PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI



Podobne dokumenty
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 120 minut

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy M A T E M A T Y K A 28 LUTEGO Instrukcja dla zdającego Czas pracy: 170 minut

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

MATERIAŁ DIAGNOSTYCZNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

EGZAMIN MATURALNY Z MATEMATYKI

MATERIAŁ DIAGNOSTYCZNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

LUBELSKA PRÓBA PRZED MATURĄ klasa 2b

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy M A T E M A T Y K A 14 MARCA Instrukcja dla zdającego Czas pracy: 170 minut

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

Czas pracy 170 minut

Czas pracy 170 minut

EGZAMIN MATURALNY Z MATEMATYKI

LUBELSKA PRÓBA PRZED MATURĄ poziom podstawowy MATEMATYKA LUTY Instrukcja dla zdającego. Czas pracy: 170 minut

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania ). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

LUBELSKA PRÓBA PRZED MATURĄ 2013

LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne

ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 25 SIERPNIA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

LUBELSKA PRÓBA PRZED MATURĄ poziom podstawowy 1 MATEMATYKA LUTY Instrukcja dla zdającego. Czas pracy: 170 minut

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. UZUPEŁNIA UCZEŃ miejsce KOD UCZNIA PESEL na naklejkę z kodem UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 7 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1

EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy M A T E M A T Y K A 09 MARCA Instrukcja dla zdającego Czas pracy: 170 minut

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy M A T E M A T Y K A 09 MARCA Instrukcja dla zdającego Czas pracy: 170 minut

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

POLECAMY Matematyka nowa matura - zagadnienia teoretyczne wraz z przykładami cz.i .

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 150 minut

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 150 minut

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

LUBELSKA PRÓBA PRZED MATURĄ 2019

LUBELSKA PRÓBA PRZED MATURĄ 2015

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Instrukcja dla zdającego Czas pracy: 170 minut

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Czas pracy 170 minut

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Transkrypt:

Miejsce na naklejkę z kodem szkoły dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 11). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W rozwiązaniach zadań przedstaw tok rozumowania prowadzący do ostatecznego wyniku. 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem. 5. Nie używaj korektora, a błędne zapisy przekreśl. 6. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie. 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora. 8. Wypełnij tę część karty odpowiedzi, którą koduje zdający. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora. 9. Na karcie odpowiedzi wpisz swoją datę urodzenia i PESEL. Zamaluj pola odpowiadające cyfrom numeru PESEL. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe. Życzymy powodzenia! LISTOPAD ROK 2006 Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów Wypełnia zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO KOD ZDAJĄCEGO

2 Próbny egzamin maturalny z matematyki Zadanie 1. (3 pkt) Wzrost kursu euro w stosunku do złotego spowodował podwyżkę ceny wycieczki zagranicznej o 5%. Ponieważ nowa cena nie była zachęcająca, postanowiono obniżyć ją o 8%, ustalając cenę promocyjną równą 1449 zł. Oblicz pierwotną cenę wycieczki dla jednego uczestnika.

Próbny egzamin maturalny z matematyki 3 Zadanie 2. (4 pkt) Dany jest kwadrat o boku długości a. W prostokącie ABCD bok AB jest dwa razy dłuższy niż bok kwadratu, a bok AD jest o 2 cm krótszy od boku kwadratu. Pole tego prostokąta jest o 12 cm 2 większe od pola kwadratu. Oblicz długość boku kwadratu.

4 Próbny egzamin maturalny z matematyki Zadanie 3. (5 pkt) Z prostokąta o szerokości 60 cm wycina się detale w kształcie półkola o promieniu 60 cm. Sposób wycinania detali ilustruje poniższy rysunek. Oblicz najmniejszą długość prostokąta potrzebnego do wycięcia dwóch takich detali. Wynik zaokrąglij do pełnego centymetra.

Próbny egzamin maturalny z matematyki 5 Zadanie 4. (3 pkt) 4 3 2 Wielomian W ( x) = 2x + 5x + 9x 15x 9 jest podzielny przez dwumian ( 2 1) Wyznacz pierwiastki tego wielomianu. x +.

