Model diagnostyczny złożonego obiektu technicznego

Podobne dokumenty
ĆWICZENIE 4 WYZNACZANIE OPTYMALIZOWANYCH PROCEDUR DIAGNOSTYCZNO-OBSŁUGOWYCH

WYZNACZANIE OPTYMALIZOWANYCH PROCEDUR DIAGNOSTYCZNO-OBSŁUGOWYCH

Katedra Transportu Szynowego Politechnika Śląska Diagnostyka Pojazdów Szynowych

SYSTEM MONITOROWANIA DECYZYJNEGO STANU OBIEKTÓW TECHNICZNYCH

Politechnika Krakowska im. Tadeusza Kościuszki KARTA PRZEDMIOTU

Podstawy diagnostyki środków transportu

NAPRAWA. 1) lokalizuje uszkodzenia zespołów i podzespołów pojazdów samochodowych na podstawie pomiarów i wyników badań diagnostycznych;

Mechanika i Budowa Maszyn Studia pierwszego stopnia

5. SYSTEM GENEZOWANIA STANU MASZYN

UKŁAD HAMULCOWY GĄSIENICOWEGO POJAZDU AUTONOMICZNEGO

PROTOKÓŁ NR 10. Techniki wirtualne w badaniach stanu, zagrożeń bezpieczeństwa i środowiska eksploatowanych maszyn

Automatyka i sterowania

Karta (sylabus) modułu/przedmiotu Transport Studia II stopnia

DIAGNOSTYKA. 1. Diagnozowanie podzespołów i zespołów pojazdów samochodowych. Uczeń:

Metoda pomiaru błędu detektora fazoczułego z pierścieniem diodowym

IDENTYFIKACJA NIEZDATNOŚCI W OBIEKTACH TECHNICZNYCH O ZŁOŻONEJ STRUKTURZE

Karta (sylabus) modułu/przedmiotu Transport Studia I stopnia

1. Wprowadzenie 1.1. Krótka historia rozwoju silników spalinowych

technik mechanik kwalifikacji M.18. Numer ewidencyjny w wykazie podręczników MEN: 56/2015 Od autorów 9 1. Wiadomości wstępne

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych

EKSPLOATACJA SYSTEMÓW TECHNICZNYCH

1. Wprowadzenie. 2. Klasyfikacja i podstawowe wskaźniki charakteryzujące pracę silników spalinowych. 3. Paliwa stosowane do zasilania silników

MT 2 N _0 Rok: 1 Semestr: 1 Forma studiów:

Metody i urządzenia diagnostyki samochodowej II

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie)

Problemy wspomaganej komputerowo oceny stanu technicznego zestawów kołowych pojazdów szynowych

METODYKA BADAŃ MAŁYCH SIŁOWNI WIATROWYCH

Spis treści. 3. Bezpieczeństwo pojazdu wojskowego Bezpieczeństwo pojazdu wojskowego na tle systemu człowiekotoczenie-technika

Napędy urządzeń mechatronicznych

NADZOROWANIE EKSPLOATACJI SYSTEMÓW OBRONY POWIETRZNEJ POD KĄTEM ICH NIEZAWODNOŚCI I BEZPIECZEŃSTWA

DIAGNOZOWANIE I DOZOROWANIE STANU OBIEKTU EKSPLOATACJI

Diagnozowanie sieci komputerowej na podstawie opinii diagnostycznych o poszczególnych komputerach sieci

Niezawodność eksploatacyjna środków transportu

Dr hab. inż. Jan Duda. Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji

Diagnostyka procesów i jej zadania

PRZEWODNIK PO PRZEDMIOCIE

Centrum Szkoleniowe WSOP

DIAGNOSTYKA 1. Diagnozowanie układów elektrycznych i elektronicznych pojazdów samochodowych

Bogdan ŻÓŁTOWSKI Marcin ŁUKASIEWICZ

Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja do ćwiczeń laboratoryjnych z przedmiotu:

Katalog szkoleń technicznych. Schaeffler Polska Sp. z o.o.

3.1. Budowa pojazdu samochodowego Uszczegółowione efekty kształcenia Uczeń po zrealizowaniu zajęć potrafi: Poziom wymagań programowych

STAN OBIEKTU JAKO WIELOZNACZNE POJĘCIE WE WSPÓŁCZESNEJ EKSPLOATCJI TECHNICZNEJ OBJECT STATE AS AMBIGUEST TERM IN CONTEMPORARY TECHNICAL OPERATION

Katalog szkoleń technicznych. Schaeffler Polska Sp. z o.o.

WYBRANE ZAGADNIENIA OPTYMALIZACJI PRZEGLĄDÓW OKRESOWYCH URZĄDZEŃ ELEKTRONICZNYCH

ZASTOSOWANIE SPLOTU FUNKCJI DO OPISU WŁASNOŚCI NIEZAWODNOŚCIOWYCH UKŁADÓW Z REZERWOWANIEM

Diagnozowanie sieci komputerowej metodą dialogu diagnostycznego

Katalog szkoleń technicznych. Schaeffler Polska Sp. z o.o.

