Instrukcja do ćwiczeń laboratoryjnych

Podobne dokumenty
Chemia środków ochrony roślin Katedra Analizy Środowiska. Instrukcja do ćwiczeń. Ćwiczenie 4

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych

Rys. 1. Chromatogram i sposób pomiaru podstawowych wielkości chromatograficznych

ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II. OznaczanieBTEX i n-alkanów w wodzie zanieczyszczonej benzyną metodą GC/FID oraz GC/MS 1

Chemia środków ochrony roślin Katedra Analizy Środowiska. Instrukcja do ćwiczeń. Ćwiczenie 2

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych

Chemia środków ochrony roślin Katedra Analizy Środowiska. Instrukcja do ćwiczeń. Ćwiczenie 5

ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II

BADANIE ZAWARTOŚCI WIELOPIERŚCIENIOWYCH WĘGLOWODORÓW AROMATYCZNYCH (OZNACZANIE ANTRACENU W PRÓBKACH GLEBY).

Wpływ ilości modyfikatora na współczynnik retencji w technice wysokosprawnej chromatografii cieczowej

ROZDZIELENIE OD PODSTAW czyli wszystko (?) O KOLUMNIE CHROMATOGRAFICZNEJ

Ćwiczenie 4 Zastosowanie metody wzorca wewnętrznego do analizy ilościowej techniką GC-FID

Ćwiczenie 1 Analiza jakościowa w chromatografii gazowej Wstęp

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych

ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1)

WYMAGANIA EDUKACYJNE

Instrukcja do ćwiczeń laboratoryjnych

Wysokosprawna chromatografia cieczowa w analizie jakościowej i ilościowej

WPŁYW ILOŚCI MODYFIKATORA NA WSPÓŁCZYNNIK RETENCJI W TECHNICE WYSOKOSPRAWNEJ CHROMATOGRAFII CIECZOWEJ

HYDROLIZA SOLI. ROZTWORY BUFOROWE

Ilościowa analiza mieszaniny alkoholi techniką GC/FID

ODNAWIALNE ŹRÓDŁA ENERGII I GOSPODARKA ODPADAMI STUDIA STACJONARNE

Jakościowe i ilościowe oznaczanie alkoholi techniką chromatografii gazowej

Jakościowa i ilościowa analiza mieszaniny alkoholi techniką chromatografii gazowej

Ćwiczenie 6 Zastosowanie destylacji z parą wodną oraz ekstrakcji ciecz-ciecz do izolacji eugenolu z goździków Wstęp

Wymagania programowe na poszczególne oceny. Chemia Kl.2. I. Kwasy

GraŜyna Chwatko Zakład Chemii Środowiska

OZNACZANIE WYBRANYCH FARMACEUTYKÓW W PRÓBACH WODY.

Identyfikacja węglowodorów aromatycznych techniką GC-MS

Paration metylowy metoda oznaczania

Instrukcja do ćwiczeń laboratoryjnych

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA

OZNACZANIE ZAWARTOŚCI MANGANU W GLEBIE

PODSTAWOWE TECHNIKI PRACY LABORATORYJNEJ: OCZYSZCZANIE SUBSTANCJI PRZEZ DESTYLACJĘ I EKSTRAKCJĘ

Oznaczanie wybranych farmaceutyków w próbach wody

Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 6-1 w PWN. Warszawa, cop.

Metoda analityczna oznaczania chlorku winylu uwalnianego z materiałów i wyrobów do żywności

Chemia Nowej Ery Wymagania programowe na poszczególne oceny dla klasy II

OZNACZENIE JAKOŚCIOWE I ILOŚCIOWE w HPLC

Spis treści. Wstęp... 9

Prof. dr hab. inż. M. Kamiński 2006/7 Katedra Chemii Analitycznej Wydział Chemiczny PG. Ćwiczenie: LC / GC. Instrukcja ogólna

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

WYKRYWANIE ZANIECZYSZCZEŃ WODY POWIERZA I GLEBY

Regulamin BHP pracowni chemicznej. Pokaz szkła. Technika pracy laboratoryjnej

2-(Dietyloamino)etanol

Ćwiczenie 1. Sporządzanie roztworów, rozcieńczanie i określanie stężeń

Instrukcja do ćwiczeń laboratoryjnych

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. CHEMIA klasa II.

