KOŃCOWOROCZNE KRYTERIA OCENIANIA Z FIZYKI DLA KLAS I. przygotowała mgr Magdalena Murawska

Podobne dokumenty
Kryteria oceny uczniów

Kategorie celów poznawczych. Wymagania programowe. Uczeń umie: K + P konieczne + podstawowe R rozszerzające D dopełniające

Tabela wymagań programowych i kategorii celów poznawczych do części 1. podręcznika

Tabela wymagań programowych i kategorii celów poznawczych

Wymagania na poszczególne oceny z fizyki dla klasy pierwszej gimnazjum na podstawie programu nauczania Świat Fizyki Wyd. WSIP

WYMAGANIA EDUKACYJNE Z FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM w ZS im. Piastów Śląskich

Wymagania edukacyjne z fizyki klasa II

Świat fizyki Gimnazjum Rozkład materiału - WYMAGANIA KLASA I

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE ŚRÓDROCZNE I ROCZNE OCENY Z FIZYKI DLA KLASY I GIMNAZJUM

Wymagania edukacyjne z fizyki dla kl. 1 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017

WYMAGANIA NA POSZCZEGÓLNE OCENY Z FIZYKI W KLASIE I GIMNAZJUM 2016/2017

WYKONUJEMY POMIARY. Ocenę DOSTATECZNĄ otrzymuje uczeń, który :

WYMAGANIA EDUKACYJNE Z FIZYKI

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia

mgr Anna Hulboj Treści nauczania

Wymagania edukacyjne z fizyki dla klasy 7

Przedmiotowy System Oceniania Klasa 7

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych

Fizyka Klasa VII Szkoły Podstawowej WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Opinia PPP

KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM

Plan wynikowy. Klasa Wykonujemy pomiary

Wymagania podstawowe (dostateczna) Uczeń:

Fizyka Klasa VII Szkoły Podstawowej WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Opinia nr:

Przedmiotowy system oceniania z fizyki

Przedmiotowy System Oceniania Klasa 7

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z FIZYKI KLASA I

Szczegółowe warunki i sposób oceniania wewnątrzszkolnego w klasie I gimnazjum na lekcjach fizyki w roku szkolym 2015/2016

Przedmiotowe Zasady Oceniania Klasa 7

Przedmiotowy System Oceniania Klasa 7

Wymagania edukacyjne na poszczególne oceny. Klasa 7

Wymagania edukacyjne z Fizyki w klasie 7 szkoły podstawowej w roku szkolnym 2018/2019

PLAN WYNIKOWY Z FIZYKI DLA KLASY SIÓDMEJ W ROKU SZKOLNYM 2017/2018 Dział I: Wykonujemy pomiary 13 godzin. Wymagania rozszerzone i dopełniające Uczeń:

Fizyka Klasa VII Szkoły Podstawowej WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Orzeczenie PPP

Wymagania edukacyjne z fizyki w klasie VII szkoły podstawowej. nauczyciel prowadzący: Mirosława Hojka

Fizyka Klasa VII Szkoły Podstawowej WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Orzeczenie PPP

Wymagania na poszczególne oceny Świat fizyki

1. Wykonujemy pomiary

WYMAGANIA EDUKACYJNE Z FIZYKI

Szczegółowy rozkład materiału z fizyki dla klasy I gimnazjum zgodny z nową podstawą programową.

Fizyka Klasa VII Szkoły Podstawowej WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Opinia PPP

Fizyka Klasa VII Szkoły Podstawowej WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Opinia PPP

Przedmiotowy system oceniania z fizyki dla klas pierwszych

Wymagania podstawowe ocena dostateczna Uczeń:

FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania)

Wymagania na poszczególne oceny przy realizacji programu i podręcznika,,świat fizyki

WYMAGANIA EDUKACYJNE Z FIZYKI ROK SZKOLNY KLASA I D, MGR. MONIKA WRONA

1. Świat fizyki - wykazać, że fizyka jest podstawą postępu technicznego.

Wymagania edukacyjne z fizyki dla klasy I

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia

Fizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej. 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Uczeń:

DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY

FIZYKA I GIMNAZJUM WYMAGANIA PODSTAWOWE

Wymagania przedmiotowe z fizyki - klasa I (obowiązujące w roku szkolnym 2013/2014)

Ogólne zasady oceniania z fizyki.

Ogólne zasady oceniania z fizyki.