Układy napędowe maszyn - opis przedmiotu

Spis treści. Wykaz ważniejszych oznaczeń i skrótów 10. Od autorów 13. Wstęp 14. Rozdział 1. Ogólna charakterystyka samochodów użytkowych 17

Maszyny do robót ziemnych : ABC operatora / Maciej Jodłowski. Krosno, Spis treści

STATYSTYKA EKONOMICZNA

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Wymagania edukacyjne Technologia napraw zespołów i podzespołów mechanicznych pojazdów samochodowych

STANY TECHNICZNE OBIEKTÓW EKSPLOATACJI

THE PART OF FUZZY SYSTEMS ASSISTING THE DECISION IN DI- AGNOSTICS OF FUEL ENGINE SUBASSEMBLIES DEFECTS

WYBRANE PROBLEMY DIAGNOZOWANIA TRÓJWARTOŚCIOWEGO

6. Zagadnienie parkowania ciężarówki.

Centrum Szkoleniowo-Technologiczne PL Mikołów ul. Pokoju 2 tel.(0-32) ,tel./fax (032)

Instytut Transportu, Silników Spalinowych i Ekologii

ZDATNOŚĆ ZADANIOWA POJAZDÓW

Stanowiskowe badania samochodów Kod przedmiotu

1. BADANIA DIAGNOSTYCZNE POJAZDU NA HAMOWNI PODWOZIOWEJ

Podstawy Automatyki. Człowiek- najlepsza inwestycja. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

SYSTEMY ENERGETYKI ODNAWIALNEJ

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania. Studia: I stopnia (inżynierskie)

Karta (sylabus) przedmiotu

Rozwój szkolnictwa zawodowego w Gdyni - budowa, przebudowa i rozbudowa infrastruktury szkół zawodowych oraz wyposażenie

Spis treści. I. Wprowadzenie do naprawy układów elektrycznych i elektronicznych pojazdów samochodowych

Spis treści Zespół autorski Część I Wprowadzenie 1. Podstawowe problemy transportu miejskiego.transport zrównoważony

KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK

USTAWNIK TOLERUJĄCY USZKODZENIA TORU SPRZĘśENIA ZWROTNEGO

SPIS TREŚCI. Przedmowa... 8

PRAKTYKA ZAWODOWA TECHNIK POJAZDÓW SAMOCHODOWYCH. Praktyka zawodowa

BUDOWA I TESTOWANIE UKŁADÓW PNEUMATYKI

Sposoby modelowania układów dynamicznych. Pytania

HYDROSTATYCZNE UKŁADY NAPĘDOWE W BEZZAŁOGOWYCH POJAZDACH LĄDOWYCH

2. Klasyfikacja i podstawowe wskaźniki charakteryzujące pracę silników spalinowych

Podstawy Automatyki. Wykład 8 - Wprowadzenie do automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE.

SPIS TREŚCI RACJONALNA JAZDA Z UWZGLĘDNIENIEM PRZEPISÓW BEZPIECZEŃSTWA... 9

This copy is for personal use only - distribution prohibited.

Wykład nr 1 Podstawowe pojęcia automatyki

Rys. 1. Instalacja chłodzenia wodą słodką cylindrów silnika głównego (opis w tekście)

BADANIE WŁAŚCIWOŚCI KOMPUTEROWEGO SYSTEMU POMIAROWO-DIAGNOSTYCZNEGO

ZESZYTY NAUKOWE NR 1(73) AKADEMII MORSKIEJ W SZCZECINIE. Podatność diagnostyczna układów hydrauliki maszynowej

13. WYZNACZANIE CHARAKTERYSTYK ORAZ PRZEŁOŻENIA UKŁADU KIEROWNICZEGO

ALGORYTM PROJEKTOWANIA ROZMYTYCH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO

System ekspertowy wykorzystujący trójwartościową informację diagnostyczną wspomagający obsługiwanie złożonego obiektu technicznego

Diagnostyka Wibroakustyczna Maszyn

ANALIZA METOD DETEKCJI I LOKALIZACJI USZKODZEŃ W SYSTEMACH PRODUKCYJNYCH ODLEWNI

STANOWISKOWE BADANIE ZESPOŁU PRZENIESIENIA NAPĘDU NA PRZYKŁADZIE WIELOSTOPNIOWEJ PRZEKŁADNI ZĘBATEJ

Automatyka i Regulacja Automatyczna SEIwE- sem.4

Pytania egzaminacyjne dla Kierunku Elektrotechnika. studia II stopnia stacjonarne i niestacjonarne

BUDOWA I TESTOWANIE UKŁADÓW ELEKTROPNEUMATYKI

Karta (sylabus) modułu/przedmiotu [Transport] Studia I stopnia. Elektrotechnika i elektronika środków transportu Rodzaj przedmiotu: Język polski

Podstawy Automatyki. wykład 1 ( ) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Układ regulacji ze sprzężeniem zwrotnym: - układ regulacji kaskadowej - układ regulacji stosunku

22. SPRAWDZANIE GEOMETRII SAMOCHODU

Transkrypt:

Bi u l e t y n WAT Vo l. LX, Nr1, 2011 Model diagnostyczny złożonego obiektu technicznego Stanisław Niziński, Arkadiusz Rychlik Uniwersytet Warmińsko-Mazurski, Wydział Nauk Technicznych, Katedra Budowy, Eksploatacji Pojazdów i Maszyn, 10-719 Olsztyn, ul. Oczapowskiego 11 Streszczenie: Istnieje problem diagnozowania, prognozowania i generowania stanu złożonych obiektów technicznych. W pracy przyjęto wojskowy pojazd mechaniczny, na przykład: czołg, bojowy wóz piechoty, kołowy lub gąsienicowy transporter opancerzony, jako złożony obiekt techniczny. Przedstawiono koncepcję modelu diagnostycznego takich obiektów technicznych. Słowa kluczowe: diagnostyka pojazdów mechanicznych, modele diagnostyczne, algorytmy diagnozowania 1. Wprowadzenie Współczesne systemy złożonych obiektów technicznych są oparte na zasadach i modelach diagnostycznych, algorytmach diagnozowania, metodach i urządzeniach diagnostycznych, a także odpowiednich technologiach i infrastrukturze obsługiwania. Podstawą budowy efektywnych metod i urządzeń diagnostycznych są modele diagnostyczne i algorytmy diagnozowania. Istnieje wiele modeli diagnostycznych obiektów technicznych, takich jak: analityczne: strukturalne modalne i odwrotne; symptomowe: regresyjne rozpoznawania obrazów, topologiczne, diagnostyczno-niezawodnościowe, informacyjne. Jednak niewiele z tych modeli znajduje zastosowanie w procesach obsługiwania złożonych obiektów technicznych. Zatem istnieje potrzeba budowy modeli diagnostycznych wojskowych pojazdów, które umożliwią ich wykorzystanie w praktycznej działalności utrzymywania pojazdów w stanie zdatności.

196 S. Niziński, A. Rychlik W pracy, na podstawie publikacji [2], zaproponowano opracowanie hierarchicznego modelu diagnostycznego wojskowego pojazdu mechanicznego, będącego podstawą budowy algorytmów kontroli stanu i lokalizacji uszkodzeń, na podstawie których można skonstruować pokładowe i pokładowo-zewnętrzne systemy diagnostyczne. Funkcja celu Funkcja złożonego obiektu technicznego jest określona przez zbiór zadań, które powinien on realizować w dowolnych warunkach zewnętrznych. Zatem wychodząc z przeznaczenia złożonego obiektu technicznego, można określić jego funkcję celu, na podstawie której będzie możliwe stwierdzenie, czy obiekt wykona stawiane przed nimi zadania, ze względu na swój aktualny stan techniczny. Opierając się na pracy [2], funkcję celu złożonego obiektu technicznego, jakim jest wojskowy pojazd mechaniczny, zdefiniowano następująco (rys. 1): F = H [U(t), X(t),, t], (1) gdzie: F funkcja celu; H o wektor odwzorowania; U(t) wektor sygnałów wejściowych; X(t) wektor parametrów stanu; miara eksploatacji; t czas dynamiczny. W badaniach diagnostycznych obiektów ściśle ustala się zbiór wejść (wymuszeń U(t) = const), aby wszelkie zmiany sygnałów diagnostycznych były powodowane głównie zmianą ich stanu technicznego (rys. 1) [3]. Wektor X(t) parametrów stanu w chwili t określa wektor W(t) stanu obiektu technicznego, zatem można napisać, że: gdzie: [ ] F = G W, Θ, t, (2) W(t) wektor stanu pojazdu mechanicznego; G O operator odwzorowania. o Biorąc pod uwagę fakt, że w badaniach i ocenie stanów pojazdów mechanicznych wektor stanu W(t) można ustalić za pomocą pomiarów zbiorów wartości składowych wektora Y(t) sygnałów diagnostycznych, wyrażenie (2) przyjmuje postać: gdzie: [ Y( ),, ], F =Φ t Θ t (3) Φ θ operator odwzorowania; Y(t) wektor niezależnych i zupełnych wartości liczbowych parametrów diagnostycznych (symptomów stanu).

Model diagnostyczny złożonego obiektu technicznego 197 Przyjmując założenie, że każdy parametr diagnostyczny będący argumentem funkcji celu zostanie tak przekształcony, że z wyjścia danego elementu będzie miał postać napięciowego jednofazowego sygnału binarnego (1, 0), funkcję celu określa wyrażenie: Wobec tego, jeśli: gdzie: N F = y = y y,, y. (4) n= 1 n 1 2 F y y y w t w (5) 1 = = 1 2,, = 1 (), X y n i n Y n= 1, N y 1, y 2,, y n zbiór niezależnych i zupełnych parametrów diagnostycznych; kwantyfikator ogólny: dla każdego y n ; w 1 stan zdatności. n Rys. 1. Obiekt techniczny jako przedmiot diagnozowania przy założeniu, że zbiór U wymuszeń nie zmienia się: Z zbiór zakłóceń; X zbiór parametrów stanu; Y zbiór parametrów diagnostycznych Co oznacza, że jeżeli wartości wszystkich parametrów diagnostycznych znajdują się w dopuszczalnych granicach, to ich funkcja celu F będąca iloczynem logicznym zbioru parametrów diagnostycznych: y 1, y 2,, y n przyjmuje wartość 1. Zatem pojazd mechaniczny znajduje się w stanie zdatności w 1. W przypadku gdy wartość choćby jednego parametru diagnostycznego wykracza poza granice dopuszczalne, to obiekt nie spełnia wymagań, czyli znajduje się w stanie niezdatności w 0, co można zapisać następująco: gdzie: c yn Y n 1 2 n i n= 1, N ( ) 0 F = y = y y,, y = 0 w t w, (6) kwantyfikator szczegółowy: istnieje takie y n, że ; w 0 stan niezdatności. Wyrażenia (4)-(6) są podstawą budowy modelu diagnostycznego i algorytmu diagnozowania wojskowych pojazdów mechanicznych jako złożonych obiektów technicznych.