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Zadanie 1. Temat. Zastosowanie chromatografii gazowej z detektorem wychwytu elektronów w analizie chlorowcopochodnych w próbkach powietrza

Identyfikacja alkoholi techniką chromatografii gazowej

K1. KONDUKTOMETRYCZNE MIARECZKOWANIE STRĄCENIOWE I KOMPLEKSOMETRYCZNE

ĆWICZENIE 2 WSPÓŁOZNACZANIE WODOROTLENKU I WĘGLANÓW METODĄ WARDERA. DZIAŁ: Alkacymetria

Analiza miareczkowa. Alkalimetryczne oznaczenie kwasu siarkowego (VI) H 2 SO 4 mianowanym roztworem wodorotlenku sodu NaOH

Ćwiczenie nr 6. Przygotowanie próbki do analizy: Ekstrakcja jednokrotna i wielokrotna. Wysalanie.

WOJEWÓDZKI KONKURS CHEMICZNY

Utylizacja i neutralizacja odpadów Międzywydziałowe Studia Ochrony Środowiska

Adypinian 2-dietyloheksylu

Oranż β-naftolu; C 16 H 10 N 2 Na 2 O 4 S, M = 372,32 g/mol; proszek lub

Wodorotlenki. n to liczba grup wodorotlenowych w cząsteczce wodorotlenku (równa wartościowości M)

Wymagania programowe na poszczególne oceny. III. Woda i roztwory wodne. Ocena dopuszczająca [1] Uczeń: Ocena dostateczna [1 + 2]

10. ALKACYMETRIA. 10. Alkacymetria

12 ZASAD ZIELONEJ CHEMII

ANALIZA OBJĘTOŚCIOWA

Ćwiczenie 3: Ocena fizykochemiczna nawozów stałych fosforowych różne formy P 2 O 5

TECHNIKA SPEKTROMETRII MAS ROZCIEŃCZENIA IZOTOPOWEGO (IDMS)-

WYMAGANIA EDUKACYJNE na poszczególne oceny śródroczne i roczne Z CHEMII W KLASIE II gimnazjum

Wymagania programowe na poszczególne oceny CHEMII kl. II 2017/2018. III. Woda i roztwory wodne. Ocena dopuszczająca [1] Uczeń:

CHROMATOGRAFIA BARWNIKÓW ROŚLINNYCH

ĆWICZENIE 4. Oczyszczanie ścieków ze związków fosforu

XXIV KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY 2016/2017

1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru

Instrukcja do ćwiczeń laboratoryjnych

Ślesin, 29 maja 2019 XXV Sympozjum Analityka od podstaw

Kryteria oceniania z chemii kl VII

Fenol, o-, m- i p-krezol metoda oznaczania

ĆWICZENIE 5 Barwniki roślinne. Ekstrakcja barwników asymilacyjnych. Rozpuszczalność chlorofilu

PRAWO DZIAŁANIA MAS I REGUŁA PRZEKORY

Zasady oceniania z chemii w klasie II w roku szkolnym 2015/2016. Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra

CHEMIA KLASA II I PÓŁROCZE

009 Ile gramów jodu i ile mililitrów alkoholu etylowego (gęstość 0,78 g/ml) potrzeba do sporządzenia 15 g jodyny, czyli 10% roztworu jodu w alkoholu e

Przedmiot CHEMIA Kierunek: Transport (studia stacjonarne) I rok TEMATY WYKŁADÓW 15 godzin Warunek zaliczenia wykłady: TEMATY LABORATORIÓW 15 godzin

Z roztworami za pan brat, nie tylko w laboratorium

KINETYKA INWERSJI SACHAROZY

2-Toliloamina metoda oznaczania

CHROMATOGRAFIA II 18. ANALIZA ILOŚCIOWA METODĄ KALIBRACJI

Chemia nieorganiczna Zadanie Poziom: podstawowy

Ćw. 5 Oznaczanie węglowodorów lekkich w powietrzu atmosferycznym

TECHNIKI SEPARACYJNE ĆWICZENIE. Temat: Problemy identyfikacji lotnych kwasów tłuszczowych przy zastosowaniu układu GC-MS (SCAN, SIM, indeksy retencji)