Przedmiotowy System Oceniania Klasa 7

Wymagania edukacyjne z fizyki Kl.7

Przedmiotowy System Oceniania oraz wymagania edukacyjne na poszczególne oceny Klasa 7

Przedmiotowy system oceniania (propozycja)

WYMAGANIA EDUKACYJNE FIZYKA - KLASA VII. OCENA OSIĄGNIĘCIA UCZNIA Uczeń:

Fizyka i astronomia klasa I Wymagania edukacyjne na oceny śródroczne ( za I półrocze)

Spełnienie wymagań poziomu oznacza, że uczeń ponadto:

Przedmiotowy system oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z fizyki kl. I

Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. I

Wymagania edukacyjne Fizyka klasa I gimnazjum. Wymagania na ocenę dostateczną Uczeń: Wyodrębnia zjawiska fizyczne z kontekstu.

Plan wynikowy dla klasy II do programu i podręcznika To jest fizyka

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z FIZYKI W KLASIE PIERWSZEJ

Przedmiotowy system oceniania z fizyki (propozycja)

Wymagania edukacyjne Fizyka klasa 2

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

Anna Nagórna Wrocław, r. nauczycielka chemii i fizyki. Plan pracy dydaktycznej na fizyce w klasach drugich w roku szkolnym 2016/2017

KLASA II PROGRAM NAUCZANIA DLA GIMNAZJUM TO JEST FIZYKA M.BRAUN, W. ŚLIWA (M. Małkowska)

Wymagania programowe na oceny szkolne z podziałem na treści Fizyka klasa II Gimnazjum

Wymagania programowe na poszczególne oceny Z FIZYKI dla KLASY I ROK SZKOLNY 2015/2016

WYMAGANIA SZCZEGÓŁOWE NA POSZCZEGÓLNE OCENY Z FIZYKI

Wymagania edukacyjne z fizyki dla klasy I ( I półrocze)

Wymagania edukacyjne na poszczególne śródroczne oceny klasyfikacyjne z przedmiotu fizyka dla uczniów z klasy VIIa. na rok szkolny 2017/2018.

Kryteria ocen Spotkania z fizyką, część 1"

Spotkani z fizyką 1. Rozkład materiału nauczania (propozycja)

Wymagania na poszczególne oceny Fizyka, kl. I, Podręcznik Spotkania z fizyką, Nowa Era

Wymagania edukacyjne z fizyki na poszczególne śródroczne oceny klasyfikacyjne dla klasy VII a i b w roku roku szkolnym 2019/2020

Sposoby sprawdzania osiągnięć edukacyjnych uczniów z fizyki

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Spotkania z fizyką cz. 1

Wymagania szczegółowe na poszczególne oceny z fizyki w klasie I

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z FIZYKI

I. PIERWSZE SPOTKANIE Z FIZYKĄ

FIZYKA klasa VII

Szczegółowe kryteria ocen z fizyki w klasie 7 Szkoły Podstawowej

Szczegółowe kryteria ocen z fizyki w klasie 7 Szkoły Podstawowej w Werbkowicach

planuje doświadczenie lub pomiar X X wskazuje czynniki istotne i nieistotne dla wyniku pomiaru lub doświadczenia

Wymagania na poszczególne oceny z fizyki w Zespole Szkół im. Jana Pawła II w Suchej Beskidzkiej.

FIZYKA klasa VII. Oceny śródroczne:

Przedmiotowy system oceniania- klasa 1. 1 Oddziaływania. Zasady ogólne:

Szczegółowe wymagania z fizyki klasa 2 gimnazjum:

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI

Plan wynikowy. I Oddziaływania (5 godzin + 2 (łącznie) godziny na powtórzenie materiału (podsumowanie działu) i sprawdzian) Wymagania edukacyjne

Wymagania. Konieczne Podstawowe Rozszerzające Dopełniające

Wymagania edukacyjne z fizyki w klasie 7

Plan wynikowy z fizyki w klasie Ig

Rozkład materiału nauczania

Transkrypt:

KOŃCOWOROCZNE KRYTERIA OCENIANIA Z FIZYKI DLA KLAS I przygotowała mgr Magdalena Murawska Ocenę dopuszczającą otrzymuje uczeń, który: podaje definicję fizyki jako nauki. wykonuje pomiar jednej z podstawowych wielkości fizycznych np. długości, czasu lub masy; wymienia podstawowe wielkości fizyczne układu SI i ich jednostki. podaje przykłady oddziaływań bezpośrednich i oddziaływań na odległość; podaje przykłady statycznych i dynamicznych skutków oddziaływań. podaje definicję siły wypadkowej. podaje definicje masy i ciężaru ciała; podaje jednostki masy i ciężaru. określa, czym jest ruch; definiuje tor i drogę; podaje jednostki prędkości. podaje przykłady potwierdzające, że do wykonania pracy niezbędna jest energia; wymienia formy energii występujące w przyrodzie i najbliższym otoczeniu. podaje sposoby oszczędzania energii; podaje przykłady konwencjonalnych i niekonwencjonalnych źródeł energii. wyjaśnia, że substancje zbudowane są z cząsteczek i atomów; wyjaśnia, co to jest zjawisko dyfuzji; podaje przykłady potwierdzające wzajemne oddziaływanie cząsteczek; opisuje budowę atomu i budowę jądra atomowego. wymienia trzy stany skupienia materii; podaje przykłady różnych substancji w różnych stanach skupienia; wymienia przemiany stanów skupienia; podaje definicję topnienia i krzepnięcia; parowania i skraplania oraz sublimacji i resublimacji. podaje definicję gęstości i zapisać wzór; podaje jednostki gęstości (kg/m 3 i g/cm 3 ). podaje, za pomocą jakich przyrządów możemy zmierzyć objętość cieczy (np. menzurka, zlewka). podaje przykłady substancji o budowie krystalicznej i bezpostaciowej. podaje przykłady gazów rozpuszczalnych w wodzie. podaje przykłady z własnych obserwacji potwierdzające zjawisko rozszerzalności temperaturowej ciał stałych. podaje definicję ciśnienia i zapisać wzór; nazwa jednostkę ciśnienia. nazwa przyrząd do pomiaru ciśnienia w zbiornikach zamkniętych; nazwa przyrząd do pomiary ciśnienia atmosferycznego; podaje wartość średniego ciśnienia atmosferycznego (1013 hpa). podaje treść prawa Pascala. podaje treść prawa Archimedesa; wymienia przykłady zastosowania siły wyporu (prawa Archimedesa). Ocenę dostateczną otrzymuje uczeń, który: podaje przykłady i wyjaśnić zjawiska świadczące o tym, że wszystkie atomy i cząsteczki są w nieustannym ruchu; wykazuje, na czym polega zjawisko kontrakcji. podaje przykłady tych samych substancji w różnych stanach skupienia; wykazuje doświadczalnie, że topnienie i krzepnięcie zachodzi w tej samej temperaturze; wykazuje różnicę między parowaniem i wrzeniem. wyjaśnia zależność gęstości od temperatury. 1