198 S. Niziński, A. Rychlik 2. Analiza diagnostyczna wojskowego pojazdu mechanicznego i Analizę diagnostyczną projektowanego lub już eksploatowanego wojskowego pojazdu mechanicznego wykonuje się pod kątem diagnozowania, prognozowania i generowania jego stanów. Obejmuje ona następujące elementy [3]: przeznaczenie, budowę i zasadę działania obiektu; warunki funkcjonowania obiektu i jego elementów; zakres zmian parametrów stanu i możliwości ich regulacji; możliwość wykorzystania procesów fizyko-chemicznych (parametrów tych procesów) jako nośniki informacji o stanie elementów obiektu; wartości graniczne parametrów stanu i parametrów sygnałów diagnostycznych; dane dotyczące niezawodności, w tym trwałości, nieuszkadzalności, naprawialności i przechowywalności obiektu; urządzenia diagnostyczne i obsługowe. W wyniku procesu analizy diagnostycznej wojskowego pojazdu mechanicznego powinna być dokonana jego dekompozycja, której ideę można sprowadzić do następujących działań. Obiekt techniczny można podzielić na P(p = 1, I) poziomów diagnostycznych. Pierwszy poziom obiektu to sam obiekt i nazywany będzie elementem pierwszego rzędu. Jest on zbiorem elementów drugiego rzędu. Drugi poziom obiektu stanowią elementy trzeciego rzędu, a każdy nich jest elementem trzeciego rzędu, itd. Proces dekompozycji prowadzi się w stosunku do wyróżnionych podsystemów tylokrotnie, aż otrzymane podsystemy na P-tym poziomie dekompozycji uzna się za elementy niepodzielne, dla których z punktu widzenia celu badania diagnostycznego nie zakłada się dalszego podziału. Najniższy poziom P dekompozycji obiektu nazywa się poziomem podstawowym (poziom elementów podstawowych). Na rysunku 2 przedstawiono zdekomponowany wojskowy pojazd mechaniczny. Wierzchołek grafu przedstawia wojskowy pojazd mechaniczny jako system S, na I poziomie dekompozycji. Wierzchołki drugiego poziomu grafu stanowią elementy e ( i= 1, I) drugiego rzędu, w skład którego wchodzą elementy e ( j = 1, J) trzeciego rzędu, zawierające elementy e ( k = 1, K) czwartego rzędu, a te z kolei obejmują k elementy e ( p= 1, P) piątego rzędu, zwane elementami podstawowymi. p Podkreślić należy, że przyjęto jednolity pięciopoziomowy model strukturalny wojskowego pojazdu mechanicznego. Poziom piąty jest zbiorem elementów podstawowych i określa głębokość wnikania w strukturę obiektu, ponieważ na tym poziomie jest prowadzona lokalizacja uszkodzeń. W przypadku potrzeby można wyróżnić różną liczbę poziomów elementów podstawowych. Wtedy pojazd mechaniczny ma niejednolitą strukturę wielopoziomową. j

Model diagnostyczny złożonego obiektu technicznego 199 Rys. 2. Hierarchiczny model funkcjonalny wojskowego pojazdu mechanicznego w aspekcie jego diagnozowania. I, II,, V poziomy diagnostyczne, 1 pojazd jako system; 21 kadłub (nadwozie); 22 wieża; 23 podwozie; 24 instalacja elektryczna; 31 układ bezpieczeństwa; 32 inne układy; 33 uzbrojenie; 34 układ stabilizacji; 35 system kierowania ogniem; 36 źródło napędu; 37 układ napędowy; 38 układ jezdny; 39 układ prowadzenia; 310 układ instalacji kadłuba; 311 układ instalacji wieży; 41 układ ochrony przed bronią ABC; 42 układ przeciwpożarowy; 43 termiczna aparatura dymotwórcza; 44 układ ogrzewania wentylacji i klimatyzacji; 45 układ łączności i nawigacji; 46 układ hydrauliczny; 47 układ pneumatyczny; 48 armata; 49 karabin maszynowy; 410 wyrzutnia przeciwpancernych pocisków kierowanych; 411 przyrządy celownicze; 412 układ stabilizacji pionowej; 413 układ stabilizacji poziomej; 414 układ określania odległości, 415 blok elektroniki; 416 silnik o ZS; 417 układ napędowy pojazdu kołowego; 418 układ napędowy pojazdu gąsienicowego; 419 kołowy układ jezdny; 420 gąsienicowy układ jezdny; 421 układ kierowniczy; 422 układ hamulcowy; 423 źródła prądu, 424 odbiorniki kadłuba; 425 odbiorniki wieży; 51 czujniki; 52 filtr ABC; 53 czujniki; 54 pironaboje; 55 urządzenie odpalania pocisków dymotwórczych; 56 układ ogrzewania; 57 układ klimatyzacji; 58 telefon wewnętrzny; 59 układ nawigacji; 60 zawór sterujący; 610 siłownik; 611 zawór regulacji ciśnienia; 612 siłownik; 613 automat ładowania; 614 układ spustowy; 615 układ naprowadzania; 616 celownik dzienny, 617 celownik nocny; 618 układ linii celowania; 619 układ osi lufy; 620 czujniki; 621 wyznacznik kąta; 622 dalmierz laserowy; 623 komputer balistyczny; 624 filtr powierza; 625 wtryskiwacze; 626 turbosprężarka; 627 układ rozrządu; 628 sprzęgło; 629 układ sterowania skrzynią biegów; 630 sprzęgło; 631 układ sterowania mechanizmami skrętu; 632 koła; 633 c.p.k; 634 gąsienice; 635 koła napędowe; 636 układ zwrotniczy; 637 układ wspomagania; 638 hamulce kół; 639 układ sterowania; 640 akumulator; 641 prądnica; 642 obwód rozruchowy; 643 inne obwody; 644 obwód obrotu wieży; 645 inne obwody