Transkrypt:

UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedry Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 4 WPŁYW ph ŚRODOWISKA NA LIPOFILOWOŚĆ NIKOTYNY JAKO MODELOWEJ SUBSTANCJI O CHARAKTERZE ZASADOWYM Chemiczne zagrożenia środowiska Gdańsk, 2010

4. Chemiczne zagrożenia środowiska wpływ ph środowiska na lipofilowość nikotyny 2 1. CZĘŚĆ TEORETYCZNA Zasadnicza część zanieczyszczeń chemicznych obecnych w środowisku to związki organiczne. Zarówno w przypadku oceny zdolności danej substancji do gromadzenia się w tkankach organizmów żywych, jak i podczas określania zawartości związku w określonym komponencie środowiska, należy brać pod uwagę fizykochemiczne cechy badanej substancji. Rutynowo stosowane procedury analityczne obejmują różne metody ekstrakcji analizowanych związków zarówno metodami klasycznymi (ekstrakcja ciecz ciecz, ciecz ciało stałe), jak i przy użyciu metod instrumentalnych, oferujących pracę w wysokiej temperaturze i w warunkach podwyższonego ciśnienia (np. ASE accelerated solvent extraction). Dodatkowo, częstym etapem procedury jest wzbogacanie próbki, obejmujące np. zastosowanie ekstrakcji do fazy stałej (SPE). Ze względu na fakt, iż znaczna część związków organicznych to substancje o charakterze lipofilowym, rutynowo etap ekstrakcji ogranicza się do zastosowania wybranego niepolarnego rozpuszczalnika organicznego przy założeniu, że wydajność ekstrakcji jest wysoka ze względu na znaczne powinowactwo analizowanych związków do fazy organicznej. Nieco inaczej sytuacja przedstawia się, gdy mamy do czynienia ze związkami, których właściwości kwasowo zasadowe determinują formę, w jakiej są one obecne w środowisku. Substancje wykazujące charakter kwasowy będą obecne w środowisku w formie wolnego związku i/lub w formie zjonizowanej, jako aniony odpowiednich soli. W przypadku związków o charakterze zasadowym możliwe jest występowanie analitu w postaci wolnej oraz w postaci kationu odpowiedniej soli. Przewaga jednej formy nad drugą będzie zależna od ph środowiska. Wolne związki są w przeważającej większości bardziej lipofilowe, podczas gdy formy zjonizowane hydrofilowe. Formą bardziej dostępną dla organizmów, łatwiej wchłanialną i chętniej gromadzącą się w tkankach będzie w takim przypadku substancja niezjonizowana. Zmiana ph może wtedy wywoływać znaczne różnice w przyswajalności jednej substancji chemicznej, a co za tym idzie, silnie wpływać na ewentualne efekty toksyczne, związane z narażeniem na obecność związku w środowisku. Jednocześnie, w przypadku analizy substancji o takich właściwościach, dobranie odpowiednich warunków ekstrakcji, zapewniających wyizolowanie związku w obu formach, jest w takiej sytuacji warunkiem uzyskania wiarygodnych wyników analiz ilościowych. Podstawy teoretyczne, dotyczące współczynnika podziału n-oktanol/woda i metod jego wyznaczania, zostały opisane w instrukcji do ćwiczenia 1 ("Wyznaczanie współczynnika podziału n-oktanol/woda dla kwasu octowego"). W niniejszym ćwiczeniu jako substancja modelowa zostanie zastosowana nikotyna. Wybór ten jest podyktowany faktem, iż znaczna liczba zanieczyszczeń środowiska wykazuje podobne

