National Project POIG.01.01.02-00-016/08 Model agroenergy complexes as an example of distributed cogeneration based on a local renewable energy sources in the Innovative Economy Operational Programme 2007-2013 YIELD OF BIOMASS AND BIOGAS PROFITABILITY OF RAW MATERIAL FROM SPECIAL PURPOSE ENERGETIC CROPS CULTIVATION mgr inż. T. Sałek prof. dr hab. W. Budzyński dr W. Truszkowski Faculty of Environmental Management and Agriculture University of Warmia and Mazury in Olsztyn
National Project POIG.01.01.02-00-016/08 Model agroenergy complexes as an example of distributed cogeneration based on a local renewable energy sources in the Innovative Economy Operational Programme 2007-2013 Methods and materials Field experiments were: conducted during the years 2008-2010 located on the fields of the Production - Experimental Enterprise in Bałcyny in Warmińsko-Mazurskie voivodship (those years were average as concerns the thermal and humidity conditions)
Crops in experiment: National Project POIG.01.01.02-00-016/08 Model agroenergy complexes as an example of distributed cogeneration based on a local renewable energy sources in the Innovative Economy Operational Programme 2007-2013 Methods and materials 1. maize (Zea mays L.) 2. sweet sorghum (Sorghum saccharatum L.) 3. purple clover (Trifolium pratense L.) 4. lucerne (Medicago sativa L.) cultivated in the mix with timothy grass (Phleum pratense L.) 5. goats rue (Galega orientalis L.) 6. rogue cock s foot (Dactylis glomerata L.) 7. timothy grass (Phleum pratense L.) 8. miscanthus giganteus (Miskanthus x giganteus Greef et Deu) 9. amur silver grass (Miskanthus sacharaiflorus Hack) 10. sida hermaphrodita (Sida hermaphrodita L.)
Maize Sweet sorghum Purple clover + timothy grass Lecerne cultiwated + timothy grass Goats rue Rogue cock s foot Timothy grass Miscanthus giganteus Amur silvergrass Sida hermaphrodita National Project POIG.01.01.02-00-016/08 Model agroenergy complexes as an example of distributed cogeneration based on a local renewable energy sources in the Innovative Economy Operational Programme 2007-2013 Expenditure of cumulated energy and costs amounted of cultivation Species Energy expenditure and costs Energy edition in general (MJ ha -1 ) 23 914 21 364 22 195 19 885 16 694 16 343 16 343 11 556 11 489 11 489 Direct costs (PLN ha -1 ) 2 941 2 547 2 121 2 031 1 879 2 200 2 200 2 420 2 520 1 955
Lecerne cultiwated + timothy grass Maize Purple clover + timothy grass Sweet sorghum Goats rue Miscanthus giganteus Rogue cock s foot Timothy grass Sida hermaphrodita Amur silvergrass National Project POIG.01.01.02-00-016/08 Model agroenergy complexes as an example of distributed cogeneration based on a local renewable energy sources in the Innovative Economy Operational Programme 2007-2013 Yields of fresh mass (Mg ha -1 )of energetic plants (2008-2010) Species Harvest years 2008 47,2 52,4 58,2 35,2 - - 38 29,3 - - 2009 78,5 71,4 62,8 64,8 41,6 45,7 43,2 35,5 30,5 32,5 2010 52,5 51,4 44,2 63 52,9 48,6 40,4 42,4 31,4 21,7 average 59,4 58,4 55,1 54,3 47,3 47,2 40,5 35,7 31,0 27,1
Ranking of energetic plants according to the organic dry mass yield (in homogenous groups) 19,83 National Project POIG.01.01.02-00-016/08 Model agroenergy complexes as an example of distributed cogeneration based on a local renewable energy sources in the Innovative Economy Operational Programme 2007-2013 20,00 18,00 16,52 16,00 14,00 12,00 10,00 12,43 10,92 10,45 9,51 9,40 9,30 8,18 8,11 8,00 6,00 4,00 2,00 0,00 Maize Miscanthus giganteus Lecerne cultiwated + timothy grass Sida hermaphrodita Sweet sorghum Purple clover + timothy grass Rogue cock s foot Amur silvergrass Timothy grass Goats rue