200 S. Niziński, A. Rychlik Zbiór elementów podstawowych tworzymy w następujący sposób: diagnozowanie wszystkich elementów pojazdu jest możliwe, lecz nieuzasadnione. W związku z tym istnieje potrzeba wybrania tych elementów podstawowych pojazdu, które powinny być diagnozowane, zatem zachodzi potrzeba ustalenia ich istotności [3]. Istotność I s elementów podstawowych można wyznaczyć za pomocą zbioru kryteriów {k z }: I = k, k,, k ; z = 1, Z. (7) s { } 1 2 Jako kryteria wyboru elementów podstawowych można wykorzystać: bezpieczeństwo; słabe ogniwa obiektu; koszty; kryteria ekonomiczne. z 3. Hierarchiczny model diagnostyczny wojskowego pojazdu mechanicznego Model obejmuje następujące elementy (rys. 2): funkcję celu elementów podstawowych poziom V; funkcję celu poziomów: IV, III i II; funkcję celu wojskowego pojazdu mechanicznego na I poziomie dekompozycji; modele diagnostyczne elementów poziomu IV, obejmujące elementy podstawowe poziomu V. Każdy z elementów podstawowych V poziomu dekompozycji może realizować m funkcji celu. Każdą funkcję celu można opisać za pomocą zbioru y 1, y 2,, y n parametrów diagnostycznych. Przykładowo wypadkowa funkcja celu F 51 elementu e 51 ma postać: M F = F = y y,, y, (8) 51 51m 1 2 m= 1 m= 1 M gdzie: F 51 funkcja celu elementu podstawowego e 51 ; y 1 y 2... y n iloczyn logistyczny wartości zbioru parametrów diagnostycznych opisujących funkcji celu F 51. Jeżeli zachodzi zależność: y y,, y = 1, (9) yn Y n= 1, N 1 2 n n

Model diagnostyczny złożonego obiektu technicznego 201 to element e 51 znajduje się w stanie zdatności. Natomiast gdy: y y,, y = 0, (10) yn Y n= 1, N 1 2 to element e 51 znajduje się w stanie niezdatności. Zatem funkcja celu F 51 jest wyrażona przez jeden binarny jednobitowy sygnał wypadkowy przenoszący informację diagnostyczną o stanie elementów e 51. W podobny sposób tworzymy funkcje celu pozostałych elementów podstawowych poziomu V. Następnie wyznaczamy funkcję celu F 4 elementów poziomu IV, tzn.: 41, 42, itd., biorąc pod uwagę to, że element e 41 obejmuje elementy podstawowe e 51 i e 52 poziomu V. Przykładowa wypadkowa funkcja celu elementu e 41 ma postać: n F = F F. (11) 41 51 52 Wypadkowa funkcja celu F 41 elementu e 41 jest wyrażona przez jeden binarny, jednobitowy sygnał wypadkowy, przenoszący informację diagnostyczną o stanie elementów e 51 i e 52. Utworzony jest on z iloczynu logicznego wszystkich binarnych jednobitowych parametrów diagnostycznych, charakteryzujących funkcję celu F 41, dla której słuszne są zależności (9) i (10). Podobnie tworzymy funkcje celu pozostałych elementów poziomu IV. Mając funkcję celu elementów poziomu IV, możemy utworzyć wypadkowe funkcje celu elementów poziomu III. Przykładowo dla elementu e 31 wypadkowa funkcja celu ma postać: F = F F F F F. (12) 31 41 42 43 44 45 Funkcję celu elementów poziomu drugiego tworzymy podobnie. I tak dla elementu e 21 mamy: Wypadkowa funkcji celu F1 pojazdu określa wyrażenie: Wobec tego, jeżeli zachodzi zależność: F = F F. (13) 21 31 32 F = F F F F. (14) 1 21 22 23 24 F1 = F21 F22 F23 F24 = 1, (15) to wojskowy pojazd mechaniczny znajduje się w stanie zdatności. Natomiast, jeżeli mamy: F1 = F21 F22 F23 F24 = 0, (16) to wojskowy pojazd mechaniczny znajduje się w stanie niezdatności.