4. Chemiczne zagrożenia środowiska wpływ ph środowiska na lipofilowość nikotyny 3 właściwości kwasowo-zasadowe, a co za tym idzie, zachowuje się w zbliżony sposób podczas zmian warunków środowiska. Dotyczy to m. in. związków aminowych, a także znacznej liczby farmaceutyków i pestycydów, posiadających w swej budowie np. heterocykliczny atom azotu. Dodatkowo, interesującą właściwością nikotyny jest jej rozpuszczalność (w formie wolnej) zarówno w wodzie, jak i w niepolarnych rozpuszczalnikach organicznych. Nikotyna jest alkaloidem pochodzenia roślinnego, występującym w znacznej ilości głównie w roślinach z rodzaju Nicotiana (np. tytoń szlachetny N. tabacum, tytoń bakun N. rustica). Struktury nikotyny oraz związków, często stosowanych jako wzorce w jej analizie, zostały przedstawione na Rysunku 1. Poza zastosowaniem jako używka, nikotyna bywa wykorzystywana jako substancja aktywna bądź dodatek do komercyjnie dostępnych insektycydów (zwykle w postaci wolnej zasady lub wodnego roztworu siarczanu nikotyny). Mechanizm owadobójczego działania nikotyny polega na naśladowaniu acetylocholiny głównego neurotransmitera w systemie nerwowym owadów. Nikotyna wiąże się z tym samym receptorem, co acetylocholina, przy czym w odróżnieniu od neurotransmitera czyni to trwale, gdyż jest odporna na działanie esterazy acetylocholinowej, przerywającej działanie przekaźnika. W efekcie następuje bardzo silna stymulacja układu nerwowego, która prowadzi do drgawek, a następnie paraliżu i śmierci owada. Ze względu na identyczny mechanizm toksyczności nikotyny u człowieka i innych ssaków, użycie tego związku jako pestycydu ma ograniczony zasięg i wymaga znacznej ostrożności. Zatrucie nikotyną jest możliwe w wyniku jej wchłonięcia przez układ oddechowy (nikotyna w formie wolnej zasady jest stosunkowo lotnym związkiem, toteż zatrucia tego typu zdarzały się głównie podczas używania pestycydów zawierających wolną nikotynę), przez skórę lub oczy (głównie przy stosowaniu pestycydów, także przy zbiorze tytoniu, lub w wyniku wypadku w laboratorium). Wchłanianie przez układ pokarmowy jest mało intensywne ze względu na niskie ph panujące w żołądku (przez co dominuje nikotyna w formie hydrofilowej soli). Rysunek 1. Wzory strukturalne (od lewej): nikotyny, 2,3'-dipirydylu, 2,4'-dipirydylu oraz 4,4'- dipirydylu.

4. Chemiczne zagrożenia środowiska wpływ ph środowiska na lipofilowość nikotyny 4 Ze względu na właściwości kwasowo-zasadowe, nikotyna może występować zarówno w formie wolnej zasady, jak i soli. Nikotyna w formie wolnej jest oleistą cieczą, rozpuszczalną wprawdzie zarówno w niepolarnych rozpuszczalnikach organicznych, jak i w wodzie, ale o zauważalnie lipofilowym charakterze (log P = 1,2; można ją zatem zaklasyfikować jako substancję średnio lipofilową). Sole nikotyny są zwykle substancjami stałymi, dobrze rozpuszczalnymi w wodzie i nierozpuszczalnymi w większości związków organicznych. Forma, w jakiej występuje nikotyna, jest ściśle uzależniona od ph środowiska. W roztworach silnie zasadowych obecna jest wolna nikotyna, w kwaśnych zaś jej odpowiednia sól (patrz Rysunek 2). Zależnie od warunków, protonowanie nikotyny może zachodzić zarówno na atomie azotu w pierścieniu pirydylowym, jak pirolidylowym, przez co możliwe jest powstawanie soli zarówno 'pojedynczych', jak i 'podwójnych'. Zarówno wolna nikotyna, jak i jej sole są obecne przy ph zbliżonym do obojętnego, przy czym przeważa forma soli. Sytuacja odwrotna ma miejsce przy ph około 9. Obecność nikotyny w środowisku może wynikać z jej zastosowania jako pestycydu lub dodatku do pestycydu (zwykle w formie soli), a także z zanieczyszczenia w wyniku przerobu tytoniu lub niewłaściwej utylizacji roślin i produktów tytoniowych. Ze względu na niewielką trwałość, nie jest poważnym zagrożeniem w środowisku, zaś analizy ograniczają się do badania środowiska pracy (w przypadku, gdy w miejscu pracy dozwolone jest palenie tytoniu), próbek żywności oraz próbek medycznych w przypadku zatrucia tym związkiem. W niniejszym ćwiczeniu nikotyna jest wykorzystywana jako związek modelowy, służący do oszacowania, w jakim zakresie ph substancje o zbliżonej budowie będą najbardziej przyswajalne dla organizmów żywych. Jednocześnie, uzyskane wyniki mogą być przydatne do opracowania metodyki ekstrakcji i analizy związków o zbliżonym charakterze. Podobną procedurę, po jej dostosowaniu, można zastosować przy oznaczaniu niektórych pestycydów i farmaceutyków. Także zastosowanie związków heterocyklicznych (np. pochodnych pirydyny) w laboratoriach oraz syntezach na skalę przemysłową prowadzi do ich obecności w środowisku i rodzi konieczność ich oznaczania w próbkach o różnym charakterze. Rysunek 2. Schemat przedstawiający tworzenie się soli nikotyny w środowisku kwaśnym.