oblicza objętość ciała stałego o regularnych kształtach (prostopadłościan); wyznacza objętość ciała stałego o nieregularnych kształtach; wykazuje zależność między właściwościami ciał stałych a ich budową wewnętrzną; wyjaśnia, że w ciałach o budowie krystalicznej atomy ułożone są w sposób regularny, tworząc sieć krystaliczną; wyjaśnia stałość kształtu i objętości ciał stałych. rozróżnia siły spójności od sił przylegania w cieczach; wyjaśnia mechanizm powstawania sił napięcia powierzchniowego. wyjaśnia, jak zmienia się objętość ciał stałych, cieczy i gazów przy zmianie ich temperatury; wyjaśnia, od czego i jak zależy przyrost długości ciał stałych przy zmianie temperatury. wyjaśnia, na czym polega wyjątkowa rozszerzalność wody. rozróżnia pojęcia nacisku na powierzchnię (siły nacisku) i ciśnienie, jako nacisku na jednostkę powierzchni. wyjaśnia, że przyczyną ciśnienia wywieranego na podłoże oraz ciśnienia cieczy na dno naczynia jest ich ciężar; zapisuje wzór na ciśnienie hydrostatyczne i wyjaśnić znaczenie symboli we wzorze; wyjaśnia od czego zależy ciśnienie hydrostatyczne. podaje przykłady zastosowania prawa Pascala. podaje wzór na obliczanie siły wyporu i wyjaśnić znaczenie symboli we wzorze; wyjaśnia, od czego i jak zależy siła wyporu; wyjaśnia, że siła wyporu jest różnicą wskazań siłomierza w powietrzu (ciężaru) i po zanurzeniu ciała w wodzie. wyjaśnia zjawisko pływania ciał na podstawie prawa Archimedesa; wyjaśnia, dlaczego balony i sterowce unoszą się w powietrzu. wyjaśnia, czym zajmuje się fizyka. wyjaśnia na czym polega pomiar; wyjaśnia, czym jest niepewność pomiaru; wskazuje przyczyny niepewności pomiaru. podaje przykłady oddziaływań grawitacyjnych, magnetycznych i elektrycznych; rozróżnia skutki oddziaływań trwałe i nietrwałe. wyjaśnia, na czym polega wzajemność oddziaływań; wyjaśnia, że miarą oddziaływań jest siła. wyjaśnia, co to znaczy, że siły się równoważą. odróżnia ciężar od masy ciała; określa, za pomocą jakich przyrządów pomiarowych mierzymy masę i ciężar. określa, jakie wielkości fizyczne są niezbędne do obliczenia wartości prędkości. wyjaśnia, dlaczego należy oszczędzać energię; uzasadnia, dlaczego istnieje konieczność poszukiwania nowych źródeł energii. Ocenę dobrą otrzymuje uczeń, który: wykazuje, że fizyka jest podstawą postępu technicznego. uzasadnia, że podstawą eksperymentów fizycznych są pomiary; określa niepewność pomiaru; oblicza średnią wyników pomiaru i niepewność względną. planuje i przeprowadza eksperyment z oddziaływaniami elektrycznymi lub/i magnetycznymi. dokonuje pomiaru siły za pomocą siłomierza. podaje przykłady i narysować siły równoważące się; oblicza i rysuje siłę wypadkową dla sił działających w tym samym kierunku. oblicza ciężar wybranych ciał, znając ich masę; zmierza masę i ciężar ciała. oblicza wartość prędkości średniej; wyznacza prędkość przemieszczania się, mając wynik pomiaru odległości i czasu; stosuje pojęcie prędkości do opisu ruchu; odczytuje przebytą drogę z wykresu s(t) i prędkość z wykresu v(t). wymienia przykłady przemian energii i wskazać kierunek przemian. wyjaśnia, dlaczego korzystanie z różnych form energii alternatywnej przyczynia się do ochrony środowiska 2

Ziemi. wykazuje doświadczalnie i wyjaśnia związek między szybkością zjawiska dyfuzji a temperaturą ciał; opisuje i porównuje budowę ciał stałych, cieczy i gazów z punktu widzenia teorii kinetyczno-cząsteczkowej budowy materii. opisuje i porównuje właściwości substancji w różnych stanach skupienia w kontekście teorii kinetyczno- -cząsteczkowej budowy materii. porównuje gęstości tej samej substancji w różnych stanach skupienia. mierzy masę ciała; oblicza lub wyznacza (w przypadku ciał o nieregularnych kształtach) gęstość ciał stałych na podstawie pomiarów masy i wymiarów ciała. stosuje do obliczeń związek między masą, gęstością i objętością (dla ciał stałych i cieczy); wyznacza masę, objętość i gęstość cieczy. omawia budowę kryształu na przykładzie soli kamiennej; dokonuje podziału ciał stałych na krystaliczne i bezpostaciowe oraz podać odpowiednie przykłady. porównuje budowę wewnętrzną ciał stałych, cieczy i gazów; wykonuje doświadczenie potwierdzające istnienie napięcia powierzchniowego; wyjaśnia rolę rozpuszczania się gazów w wodzie dla organizmów żywych. wyjaśnia przyczyny temperaturowej rozszerzalności ciał stałych; podaje przykłady zapobiegania negatywnym skutkom zjawiska rozszerzalności temperaturowej ciał. wyjaśnia przyczyny temperaturowej rozszerzalności cieczy i gazów; demonstruje rozszerzalność temperaturową cieczy i gazów; opisuje zmiany gęstości wody przy zmianie temperatury; wykazuje znaczenie anomalnej rozszerzalności temperaturowej wody w przyrodzie. posługuje się pojęciem ciśnienia; demonstruje skutki różnych ciśnień wywieranych na podłoże. demonstruje, że gaz wywiera ciśnienie; podaje przykłady zastosowania w technice i w życiu codziennym sprężonego powietrza; podaje przykłady zastosowania w technice i w życiu codziennym wody pod dużym ciśnieniem. planuje doświadczenie i wykonać pomiar siły wyporu za pomocą siłomierza dla ciała jednorodnego o gęstości większej od gęstości wody; wyjaśnia, dlaczego okręt wykonany z materiałów o dużo większej gęstości od wody nie tonie. Ocenę bardzo dobrą otrzymuje uczeń, który: udowodnia na przykładach, że fizyka jest nauką doświadczalną. przelicza jednostki z użyciem przedrostków; wykazuje, że każdy pomiar jest obarczony niepewnością pomiarową. uzasadnia na przykładach, że przyczyną zjawisk fizycznych są oddziaływania. projektuje i wykonuje zgodnie z projektem siłomierz; rysuje wektory różnych sił działających na ciało. wyjaśnia, że ciężar ciała wynika z oddziaływania grawitacyjnego i zależy od miejsca, w którym ciało się znajduje. wyjaśnia, że ciała o tej samej masie, ale znajdujące się na różnych planetach, mają różne ciężary; przelicza jednostki masy; przedstawia na przykładach i wyjaśnia zależność między masą a jego ciężarem. przelicza jednostki prędkości (m/s na km/h i odwrotnie); wyjaśnia różnicę między prędkością średnią a chwilową. proponuje i wykonuje doświadczenie potwierdzające nieustanny ruch drobin (atomów i cząsteczek) w ciałach stałych cieczach i gazach; dowodzi słuszności teorii kinetyczno-cząsteczkowej budowy materii; wykazuje doświadczalnie, że istnieje oddziaływanie międzycząsteczkowego. wykazuje zależność właściwości materii w różnych stanach skupienia od budowy; wykazuje doświadczalnie, że podczas topnienia do ciała stałego należy dostarczać energię, a w procesie krzepnięcia energia jest przez ciecz oddawana; podaje przykłady zjawisk parowania z otoczenia i wyjaśnia od czego zależy szybkość parowania w tych zjawiskach. 3