202 S. Niziński, A. Rychlik Wypadkowa funkcji celu F 1 jest opisana poprzez binarny jednobitowy sygnał wypadkowy zawierający informację o stanie wszystkich wyróżnionych elementów podstawowych poziomu V. Przedstawiony element hierarchicznego modelu diagnostycznego można wykorzystać do kontroli stanu pojazdu i lokalizacji uszkodzeń na poziomach II, III i IV. Jeżeli zajdzie zdarzenie opisane wyrażeniem (10), należy przejść do lokalizacji uszkodzeń elementów podstawowych zgrupowanych na poziomie V. Jednak do tego celu niezbędne są modele diagnostyczne i algorytmy diagnozowania elementów znajdujących się na poziomie IV. W tej pracy zdecydowano o wybraniu modelu informacyjnych elementów (obiektów) IV poziomu wojskowego pojazdu mechanicznego opracowanego na podstawie systemu lokalizacji uszkodzeń FIS (Fault Isolation System) [1]. Stan obiektu (elementu IV rzędu) określa wektor [4, 5]: W ( ) x1 t x, xm 2 = gdzie: x 1 (t), x 2 (t),, x m (t) zbiór parametrów stanu (17) Dla obiektu można określić zbiór możliwych uszkodzeń i zapisać w postaci wektora: F f1 f, fk 2 = gdzie: f 1 (t), f 2 (t),, f k (t) zbiór uszkodzeń obiektu technicznego. (18) Przyjmując, że zbiór uszkodzeń jest tożsamy ze zborem stanów niezdatności obiektu, tzn.: 0 { m( )} k( ) { }, O W w t F f t = = (19) obiektowi można przyporządkować zbiór parametrów sygnału diagnostycznego równoznaczny ze zbiorem symptomów stanu. Symptom stanu jest to miara sygnału, która zmienia się istotnie wraz ze zmianą stanu obiektu. Symptomy stanu można traktować jako wektor:

Model diagnostyczny złożonego obiektu technicznego 203 Y ( ) y1 t y, yn 2 = gdzie: y 1 (t), y 2 (t),, y n (t) zbiór parametrów sygnałów diagnostycznych. (20) Wprowadza się pojęcie wektora D wartości parametrów (symptomów) diagnostycznych: d1 d2 D =, d j d 1 (t), d 2 (t),, d j (t) zbiór wartości parametrów diagnostycznych. Na zbiorze F W i Y określamy funkcję całkowitą r taką, że: (21) gdzie: zbiór kartezjański. r: W Y D, (22) Wyrażenie (22) przyporządkowuje każdej parze uszkodzenie (stan symptom) fk = wm yn, wartość lub wartości tego symptomu występujące przy danym uszkodzeniu. Zatem model informacyjny I s obiektu można opisać wyrażeniem: Is = WY,, Dr, (23) i odwzorować w postaci tabeli 1. Tabela 1 Model informacyjny elementów IV rzędu (obiektów) wojskowego pojazdu mechanicznego Y/W w 1 w 0 1 y 1 y 2 w 0 2 w m 0 w M 0 y n D mn y N gdzie: w 1 stan zdatności obiektu; w 1 0, w 2 0,,w m 0 stany niezdatności obiektu odpowiadające e uszkodzeniom; y 1, y 2,, y n symptomy stanu.

204 S. Niziński, A. Rychlik I s jest uogólnieniem binarnej macierzy diagnostycznej, dla której zbiór wartości wszystkich symptomów stanu jest jednakowy i wynosi D y = {1, 0}. Cechy Rys. 3. Ilustracja graficzna procesu badań i oceny stanu wojskowego pojazdu mechanicznego charakterystyczne I s są następujące: dla każdego symptomu może istnieć indywidualny zbiór jego wartości; zbiór D j wartości j-tego symptomu może być wielowartościowy; dowolny element I s może zawierać zarówno jedną wartość symptomu, jak też ich podzbiory. Kolumny I s odpowiadają: pierwsza stanowi zdatności obiektu w 1, co oznacza, że wartości wszystkich symptomów znajdują się w granicach dopuszczalnych, czyli obiekt spełnia określone wymagania, zatem znajduje się w stanie zdatności; kolumny następnie odpowiadają uszkodzeniom (stanom) (f 1, w 0 1, f 2, w 0 2, ), co oznacza, że jeśli wartość choćby jednego symptomu wykracza poza dopuszczalne granice, to obiekt nie spełnia wymagań, czyli znajduje się w stanie niezdatności w 0, m-ta kolumna odpowiadająca uszkodzeniu obiektu nazywa się sygnaturą uszkodzenia i tworzy wektor wartości symptomów odpowiadających temu uszkodzeniu. Zakładamy, że dla każdego symptomu stanu istnieje tylko jedna wartość odpowiadająca stanowi zdatności (pozytywny wynik sprawdzenia) oznaczona jako 1, natomiast dla uszkodzeń (stanów) tych wartości może być więcej niż jedna. Dla najprostszych przypadków może być stosowana klasyfikacja dwustanowa, jednakowa dla wszystkich symptomów. Jeżeli: D y D m {1, 0}, (24) wtedy I s odpowiada binarnej macierzy diagnostycznej. Przyjąć można trójwarstwową ocenę symptomu (wyniku sprawdzenia): D m = {1, 0, -1}, (25) gdzie: 1 pozytywny wynik sprawdzenia, tzn. y n min < y < y n max ; 0 negatywny wynik sprawdzenia, tzn. y n < y n min ; 1 negatywny wynik sprawdzenia, tzn. y n > y nmax, y n max, y n min wartości graniczne symptomów odpowiadające stanowi zdatności.