4. Chemiczne zagrożenia środowiska wpływ ph środowiska na lipofilowość nikotyny 5 Możliwe są dwie strategie ekstrakcji nikotyny w celu analizy. Pierwszy sposób, gdy analizie można poddać roztwór wodny, polega zwykle na zastosowaniu rozcieńczonego roztworu kwasu, np. siarkowego (VI). Metoda ta jest przydatna, gdy analiza ma zostać wykonana np. techniką wysokosprawnej chromatografii cieczowej (HPLC), a w wyniku jej zastosowania otrzymujemy ekstrakt zawierający sole nikotyny. Jeśli bardziej odpowiedni jest roztwór w rozpuszczalniku organicznym (np. jak w niniejszym ćwiczeniu przy zastosowaniu chromatografii gazowej GLC), stosuje się ekstrakcję w dwóch niemieszających się fazach, z których jedna jest roztworem wodnym o odczynie silnie zasadowym (np. wodorotlenku sodu, roztwór amoniaku), druga zaś rozpuszczalnikiem organicznym (chloroform, chlorek metylenu, eter dietylowy, itd.). Dobrze rozpuszczalne w wodzie sole alkaloidów przechodzą do warstwy wodnej, gdzie ze względu na ph środowiska, ulegają przekształceniu do wolnych zasad. Te z kolei, ze względu na znaczną lipofilowość, ulegają ekstrakcji do warstwy organicznej, która po osuszeniu może zostać poddana analizie. Związki o właściwościach zbliżonych do nikotyny, jeśli znajdą się w glebie lub w wodach powierzchniowych, będą ulegały przekształceniu do odpowiednich soli, jeśli tylko odczyn danego komponentu środowiska będzie kwaśny (co często jest spotykane). W takim przypadku, ekstrakcja przy zastosowaniu tylko rozpuszczalnika organicznego wyizoluje jedynie tę część substancji, która występuje w formie wolnej. Układ chlorek metylenu woda gorzej niż oktanol woda odwzorowuje naturalne bariery biologiczne, jednak ze względu na stosowaną metodę analityczną chlorek metylenu jest bardziej odpowiednim rozpuszczalnikiem. Stosowaną w niniejszym ćwiczeniu techniką analizy nikotyny jest chromatografia gazowa, nie będą zatem omawiane przykłady zastosowania innych technik analitycznych (szczególnie przydatna jest także metoda HPLC). Warunki rutynowych analiz nie odbiegają znacznie od stosowanych powszechnie w przypadku związków organicznych. Stosuje się zwykle kolumny niepolarne (typu DB-1, DB-5) oraz średnio polarne (np DB-1701), przy czym, ze względu na stosunkowo polarny charakter analitu, na kolumnach o większej polarności można uzyskać nieco lepsze rezultaty. Zależnie od stężenia związku w matrycy, stosowany jest detektor uniwersalny (zazwyczaj płomieniowo-jonizacyjny FID) lub selektywny detektor azotowo-fosforowy (NPD), wykazujący większą czułość na związki azotu i fosforu niż detektor FID. Nikotyna jest związkiem dość lotnym, w związku z czym stosuje się zwykle temperatury analiz w granicach od 80 do 250 C. Analizę ilościową zwykle przeprowadza się metodą wzorca wewnętrznego (patrz następny rozdział), co rodzi konieczność dobrania związku o zbliżonych właściwościach. Dodatkowo, jeśli stosujemy detektor płomieniowo-jonizacyjny, wskazane jest, aby współczynnik odpowiedzi nikotyny względem wzorca był możliwie zbliżony do jedności. Struktury proponowanych wzorców