przelicza jednostki gęstości. hoduje samodzielnie kryształ; przeprowadza badania podatności ciał na różne rodzaje odkształceń (np. ściskanie, rozciąganie, skręcanie). wykazuje, że kształt powierzchni swobodnej cieczy w naczyniu (menisk) zależy od relacji między wartościami sił spójności i przylegania; podaje przykłady występowania zjawiska włoskowatości w przyrodzie i wyjaśnić jego rolę i skutki. uzasadnia, dlaczego w budownictwie stosowane są konstrukcje z żelaza i betonu. planuje i przeprowadza doświadczenie potwierdzające zależność ciśnienia od gęstości (rodzaju) cieczy i od wysokości słupa cieczy (od głębokości); planuje i przeprowadza doświadczenie potwierdzające istnienie ciśnienia atmosferycznego; przelicza jednostki ciśnienia. sprawdza doświadczalnie słuszność prawa Pascala; wyjaśnia działanie podnośników hydraulicznych lub pneumatycznych; wyjaśnia działanie prasy hydraulicznej. projektuje i wykonuje model łodzi podwodnej; analizuje i porównuje wartości siły wyporu dla ciał zanurzonych w cieczy lub gazie. Ocenę celującą otrzymuje uczeń, który: samodzielnie dociera do różnych źródeł informacji naukowej, prowadzi badania, opracowuje wyniki i przedstawia je w formie projektów uczniowskich lub sprawozdań z prac naukowo-badawczych, samodzielnie wykonuje modele, przyrządy i pomoce dydaktyczne podaje przykłady świadczące o działaniu sił oporu podczas ruchu ciał w cieczach i w gazach. wyjaśnia powstawanie siły nośnej działającej na samolot; porównuje i wyjaśnia różnice w powstawaniu siły nośnej balonu i samolotu. projektuje i buduje model elektrowni wodnej lub wiatrowej. wyjaśnia, dlaczego korzystanie z różnych form energii alternatywnej przyczynia się do ochrony środowiska Ziemi. 4