400 350 381,96 National Project POIG.01.01.02-00-016/08 Model agroenergy complexes as an example of distributed cogeneration based on a local renewable energy sources in the Innovative Economy Operational Programme 2007-2013 Cumulated energy field in the biomass obtained (in homogenous groups) 320,42 300 250 200 245,04 224,08 214,2 197,06 186,67 179,86 169,19 165,68 150 100 50 0 Kukurydza zwyczajna Maize Miskant olbrzymi Miscanthus giganteus Lecerne cultiwated + timothy grass Lucerna siewna + tymotka łąkowa Purple clover + timothy grass Koniczyna łąkowa + tymotka łąkowa Ślazowiec pensylwański Sida hermaphrod ita Sorgo cukrowe Sweet sorghum Kupkówka pospolita Rogue cock s foot Miskant cukrowy Amur silvergra ss Rutwica wschodnia Goats rue Tymotka łąkowa Timothy grass
Maize Sweet sorghum Purple clover + timothy grass Lecerne cultiwated + timothy grass Goats rue Rogue cock s foot Timothy grass Miscanthus giganteus Amur silvergrass Sida hermaphrodita National Project POIG.01.01.02-00-016/08 Model agroenergy complexes as an example of distributed cogeneration based on a local renewable energy sources in the Innovative Economy Operational Programme 2007-2013 Selected characteristics of the silage as the biogas substrate Species Specification Dry mass (%) 28,3 19,5 16,0 21,4 19,4 25,7 22,9 33,1 46,2 28,1 Ogranic dry mass (% d.m.) 95,3 93,9 76,8 91,3 85,3 91,6 89,9 95,4 95,1 93,3 Raw asg (% d.m.) 4,7 6,1 23,2 8,7 14,7 8,4 10,1 4,6 4,9 6,7 Chemical oxygen demand 1,39 1,48 1,27 1,43 1,25 1,36 1,35 1,32 1,61 1,26 (g O 2 /g d.m.) Nitrogen (% d.m.) 1,16 1,13 2,90 2,08 2,45 1,16 1,24 0,65 0,74 0,52
Maize Miscanthus giganteus Sweet sorghum Amur silvergrass Goats rue Lucerne cultivated + timothy grass Timothy grass Purple clover + timothy grass Rogue cock s foot Sida hermaphrodita National Project POIG.01.01.02-00-016/08 Model agroenergy complexes as an example of distributed cogeneration based on a local renewable energy sources in the Innovative Economy Operational Programme 2007-2013 Biogas profitability of energetic plants biomass (2008-2010) Species Discriminants biogas yield: (Ndm 3 /kg o.d.m.) (Nm 3 ha-1 ) 311 6 172 283 4 675 328 3 419 327 3 041 257 2 083 165 2 049 242 1 980 204 1 943 156 1 472 110 1 201 content CH 4 (%) 72 62 73 68 69 54 74 56 74 52 methane yield: (Ndm 3 CH 4 /kg o.d.m.) (Nm 3 CH 4 ha -1 ) time for obtaining 90% of biogas (number of fermentation days) 223 175 239 221 176 91 179 116 115 4 425 2 891 2 491 2 055 1 426 1 130 1 464 1 105 1 085 28 28 33 29 31 25 32 16 19 17 58 633
biogas yield (Ndm 3 kg -1 o.d.m. National Project POIG.01.01.02-00-016/08 Model agroenergy complexes as an example of distributed cogeneration based on a local renewable energy sources in the Innovative Economy Operational Programme 2007-2013 Biogas profitability curve for substrates of biomass from one-year and multiannual grasess with raw C4 photosythesis sweet sorghum amur silvergrass maize miscanthus gigantheus fermentation time (days)
National Project POIG.01.01.02-00-016/08 Model agroenergy complexes as an example of distributed cogeneration based on a local renewable energy sources in the Innovative Economy Operational Programme 2007-2013 Conclusion The comparison of the 3-year average yields of fresh mass of 10 species of agricultural crops per 1 ha allows concluding that: the lucerne in mixed cultivation with timothy grass, common maize, purple clover with timothy grass and sorghum were the most productive; in the ranking according to the criterion of organic dry mass yield common maize, miscanthus giganteus, lucerne with timothy grass, sida hermaphrodita and sorghum had no competitors; the yield of biogas from the biomass of the studied species was diversified highly (even 4-5 fold) and, unfortunately, rather low. The highest level of biogas as well as biomethane yield per hectare was offered by grasses with C 4 photosynthesis. the possibility of expanding the choice of species of high biogas profitability plants beyond the C 4 type grasses (common maize, miscanthus giganteus, sorghum) are rather limited (the choice of taxa for special cultivation of biomass for biogas production requires further evaluations according to numerous criteria).