Model diagnostyczny złożonego obiektu technicznego 205 Rys. 4. Ilustracja graficzna procesu badań i oceny stanu wojskowego pojazdu mechanicznego Trójwarstwowa klasyfikacja wyników stwarza szansę uzyskania rozróżnialności warunkowej uszkodzeń, czego nie zapewnia klasyfikacja dwuwartościowa. Można także wprowadzić wielowartościową klasyfikację wyników sprawdzeń. Ustalenie stanu obiektu może mieć miejsce w wyniku przeprowadzenia badań diagnostycznych. Należy racjonalnie zorganizować taki proces, sterować jego przebiegiem tak, aby uzyskać optymalne wyniki w sensie przyjętego kryterium. Proces badań diagnostycznych obiektu polega na wykonaniu określonego zbioru sprawdzeń i analizie uzyskanych wyników. Zrealizowanie procesu badań daje wynik, czyli diagnozę (rys. 3). Sprawdzenie jest to pomiar i ustalenie wartości parametru diagnostycznego. Do badań potrzebny jest zbiór sprawdzeń: Y = { yj}; j = 1, J. (26)

206 S. Niziński, A. Rychlik Rys. 5. Ilustracja graficzna hierarchicznego modelu diagnostycznego pojazdu mechanicznego Uporządkowany minimalny zbiór sprawdzeń diagnostycznych Ŷ nazywa się algorytmem diagnozowania obiektu: ˆ =,,,, (27) Y y11 y22 y nk gdzie: y 11, y 22,, y nk sprawdzenie wykorzystywane jako k-te w kolejności. W badaniach i ocenie elementów wojskowego pojazdu mechanicznego wyróżniono następujące fazy: kontrola stanu (zdatności) i lokalizacja uszkodzeń (rys. 4). Uproszczony algorytm budowy hierarchicznego modelu diagnostycznego i algorytmu diagnozowania wojskowego pojazdu mechanicznego Algorytm obejmuje następujące zasadnicze kroki: 1. na podstawie uzyskanej wiedzy z procesu identyfikacji dokonać dekompozycji wojskowego pojazdu mechanicznego;

Model diagnostyczny złożonego obiektu technicznego 207 2. ustalić 1, 2,, P poziomów dekompozycji pojazdu; 3. na poszczególnych poziomach dekompozycji wydzielić grupy elementów realizujących określone funkcje, na przykład: 41, 31, 21, (rys. 2); 4. ustalić zbiory elementów podstawowych (poziom V) na podstawie wybranych kryteriów, na przykład słabych ogniw (rys. 5); 5. dla elementów poziomu IV zbudować modele diagnostyczne typu informacyjnego lub binarnej macierzy diagnostycznej, tzn. ustalić: zbiór stanów; zbiór parametrów diagnostycznych; wstępnie określić związki pomiędzy stanami i parametrami diagnostycznymi typu ( 1, 0, +1) lub (0, 1); 6. określić zbiór wielkości fizycznych dostępnych pomiarowo, w tym wielowymiarowych, i na ich podstawie wyznaczyć eksperymentalnie ich miary (parametry diagnostyczne, symptomy stanu), w efekcie zbiory dostępnych sprawdzeń; 7. praktycznie zweryfikować wybrany model diagnostyczny, tzn. odwzorowanie: stany parametry diagnostyczne; 8. dokonać optymalizacji wybranych modeli diagnostycznych w aspekcie: ostatecznej liczby stanów; zminimalizowanego, uporządkowanego zbioru sprawdzeń (parametrów diagnostycznych); rozróżnialności stanów; 9. w każdym optymalnym modelu diagnostycznym poziomu IV wydzielić wszystkie zbiory niezdatności elementów podstawowych, uzyskując w efekcie słownik niezdatności (sygnatury uszkodzeń kolumny) każdego elementu podstawowego; 10. dla każdego elementu poziomu IV utworzyć gniazda diagnostyczne obejmujące (rys. 5): mierzone wielkości fizyczne; zminimalizowane, uporządkowane zbiory parametrów diagnostycznych; 11. dla każdego elementu poziomu IV na podstawie ich funkcji wyznaczyć sygnały reprezentatywne typu (0, 1); 12. na podstawie funkcji celu utworzyć sygnały reprezentatywne elementów poziomu II, II i I; 13. dla każdego elementu poziomu III, II i I utworzyć węzły diagnostyczne, do których należy dołączyć ich sygnały reprezentatywne poziomów IV, III i II; 14. iloczyn funkcji celu F 24, F 21, F 22, i F 23 tworzy sygnał reprezentatywny dla całego pojazdu mechanicznego (poziom I) przyjmując wartości: 1 pojazd zdatny, 0 pojazd niezdatny.