6 Próbny egzamin maturalny z matematyki Zadanie 5. (5 pkt) Dane są proste o równaniach 2 x y 3 = 0 i 2 x 3y 7 = 0. a) Zaznacz w prostokątnym układzie współrzędnych na płaszczyźnie kąt opisany 2x y 3 0 układem nierówności. 2x 3y 7 0 b) Oblicz odległość punktu przecięcia się tych prostych od punktu S = ( 3, 8). 7 y 6 5 4 3 2 1-7 -6-5 -4-3 -2-1 0 1 2 3 4 5 6 7 x -1-2 -3-4 -5-6 -7

Próbny egzamin maturalny z matematyki 7

8 Próbny egzamin maturalny z matematyki Zadanie 6. (5 pkt) W urnie znajdują się kule z kolejnymi liczbami 10, 11, 12, 13,..., 50, przy czym kul z liczbą 10 jest 10, kul z liczbą 11 jest 11 itd., a kul z liczbą 50 jest 50. Z urny tej losujemy jedną kulę. Oblicz prawdopodobieństwo, że wylosujemy kulę z liczbą parzystą.

Próbny egzamin maturalny z matematyki 9 Zadanie 7. (6 pkt) W graniastosłupie prawidłowym czworokątnym przekątna podstawy ma długość 8 cm i tworzy z przekątną ściany bocznej, z którą ma wspólny wierzchołek kąt, którego cosinus jest równy 3 2. Oblicz objętość i pole powierzchni całkowitej tego graniastosłupa.

10 Próbny egzamin maturalny z matematyki Zadanie 8. (5 pkt) Dany jest wykres funkcji y = f ( x) określonej dla x 6, 6. 7 y 6 5 4 3 2 1-9 -8-7 -6-5 -4-3 -2-1 1 2 3 4 5 6 7 8 9-1 x -2-3 -4-5 -6-7 Korzystając z wykresu funkcji zapisz: a) maksymalne przedziały, w których funkcja jest rosnąca, b) zbiór argumentów, dla których funkcja przyjmuje wartości dodatnie, c) największą wartość funkcji f w przedziale 5, 5, d) miejsca zerowe funkcji g ( x) = f ( x 1), h x = f x +. e) najmniejszą wartość funkcji ( ) ( ) 2

Próbny egzamin maturalny z matematyki 11 Zadanie 9. (4 pkt) Nauczyciele informatyki, chcąc wyłonić reprezentację szkoły na wojewódzki konkurs informatyczny, przeprowadzili w klasach I A i I B test z zakresu poznanych wiadomości. Każdy z nich przygotował zestawienie wyników swoich uczniów w innej formie. Na podstawie analizy przedstawionych poniżej wyników obu klas: a) oblicz średni wynik z testu każdej klasy, b) oblicz, ile procent uczniów klasy I B uzyskało wynik wyższy niż średni w swojej klasie, c) podaj medianę wyników uzyskanych w klasie I A. Liczba uczniów 5 4 3 2 1 0 Wyniki testu informatycznego uczniów kl. I A. 0 1 2 3 4 5 6 7 8 9 10 Liczba punktów Wyniki testu informatycznego uczniów kl. I B. Liczba punktów Liczba uczniów 0 1 1 2 2 1 3 2 4 1 5 2 6 4 7 4 8 1 9 2 10 5

12 Próbny egzamin maturalny z matematyki Zadanie 10. (6 pkt) Dane są zbiory: 2 = { : 5 3}, B { x R: x 9 0} A x R x = i a) Zaznacz na osi liczbowej zbiory A, B i C. x + 1 C = x R: 1 x 1. b) Wyznacz i zapisz za pomocą przedziału liczbowego zbiór C ( A B) \. zbiór A 0 1 x zbiór B 0 1 x zbiór C 0 1 x

Próbny egzamin maturalny z matematyki 13

14 Próbny egzamin maturalny z matematyki Zadanie 11. (4 pkt) Funkcja f przyporządkowuje każdej liczbie rzeczywistej x z przedziału 4, 2 połowę kwadratu tej liczby pomniejszoną o 8. a) Podaj wzór tej funkcji. b) Wyznacz najmniejszą wartość funkcji f w podanym przedziale.

Próbny egzamin maturalny z matematyki 15 BRUDNOPIS