KRYTERIA OCENIANIA Z FIZYKI DLA KLAS I semestr 1 przygotowała mgr Magdalena Murawska Ocenę dopuszczającą otrzymuje uczeń, który: podaje definicję fizyki jako nauki. wykonuje pomiar jednej z podstawowych wielkości fizycznych np. długości, czasu lub masy; wymienia podstawowe wielkości fizyczne układu SI i ich jednostki. podaje przykłady oddziaływań bezpośrednich i oddziaływań na odległość; podaje przykłady statycznych i dynamicznych skutków oddziaływań. podaje definicję siły wypadkowej. podaje definicje masy i ciężaru ciała; podaje jednostki masy i ciężaru. określa, czym jest ruch; definiuje tor i drogę; podaje jednostki prędkości. podaje przykłady potwierdzające, że do wykonania pracy niezbędna jest energia; wymienia formy energii występujące w przyrodzie i najbliższym otoczeniu. podaje sposoby oszczędzania energii; podaje przykłady konwencjonalnych i niekonwencjonalnych źródeł energii. wyjaśnia, że substancje zbudowane są z cząsteczek i atomów; wyjaśnia, co to jest zjawisko dyfuzji; podaje przykłady potwierdzające wzajemne oddziaływanie cząsteczek; opisuje budowę atomu i budowę jądra atomowego. wymienia trzy stany skupienia materii; podaje przykłady różnych substancji w różnych stanach skupienia; wymienia przemiany stanów skupienia; podaje definicję topnienia i krzepnięcia; parowania i skraplania oraz sublimacji i resublimacji. podaje definicję gęstości i zapisać wzór; podaje jednostki gęstości (kg/m 3 i g/cm 3 ). Ocenę dostateczną otrzymuje uczeń, który: podaje przykłady i wyjaśnić zjawiska świadczące o tym, że wszystkie atomy i cząsteczki są w nieustannym ruchu; wykazuje, na czym polega zjawisko kontrakcji. podaje przykłady tych samych substancji w różnych stanach skupienia; wykazuje doświadczalnie, że topnienie i krzepnięcie zachodzi w tej samej temperaturze; wykazuje różnicę między parowaniem i wrzeniem. wyjaśnia zależność gęstości od temperatury. oblicza objętość ciała stałego o regularnych kształtach (prostopadłościan); wyznacza objętość ciała stałego o nieregularnych kształtach; Ocenę dobrą otrzymuje uczeń, który: wykazuje, że fizyka jest podstawą postępu technicznego. uzasadnia, że podstawą eksperymentów fizycznych są pomiary; określa niepewność pomiaru; oblicza średnią wyników pomiaru i niepewność względną. planuje i przeprowadza eksperyment z oddziaływaniami elektrycznymi lub/i magnetycznymi. dokonuje pomiaru siły za pomocą siłomierza. podaje przykłady i narysować siły równoważące się; oblicza i rysuje siłę wypadkową dla sił działających w tym samym kierunku. oblicza ciężar wybranych ciał, znając ich masę; 5

mierzy masę i ciężar ciała. oblicza wartość prędkości średniej; wyznacza prędkość przemieszczania się, mając wynik pomiaru odległości i czasu; stosuje pojęcie prędkości do opisu ruchu; odczytuje przebytą drogę z wykresu s(t) i prędkość z wykresu v(t). wymienia przykłady przemian energii i wskazać kierunek przemian. wyjaśnia, dlaczego korzystanie z różnych form energii alternatywnej przyczynia się do ochrony środowiska Ziemi. wykazuje doświadczalnie i wyjaśnia związek między szybkością zjawiska dyfuzji a temperaturą ciał; opisuje i porównuje budowę ciał stałych, cieczy i gazów z punktu widzenia teorii kinetyczno-cząsteczkowej budowy materii. opisuje i porównuje właściwości substancji w różnych stanach skupienia w kontekście teorii kinetyczno- -cząsteczkowej budowy materii. porównuje gęstości tej samej substancji w różnych stanach skupienia. mierzy masę ciała; oblicza lub wyznacza (w przypadku ciał o nieregularnych kształtach) gęstość ciał stałych na podstawie pomiarów masy i wymiarów ciała. Ocenę bardzo dobrą otrzymuje uczeń, który: udowodnia na przykładach, że fizyka jest nauką doświadczalną. przelicza jednostki z użyciem przedrostków; wykazuje, że każdy pomiar jest obarczony niepewnością pomiarową. uzasadnia na przykładach, że przyczyną zjawisk fizycznych są oddziaływania. projektuje i wykonuje zgodnie z projektem siłomierz; rysuje wektory różnych sił działających na ciało. wyjaśnia, że ciężar ciała wynika z oddziaływania grawitacyjnego i zależy od miejsca, w którym ciało się znajduje. wyjaśnia, że ciała o tej samej masie, ale znajdujące się na różnych planetach, mają różne ciężary; przelicza jednostki masy; przedstawia na przykładach i wyjaśnia zależność między masą a jego ciężarem. przelicza jednostki prędkości (m/s na km/h i odwrotnie); wyjaśnia różnicę między prędkością średnią a chwilową. proponuje i wykonuje doświadczenie potwierdzające nieustanny ruch drobin (atomów i cząsteczek) w ciałach stałych cieczach i gazach; dowodzi słuszności teorii kinetyczno-cząsteczkowej budowy materii; wykazuje doświadczalnie, że istnieje oddziaływanie międzycząsteczkowego. wykazuje zależność właściwości materii w różnych stanach skupienia od budowy; wykazuje doświadczalnie, że podczas topnienia do ciała stałego należy dostarczać energię, a w procesie krzepnięcia energia jest przez ciecz oddawana; podaje przykłady zjawisk parowania z otoczenia i wyjaśnia od czego zależy szybkość parowania w tych zjawiskach. przelicza jednostki gęstości. Ocenę celującą otrzymuje uczeń, który: samodzielnie dociera do różnych źródeł informacji naukowej, prowadzi badania, opracowuje wyniki i przedstawia je w formie projektów uczniowskich lub sprawozdań z prac naukowo-badawczych, samodzielnie wykonuje modele, przyrządy i pomoce dydaktyczne projektuje i buduje model elektrowni wodnej lub wiatrowej. wyjaśnia, dlaczego korzystanie z różnych form energii alternatywnej przyczynia się do ochrony środowiska Ziemi. 6