4. Chemiczne zagrożenia środowiska wpływ ph środowiska na lipofilowość nikotyny 6 zostały przedstawione na Rysunku 1, natomiast na Rysunku 3 przedstawiono chromatogram uzyskany podczas analizy roztworu zawierającego równe ilości nikotyny oraz 4,4'-dipirydylu. Związek ten ma zbliżone do nikotyny właściwości, a współczynnik odpowiedzi nikotyny wobec tej substancji wynosi w przybliżeniu 1 (± 5%, co odpowiada w zasadzie błędowi analizy). Z tego względu, 4,4'-dipirydyl zostanie zastosowany jako wzorzec w niniejszym ćwiczeniu. Rysunek 3. Chromatogram gazowy mieszaniny zawierającej równe ilości nikotyny i 4,4'-dipirydylu. Detektor FID nie reaguje jednakowo na takie same masy różnych substancji. Aby otrzymane wyniki analiz ilościowych odpowiadały rzeczywistości, wprowadza się współczynniki odpowiedzi (korekcyjne) f. Współczynnik korekcyjny jest liczbą, przez którą należy pomnożyć powierzchnię piku, aby uzyskać wartość wprost proporcjonalną do masy związku. Wartości te ustala się wobec głównego składnika próbki lub stosowanego wzorca (dla tego związku przyjmujemy f = 1). W takim przypadku: Stąd: m S m W = f Y S Y W (1) f = m S Y W m W Y S (2)

4. Chemiczne zagrożenia środowiska wpływ ph środowiska na lipofilowość nikotyny 7 gdzie: m S i m W oznaczają masę substancji badanej i wzorca, f współczynnik odpowiedzi substancji, Y S i Y W powierzchnie lub wysokości pików substancji i wzorca. Różnice we wskazaniach detektora FID dla różnych substancji można zaobserwować, analizując roztwór zawierający równe masy tych substancji. Metoda wzorca wewnętrznego jest najbardziej rozpowszechnioną i dającą najbardziej wiarygodne wyniki metodą analizy ilościowej w chromatografii gazowej. Polega na dodaniu do próbki określonej ilości wzorca wewnętrznego, który nie jest jednym z analizowanych związków. Warunkiem zastosowania danej substancji jako wzorca jest uzyskanie rozdziału tej substancji i analitów podczas analizy chromatograficznej. Jeśli znamy współczynniki odpowiedzi badanych związków wobec wzorca, w celu obliczenia ilości analitów w próbce stosujemy wzór (1). Stąd, masa substancji oznaczanej jest równa: m S = f Y S m W Y W (3) Jeśli współczynniki odpowiedzi nie są znane, zwykle zakłada się, że wartość współczynnika wynosi 1 i wzór upraszcza się do postaci: m S = Y S m W Y W (4) 2. WYKONANIE ĆWICZENIA PROSZĘ ZACHOWAĆ OSTROŻNOŚĆ PODCZAS PRACY Z ROZTWORAMI NIKOTYNY (RĘKAWICZKI!). ZWIĄZEK W POSTACI WOLNEJ JEST SILNIE TRUJĄCY I WCHŁANIA SIĘ PRZEZ SKÓRĘ! 1. W probówkach miarowych 25 cm 3 umieścić po 10 ml roztworów nikotyny o podanym ph, dodać po 10 ml chlorku metylenu, zatkać korkiem i wytrząsać przez 2-3 minuty, po czym odstawić do rozdzielenia faz. 2. Warstwę organiczną (dolną) przenieść za pomocą pipety Pasteura do kolby stożkowej na 50 ml, dodawać bezwodny siarczan sodu, aż przestanie się zbrylać, po czym przesączyć do kolby okrągłodennej na 50 ml, dodać 100 μl roztworu wzorca za pomocą strzykawki 100 μl, odparować na odparowywaczu obrotowym do objętości około 1 ml i przenieść do