National Project POIG.01.01.02-00-016/08 Model agroenergy complexes as an example of distributed cogeneration based on a local renewable energy sources in the Innovative Economy Operational Programme 2007-2013 References 1. Ardle J. 2008. Bambusy i trawy. Solis Warszawa 2008; ss 160. 2. Banasiak J., Detyra J., Hutnik E., Szewczyk A., Zimny L. Agrotechnologia. Wydawnictwo Naukowe PWN, Warszawa Wrocław 1999. 3. Bassam Nasir El, 1998. Energy Plant Species: their use and impact in environment and development. James & James/Earthscan, London, ss 334. 4. Borkowska H., Styk B. 2006. Ślazowiec pensylwański (Sida hermafrodita Rusby) uprawa i wykorzystanie. Wyd. AR Lublin. ss 69. 5. Braun R. 2005. Biogas and bioenergy system development toward bio-rafineries. Trends in a central European context. Baltic Biorafinery Conference, Esbjerg, Denmark. 6. Budzyński W., Szczukowski S., Tworkowski J. 2009. Wybrane problemy z zakresu produkcji roślinnej na cele energetyczne. I Kongres Nauk Rolniczych Nauka Praktyce. s 77-87. 7. Buraczewski G. 1989. Fermentacja metanowa. PWN, Warszawa. 8. Cebula J., Latocha L. 2005. Biogazwnie rolnicze elementem gospodarczego wykorzystania pozostałości z produkcji rolniczej oraz rozwoju rozproszonej energetyki odnawialnej. Mat. Sem. Biogazownie rolnicze elementem gospodarczego wykorzystania biomasy z produkcji rolniczej, ochrony środowiska naturalnego oraz rozwoju rozproszonej energetyki odnawialnej. Mikołów. 9. Curkowski A., Mroczkowski P., Oniszk-Poplawska A., Wiśniewski G. 2009. Biogaz rolniczy - produkcja i wykorzystanie. Mazowiecka Agencja Energetyczna, Warszawa 10. Czyż H., Dawidowski B. 2003. Surowce odnawialne i ich wykorzystanie. Materiały z konferencji Energia odnawialna na Pomorzu Zachodnim, Szczecin 2003; 163-172. 11. Głodek E., Kalinowski W., Janecka L., Werszler A., Garus T., Kościanowski J. 2007. Pozyskanie i energetyczne wykorzystanie biogazu rolniczego. Cz. I proces technologiczny. Opole; s 2-32. 12. Gołaszewski J. 2010. Biogazownia rolnicza. Cz. I Biogazownie dla Pomorza. [w:] Ekoenergetyka zagadnienia technologii, ochrony środowiska i ekonomiki. s 10-21. 13. Kościk B. (red.) 2003. Rośliny energetyczne. Wyd. Akademi Rolniczej w Lublinie, Lublin 2003; ss 146. 14. Krzywy E., Iżewska A., Jeżowski S. 2003. Ocena możliwości wykorzystania komunalnego osadu ściekowego do nawożenia trzciny chińskiej (MIskanthus sachariflorus (Maxim.) Hack). Zesz. Probl. Post. Nauk Roln. 2003 z. 494; s 225-232. 15. Majtkowska G., Majtkowski W. 2005. Trawy energetyczne. W: Trawy i rośliny motylkowe drobnonasienne. Wydawnictwo wspólne Instytut Hodowli i Aklimatyzacji Roślin i Agro Serwis Warszawa; s 94-97. 16. Michalski T. 2002. Kukurydza źródłem surowca dla różnych gałęzi przemysłu. Wieś Jutra. Nr 6 (47); s. 13-15. 17. Oechsner H., Lemmer A., Neuger C. 2003. Feldfrüchte als Gärsubstra in Biogazanlagen, Landtechnik 3, s 146-147. 18. Podkówka W. 2007. Biopaliwa dziś i jutro. Przegląd Hodowlany. Nr 9. s 21-25. 19. Podkówka Z., Podkówka W. 2010. Substraty dla biogazowi rolniczych. Agro Serwis Warszawa. ss 73. 20. Podleśny J. 2005. Trawa Miskanthus x giganteus jej charakterystyka oraz możliwości wykorzystania. Zesz. Probl. Post. Nauk Roln. 2/2005; s 41-51. 21. Sawicki B., Kościk K. 2003. Trawy i zbiorowiska trawiaste. W Kościk Bogdan (red.) 2003. Rośliny energetyczne. Wyd. Akademi Rolniczej w Lublinie, Lublin 2003; s 111-135. 22. Schattauer A., Weiland P. 2010. Podstawy w zakresie wiedzy o fermentacji beztlenowej. W: Biogaz produkcja i wykorzystanie. Institute für Energetik Und Umwelt. s 5-22.