzny polaryzacji

Badanie transformatora

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d.

Instrukcja do ćwiczenia Optyczny żyroskop światłowodowy (Indywidualna pracownia wstępna)

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/08. PIOTR KURZYNOWSKI, Wrocław, PL JAN MASAJADA, Nadolice Wielkie, PL

WYDZIAŁ.. LABORATORIUM FIZYCZNE

Metody Optyczne w Technice. Wykład 8 Polarymetria

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Stanowisko do pomiaru fotoprzewodnictwa

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13)

SPRAWDZANIE PRAWA MALUSA

Ćwiczenie Nr 455. Temat: Efekt Faradaya. I. Literatura. Problemy teoretyczne

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz

Źródła i 1detektory IV. ZJAWISKO FOTOELEKTRYCZNE WEWNĘTRZNE W PÓŁPRZEWODNIKACH.

WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek

Prawa optyki geometrycznej

Widmo fal elektromagnetycznych

Badanie uporządkowania magnetycznego w ultracienkich warstwach kobaltu w pobliżu reorientacji spinowej.

Ćwiczenie nr 13 POLARYZACJA ŚWIATŁA: SPRAWDZANIE PRAWA MALUSA

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

RZECZPOSPOLITAPOLSKA(12) OPIS PATENTOWY (19) PL (11) (13)B1 PL B1. Fig.1. (51) Int.Cl.6: G01N 21/23 G01J 4/04

UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

IM-4 BADANIE ABSORPCJI ŚWIATŁA W MATERIAŁACH PÓŁPRZEWODNIKOWYCH

POMIAR NATURALNEJ AKTYWNOŚCI OPTYCZNEJ

Wyznaczanie zależności współczynnika załamania światła od długości fali światła

Elementy optyki relatywistycznej

Wyznaczanie przenikalności magnetycznej i krzywej histerezy

MODULATOR CIEKŁOKRYSTALICZNY

Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.

Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej

Podstawy fizyki wykład 8

Ćwiczenie 41. Busola stycznych

Badanie transformatora

WYZNACZANIE KĄTA BREWSTERA 72

Pomiar właściwości ośrodka dwójłomnego poprzez wyznaczenie elementów macierzy Müllera-Ścierskiego

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 3 Badanie przemiany fazowej w materiałach magnetycznych

Ć W I C Z E N I E N R O-11

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

Fale elektromagnetyczne w dielektrykach

POLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane

Badanie transformatora

Agata Saternus piątek Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence)

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla

Wykład 16: Optyka falowa

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

Polarymetr. Ćwiczenie 74. Cel ćwiczenia Pomiar kąta skręcenia płaszczyzny polaryzacji w roztworach cukru. Wprowadzenie

α k = σ max /σ nom (1)

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne

BADANIE PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego

Źródła i detektory IV. ZJAWISKO FOTOELEKTRYCZNE WEWNĘTRZNE W PÓŁPRZEWODNIKACH.

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej

ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność

Fale elektromagnetyczne

BADANIE INTERFEROMETRU YOUNGA

Optyka Ośrodków Anizotropowych. Wykład wstępny

Badanie rozkładu pola elektrycznego

E ω 2 p. dt a natężenie do czwartej potęgi częstości: I E 2

UMO-2011/01/B/ST7/06234

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Ćwiczenie 74. Zagadnienia kontrolne. 2. Sposoby otrzymywania światła spolaryzowanego liniowo. Inne rodzaje polaryzacji fali świetlnej.

Ćwiczenie 375. Badanie zależności mocy promieniowania cieplnego od temperatury. U [V] I [ma] R [ ] R/R 0 T [K] P [W] ln(t) ln(p)

Transkrypt:

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji w efekcie Faraday a w warstwach o strukturze granatu, dla różnych długości fali światła przechodzącego. Plan prac badawczych 1. Badanie efektu Faradaya wykonuje się na trzech płytkach o grubości około 1 mm oznaczonych cyframi: I, II, III, wyciętych z monokryształów granatu o różnych własnościach magnetooptycznych. 2. Należy dokonać wyboru źródła światła dla danej serii pomiarowej. (lampa halogenowa lub lampa ksenonowa). 3. Wykorzystując prawo Malusa ustawić polaryzatory (Glana-Thompsona i dichroicznypolaroid) pod kątem π/4 względem ich płaszczyzn polaryzacji. 4. Wykorzystywanie różnych typów polaryzatorów dichroicznych (polaroidy typu: M, 1.3-IR, 2.4-IR) w zależności od zakresu widmowego pomiarów. 5. Do detekcji światła w zakresie widzialnym używamy fotopowielacza EMI 9524 S do detekcji w zakresie podczerwieni fotodiody krzemowej BPYP-07A. Dobieramy odpowiednie szerokości szczelin monochromatora: wejściową i wyjściową. 6. Wykonujemy charakterystyki prądowe kąta skręcenia polaryzacji w funkcji prądu magnesującego dla wybranych zakresów prądu i ustalonych długości fal światła przechodzącego. Charakterystyki te służą do wyboru wartości prądu zmiennego wytwarzającego przemagnesowujące, zewnętrzne pole magnetyczne. 1