4. Chemiczne zagrożenia środowiska wpływ ph środowiska na lipofilowość nikotyny 8 zakręcanej butelki o pojemności 2 ml. 3. Próbki analizować według wskazań prowadzącego zgodnie z następującymi warunkami: chromatograf gazowy Trace 2000 (Thermo Scientific) z detektorem FID kolumna Rtx-5 (Restek) o długości 30 m, średnicy wewnętrznej 0,25 mm oraz grubości warstwy filmu fazy stacjonarnej 0,25 μm gaz nośny argon ze stałym przepływem 1,5 ml min -1 temperatura dozownika 250 C, dzielnik przepływu (spliter) 1:25 temperatura detektora FID 250 C temperatura kolumny: 100 C-200 C z narostem temperatury 8 C min -1 3. OPRACOWANIE WYNIKÓW 1. Na podstawie powierzchni sygnałów chromatograficznych nikotyny oraz wzorca obliczyć zawartość nikotyny w analizowanych próbkach, korzystając z wzoru (4). 2. Znając rzeczywistą zawartość nikotyny w próbkach wody, obliczyć całkowitą zawartość wolnej nikotyny dla każdej próbki i wykreślić zależność zawartości wolnej nikotyny (w % całkowitej ilości) od ph roztworu. 3. Na podstawie wyników ocenić, w jakim zakresie ph ekstrakcja pozwala wyizolować więcej niż 90% obecnej w wodzie nikotyny. 4. Krótko przedyskutować dostępność nikotyny dla organizmów wodnych w zależności od ph środowiska. 4. SZKŁO I ODCZYNNIKI chlorek metylenu destylowany, chlorek metylenu do mycia strzykawki, roztwór 4,4'- dipirydylu w chlorku metylenu (wzorzec wewnętrzny, stężenie 1 mg ml -1 ), bezwodny siarczan sodu wodne roztwory nikotyny (10 mg dm -3 ) o ph 6; 7; 8; 9; 10; 11 probówka miarowa 25 ml z korkiem 6 szt. kolba stożkowa 50 ml 6 szt. kolba okrągłodenna 50 ml 6 szt. lejek mały 6 szt. cylinder miarowy 10 ml 7 szt. butelki zakręcane 2 ml 6 sztuk

4. Chemiczne zagrożenia środowiska wpływ ph środowiska na lipofilowość nikotyny 9 strzykawka 100 μl 1 szt. strzykawka 10 μl 1 szt. sączki folia aluminiowa łyżka plastikowa 1 szt. pipety Pasteura podkładki pod kolby okrągłodenne 6 szt. ręczniki papierowe rękawiczki 5. ZAKRES WYMAGANYCH WIADOMOŚCI Podstawowe pojęcia z chromatografii gazowej (zawarte w niniejszej instrukcji oraz w instrukcji do przedmiotu ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ W ŚRODOWISKU, TEORIA: "Chromatografia gazowa", dostępna pod linkiem: http://www.chem.univ.gda.pl/analiza/dydaktyka/slady_gc.pdf) lipofilowość i współczynnik podziału kwasy i zasady, dysocjacja, stała dysocjacji kwasów i zasad, ph 6. LITERATURA Bielański A., Chemia ogólna i nieorganiczna, PWN, Warszawa 1976 (i nowsze wydania) LUB: Bielański A., Podstawy chemii nieorganicznej, Tom I, PWN, Warszawa 2002. Mastalerz P., Chemia organiczna, PWN, Warszawa 1986 (i późniejsze wydania) Witkiewicz Z., Hetper J., Chromatografia gazowa, WNT, Warszawa 2001 Alloway B.J., Ayres D.C., Chemiczne podstawy zanieczyszczania środowiska, PWN, Warszawa 1999