208 S. Niziński, A. Rychlik Uproszczony algorytm diagnozowania wojskowego pojazdu mechanicznego na podstawie opracowanego wielopoziomowego modelu diagnostycznego Algorytm obejmuje następujące kroki: 11. diagnozowanie ciągłe lub okresowe (rys. 5); 12. pomiar wybranych wartości wielkości fizycznych; 13. wyznaczenie zbioru wartości parametrów diagnostycznych; 14. porównanie wartości parametrów diagnostycznych z wartościami dopuszczalnymi (poziom IV); 15. wyznaczenie sygnałów typu ( 1, 0, 1) lub (0, 1); 16. wyznaczenie stanów zdatności w 1 lub stanów niezdatności w 0 (słownika niezdatności, sygnatur uszkodzeń) elementów V rzędu; 17. wyznaczenie sygnałów wzorcowych elementów poziomu IV; 18. wyznaczenie sygnałów wzorcowych poziomu III i II; 19. wyznaczenie sygnału wzorcowego pojazdu mechanicznego (poziom I); 10. podjęcie decyzji: jeśli sygnał wzorcowy ma wartość 1, oznacza to, że pojazd mechaniczny znajduje się w stanie zdatności; jeżeli sygnał wzorcowy ma wartość: 0, oznacza to, że pojazd znajduje się w stanie niezdatności, zatem konieczne jest zrealizowanie drugiej fazy badania stanu, tj. lokalizacji uszkodzeń; 11. lokalizacja uszkodzenia odbywa się za poziomach grup elementów II, III i IV; 12. zlokalizowanie uszkodzonych elementów podstawowych na poziomie V. 4. Podsumowanie Reasumując rozpatrzone zagadnienia dotyczące hierarchicznego wielopoziomowego modelu diagnostycznego złożonego obiektu technicznego na przykładzie wojskowego pojazdu mechanicznego, należy stwierdzić, co następuje: 1. funkcje celu wyrażone za pomocą określonego zbioru parametrów diagnostycznych zawierają informację o stanie elementów pojazdu mechanicznego; 2. wynikiem analizy diagnostycznej pojazdu mechanicznego powinna być jego dekompozycja, wykonana w taki sposób, aby uzyskać zbiory istotnych elementów podstawowych ze względu na wybrane kryteria, na przykład bezpieczeństwa; 3. hierarchiczny model diagnostyczny pojazdu mechanicznego pozwala na zbudowanie algorytmów, których wykonanie umożliwia kontrolę stanu i lokalizację uszkodzeń elementów na poziomach pośrednich i elementów podstawowych;

Model diagnostyczny złożonego obiektu technicznego 209 4. opracowanie zasady diagnozowania, hierarchiczny model diagnostyczny i algorytm diagnozowania mogą być podstawą budowy pokładowego lub pokładowo-zewnętrznego systemu diagnostycznego pojazdu mechanicznego. Artykuł wpłynął do redakcji 14.12.2009 r. Zweryfikowaną wersję po recenzji otrzymano w grudniu 2009 r. LITERATURA [1] J. M. Kościelny, Diagnostyka zautomatyzowanych procesów przemysłowych, Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2001. [2] J. R. Młokosiewicz, Metoda wielopoziomowego badania stanu obiektów technicznych i synteza systemu diagnostycznego, Wojskowa Akademia Techniczna, 1734/87, Warszawa, 1987. [3] S. Niziński, R. Michalski, Diagnostyka obiektów technicznych, Instytut Technologii Eksploatacji, Radom, 2002. [4] Sprawozdanie merytoryczne nr 48/SS/2008 z realizacji projektu badawczego T00B00531/51 nt.: Metoda diagnozowania silnika spalinowego o zapłonie samoczynnym na podstawie pomiaru momentu obrotowego w warunkach trakcyjnych, WITPiS, Sulejówek, 2008. [5] W. Kupicz, Metoda diagnozowania silnika spalinowego za pomocą momentu obrotowego w wyznaczonych warunkach trakcyjnych, rozprawa doktorska, Uniwersytet Warmińsko-Mazurski, Wydział Nauk Technicznych, Olsztyn, 2009. S. NIZIŃSKI, A. RYCHLIK Diagnostic model of a complex technical object Abstract. Modern systems of complex technical objects are based upon the rules and diagnostic models, diagnosing algorithms, methods and diagnostic equipment, and also proper technologies and operation infrastructure. Diagnostic models and diagnosing algorithms are the base of building the effective methods and diagnostic equipment. There are many diagnostic models of technical objects, such as: analytical (structural, modal and reversed), symptom (image regressive recognition, topological, diagnostic and reliable, informative). However, only a few of those models are useful in maintenance processes of complex technical objects. Therefore, there is the need to build diagnostic models of military vehicles, which will enable their application in the practical maintenance of vehicles in the operational state. There has been in existence a problem of diagnosing, prognosis and generation of the state of the complex technical objects. In the paper, a military mechanical vehicle, as: tank, infantry fighting vehicle, armoured personnel carrier, tracked armour personnel carrier was assumed as the complex technical object. There was presented a conception of a diagnostic model of such technical objects. Keywords: diagnostics of mechanical vehicles, diagnostic models, diagnosing algorithms