KRYTERIA OCENIANIA Z FIZYKI DLA KLAS I semestr 2 przygotowała mgr Magdalena Murawska Ocenę dopuszczającą otrzymuje uczeń, który: podaje, za pomocą jakich przyrządów możemy zmierzyć objętość cieczy (np. menzurka, zlewka). podaje przykłady substancji o budowie krystalicznej i bezpostaciowej. podaje przykłady gazów rozpuszczalnych w wodzie. podaje przykłady z własnych obserwacji potwierdzające zjawisko rozszerzalności temperaturowej ciał stałych. podaje definicję ciśnienia i zapisać wzór; nazwa jednostkę ciśnienia. nazwa przyrząd do pomiaru ciśnienia w zbiornikach zamkniętych; nazwa przyrząd do pomiary ciśnienia atmosferycznego; podaje wartość średniego ciśnienia atmosferycznego (1013 hpa). podaje treść prawa Pascala. podaje treść prawa Archimedesa; wymienia przykłady zastosowania siły wyporu (prawa Archimedesa). Ocenę dostateczną otrzymuje uczeń, który: wykazuje zależność między właściwościami ciał stałych a ich budową wewnętrzną; wyjaśnia, że w ciałach o budowie krystalicznej atomy ułożone są w sposób regularny, tworząc sieć krystaliczną; wyjaśnia stałość kształtu i objętości ciał stałych. rozróżnia siły spójności od sił przylegania w cieczach; wyjaśnia mechanizm powstawania sił napięcia powierzchniowego. wyjaśnia, jak zmienia się objętość ciał stałych, cieczy i gazów przy zmianie ich temperatury; wyjaśnia, od czego i jak zależy przyrost długości ciał stałych przy zmianie temperatury. wyjaśnia, na czym polega wyjątkowa rozszerzalność wody. rozróżnia pojęcia nacisku na powierzchnię (siły nacisku) i ciśnienie, jako nacisku na jednostkę powierzchni. wyjaśnia, że przyczyną ciśnienia wywieranego na podłoże oraz ciśnienia cieczy na dno naczynia jest ich ciężar; zapisuje wzór na ciśnienie hydrostatyczne i wyjaśnić znaczenie symboli we wzorze; wyjaśnia od czego zależy ciśnienie hydrostatyczne. podaje przykłady zastosowania prawa Pascala. podaje wzór na obliczanie siły wyporu i wyjaśnić znaczenie symboli we wzorze; wyjaśnia, od czego i jak zależy siła wyporu; wyjaśnia, że siła wyporu jest różnicą wskazań siłomierza w powietrzu (ciężaru) i po zanurzeniu ciała w wodzie. wyjaśnia zjawisko pływania ciał na podstawie prawa Archimedesa; wyjaśnia, dlaczego balony i sterowce unoszą się w powietrzu. wyjaśnia, czym zajmuje się fizyka. wyjaśnia na czym polega pomiar; wyjaśnia, czym jest niepewność pomiaru; wskazuje przyczyny niepewności pomiaru. podaje przykłady oddziaływań grawitacyjnych, magnetycznych i elektrycznych; rozróżnia skutki oddziaływań trwałe i nietrwałe. wyjaśnia, na czym polega wzajemność oddziaływań; wyjaśnia, że miarą oddziaływań jest siła. wyjaśnia, co to znaczy, że siły się równoważą. odróżnia ciężar od masy ciała; określa, za pomocą jakich przyrządów pomiarowych mierzymy masę i ciężar. 7