7. Wykonujemy charakterystyki widmowe kąta skręcenia polaryzacji w funkcji długości fali światła dla wybranych zakresów długości fal przy ustalonych na podstawie pkt.6 wartościach prądów magnesujących. 8. Dokonujemy pomiaru dyspersji monochromatora dla poszczególnych długości fal oraz stosowanych szerokości jego szczelin, wyniki nanosimy na wykresy charakterystyk widmowych, dla obydwu typów detektorów. Wstęp teoretyczny Pole magnetyczne zmienia własności optyczne ciał, co jest przyczyną powstawania zjawisk magnetooptycznych. Efekty magnetooptyczne można podzielić na efekty pierwszego rzędu, proporcjonalne do pierwszej potęgi natężenia zewnętrznego pola magnetycznego lub stopnia namagnesowania ciała oraz na efekty drugiego i wyższych rzędów. Do efektów pierwszego rzędu zaliczamy zjawisko Faraday a skręcenia płaszczyzny polaryzacji w polu magnetycznym oraz poprzeczny, biegunowy i podłużny efekt Kerra. Do efektów drugiego rzędu zaliczamy zjawisko wymuszonej (zewnętrznym polem magnetycznym) dwójłomności, zjawisko Cottona Moutona. W ćwiczeniu badamy efekt pierwszego rzędu, zwany od nazwiska jego odkrywcy, zjawiskiem Faraday a. Polega on na zmianie własności optycznych substancji pod wpływem przyłożonego do niej pola magnetycznego, równoległego do kierunku rozchodzenia się światła. Eksperymentalnie stwierdzono, że pole magnetyczne przyłożone do takiej substancji w kierunku rozchodzenia się światła, powoduje skręcenie płaszczyzny polaryzacji promienia płasko spolaryzowanego. Schemat układu do badania efektu Faradaya. 2

Wartość kąta skręcenia płaszczyzny polaryzacji jest proporcjonalna do długości drogi l, którą światło pokonuje w ośrodku skręcającym, do natężenia pola magnetycznego H. θ = CHl gdzie: θ - kąt skręcenia płaszczyzny polaryzacji, C - stała Verdeta (zależy od częstotliwości promieniowania i temperatury), H - zewnętrzne pole magnetyczne, l - długość drogi jaką światło pokonuje w ośrodku skręcającym. W przypadku magnetyków, efekty magnetooptyczne w nich występujące są proporcjonalne do namagnesowania ośrodka. Niech na powierzchnię ośrodka magnetycznego, znajdującego się w zewnętrznym polu magnetycznym pada liniowo spolaryzowana fala. Falę tę można przedstawić jako sumę dwóch fal spolaryzowanych kołowo, prawo- i lewoskrętnie, rozchodzących się z różnymi prędkościami. W obecności pola magnetycznego, w magnetykach ma miejsce zjawisko precesji spinów elektronów wokół wektora pola magnetycznego. W ferromagnetykach wektor giracji można rozłożyć na dwa wektory elektryczny i magnetyczny: Metodyka pomiarowa Próbkę pomiarową w formie fragmentu płytki płaskorównoległej umieszcza się w uchwycie pomiędzy dwoma polaryzatorami wewnątrz cewki wytwarzającej zewnętrzne pole magnetyczne. Jest ona oświetlana przez wychodzącą z monochromatora jednobarwną wiązkę światła o ustalonej długości fali. Światło po przejściu tego układu jest zbierane przez soczewkę i podawane na detektor, którym jest fotopowielacz lub fotoogniwo o odpowiedniej charakterystyce widmowej. Pierwszy z filtrów polaryzacyjnych, który pełni rolę polaryzatora jest zamocowany w uchwycie umożliwiającym jego obrót wokół osi wyznaczonej przez wiązkę światła. Drugi, pełniący rolę analizatora stanu polaryzacji światła przechodzącego, jest nieruchomy i na trwale związany z układem. Wstępnie, w nieobecności zewnętrznego pola magnetycznego orientujemy polaryzatory ustawiając, poprzez obrót jednym z nich, w dwóch kolejnych położeniach, dla których jest przepuszczane przez układ maksimum lub minimum światła. Ilość przepuszczanego światła 3