określa, jakie wielkości fizyczne są niezbędne do obliczenia wartości prędkości. wyjaśnia, dlaczego należy oszczędzać energię; uzasadnia, dlaczego istnieje konieczność poszukiwania nowych źródeł energii. Ocenę dobrą otrzymuje uczeń, który: stosuje do obliczeń związek między masą, gęstością i objętością (dla ciał stałych i cieczy); wyznacza masę, objętość i gęstość cieczy. omawia budowę kryształu na przykładzie soli kamiennej; dokonuje podziału ciał stałych na krystaliczne i bezpostaciowe oraz podać odpowiednie przykłady. porównuje budowę wewnętrzną ciał stałych, cieczy i gazów; wykonuje doświadczenie potwierdzające istnienie napięcia powierzchniowego; wyjaśnia rolę rozpuszczania się gazów w wodzie dla organizmów żywych. wyjaśnia przyczyny temperaturowej rozszerzalności ciał stałych; podaje przykłady zapobiegania negatywnym skutkom zjawiska rozszerzalności temperaturowej ciał. wyjaśnia przyczyny temperaturowej rozszerzalności cieczy i gazów; demonstruje rozszerzalność temperaturową cieczy i gazów; opisuje zmiany gęstości wody przy zmianie temperatury; wykazuje znaczenie anomalnej rozszerzalności temperaturowej wody w przyrodzie. posługuje się pojęciem ciśnienia; demonstruje skutki różnych ciśnień wywieranych na podłoże. demonstruje, że gaz wywiera ciśnienie; podaje przykłady zastosowania w technice i w życiu codziennym sprężonego powietrza; podaje przykłady zastosowania w technice i w życiu codziennym wody pod dużym ciśnieniem. planuje doświadczenie i wykonać pomiar siły wyporu za pomocą siłomierza dla ciała jednorodnego o gęstości większej od gęstości wody; wyjaśnia, dlaczego okręt wykonany z materiałów o dużo większej gęstości od wody nie tonie. Ocenę bardzo dobrą otrzymuje uczeń, który: hoduje samodzielnie kryształ; przeprowadza badania podatności ciał na różne rodzaje odkształceń (np. ściskanie, rozciąganie, skręcanie). wykazuje, że kształt powierzchni swobodnej cieczy w naczyniu (menisk) zależy od relacji między wartościami sił spójności i przylegania; podaje przykłady występowania zjawiska włoskowatości w przyrodzie i wyjaśnić jego rolę i skutki. uzasadnia, dlaczego w budownictwie stosowane są konstrukcje z żelaza i betonu. planuje i przeprowadza doświadczenie potwierdzające zależność ciśnienia od gęstości (rodzaju) cieczy i od wysokości słupa cieczy (od głębokości); planuje i przeprowadza doświadczenie potwierdzające istnienie ciśnienia atmosferycznego; przelicza jednostki ciśnienia. sprawdza doświadczalnie słuszność prawa Pascala; wyjaśnia działanie podnośników hydraulicznych lub pneumatycznych; wyjaśnia działanie prasy hydraulicznej. projektuje i wykonuje model łodzi podwodnej; analizuje i porównuje wartości siły wyporu dla ciał zanurzonych w cieczy lub gazie. Ocenę celującą otrzymuje uczeń, który: samodzielnie dociera do różnych źródeł informacji naukowej, prowadzi badania, opracowuje wyniki i przedstawia je w formie projektów uczniowskich lub sprawozdań z prac naukowo-badawczych, samodzielnie wykonuje modele, przyrządy i pomoce dydaktyczne podaje przykłady świadczące o działaniu sił oporu podczas ruchu ciał w cieczach i w gazach. wyjaśnia powstawanie siły nośnej działającej na samolot; porównuje i wyjaśnia różnice w powstawaniu siły nośnej balonu i samolotu. 8