(wartość maksymalną i minimalną) odczytujemy w postaci stałego napięcia pojawiającego się na wyjściu detektora, proporcjonalnie do natężenia przechodzącej wiązki. Obliczamy różnicę wartości zarejestrowanych dla tych położeń napięć. Znając wartość różnicy natężenia światła transmitowanego przez układ polaryzatorów w położeniu równoległym (maksimum światła), a prostopadłym (minimum światła) i stosując prawo Malusa, ustawiamy kąt 45 o pomiędzy płaszczyznami polaryzacji tych polaryzatorów. Przypis 1: Natężenie światła spolaryzowanego przepuszczanego przez dichroiczny polaryzator jest proporcjonalne do cos2, gdzie jest kątem pomiędzy płaszczyzną polaryzacji światła padającego, a tzw. kierunkiem głównym analizatora. Wartość cos2 dla kąta 45 o wynosi 1/2, więc ustalenie przez obrót polaryzatorem wartości sygnału na wyjściu, równego połowie zmierzonej poprzednio różnicy, zapewni ustawienie kąta = 45 o tego polaryzatora. Wartość napięcia stałego na wyjściu detektora odpowiadającą ustawieniu polaryzatora pod kątem = 45 oznaczamy przez Ū. W dalszej części ćwiczenia będziemy mierzyć ją każdorazowo przy wyznaczaniu charakterystyk kąta skręcenia płaszczyzny polaryzacji w badanym ośrodku w funkcji długości fali światła czy wartości prądu magnesującego. Włączamy generator prądu zmiennego, który wytwarza w cewce sinusoidalnie zmienne, pole magnetyczne, dostatecznie jednorodne, w otoczeniu próbki pomiarowej. Pole to jest prostopadłe do badanej warstwy kryształu granatu, a jego natężenie jest proporcjonalne do prądu podawanego na cewkę z generatora. To zmienne pole spowoduje przemagnesowywanie badanej.warstwy magnetycznej kryształu granatu z częstotliwością równą częstotliwości podawanego przez generator sygnału prądowego. Efektem tego będzie, zgodnie z teorią zjawiska Faraday a, przemienne skręcanie płaszczyzny polaryzacji przechodzącego światła (w takt zmian namagnesowania warstwy). Wywoła to periodyczne zmiany natężenia przechodzącego przez układ światła i będzie rejestrowane jako zmienne napięcie Ũ na wyjściu detektora. Amplituda tego napięcia będzie proporcjonalna do amplitudy przemiennych zmian płaszczyzny polaryzacji. Kąt skręcenia płaszczyzny polaryzacji obliczamy (dla różnych długości fal, jak też dla różnych natężeń prądu magnesującego) z następującego wzoru: β = (Ũ /Ū ) π/4 Gdzie β jest miarą łukową kąta skręcenia płaszczyzny polaryzacji w ośrodku.. 4

Schemat blokowy układu pomiarowego 1. zasilacz źródła światła 2. generator pola magnetycznego 3. lampa halogenowa lub ksenonowa, 4. monochromator 5. polaryzator (dichroiczny) 6. cewka wytwarzająca zewnętrzne pole magnetyczne 7. polaryzator analizujący (pryzmat Glana-Thompsona) 8. fotopowielacz lub fotoogniwo 9. miernik cyfrowy do pomiaru składowej stałej 10. nanowoltomierz selektywny dopomiaru składowej zmiennej 11. zasilacz wysokiego napięcia (w przypadku stosowania fotopowielacza) Literatura [1] Encyklopedia fizyki współczesnej, Państwowe Wydawnictwo Naukowe, Warszawa 1983. [2] E.R.Mustiel, W.N.Parygin, Metody modulacji światła, Państwowe Wydawnictwo Naukowe, Warszawa 1974. [3] C.Kittel, Wstęp do fizyki ciała stałego, Wydawnictwo Naukowe PWN SA, Warszawa 1999. [4] A.Oleś, Metody doświadczalne fizyki ciała stałego, Wydawnictwo Naukowo-Techniczne, Warszawa 1998. 5