Dolna stacja. Zadanie 1. (0 1) Jak długo trwa przejazd kolejki od górnej stacji do punktu K? Wybierz właściwą odpowiedź spośród podanych.

Podobne dokumenty
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA 22 KWIETNIA Godzina rozpoczęcia: 11:00. Czas pracy: do 135 minut

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY

UZUPEŁNIA ZESPÓŁ NADZORUJĄCY miejsce na naklejkę z kodem

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis 24 marca 2012 Czas pracy: 90 minut

PESEL. 1. Rozwiązania wszystkich zadań zapisuj na kartach odpowiedzi, pamiętając o podaniu numeru zadania.

Klasa 3.Graniastosłupy.

liczba celnych rzutów Zadanie 14. (0 1) Ilu chłopców wykonało co najmniej 3 celne rzuty? Wybierz właściwą odpowiedź spośród podanych.

Test na koniec nauki w klasie trzeciej gimnazjum

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL

PRÓBNY EGZAMIN GIMNAZJALNY

Ile takich samych butelek wody należy dolać do dzbanka, aby sok stanowił 25% napoju? Wybierz odpowiedź spośród podanych.

Treści nauczania wymagania szczegółowe

14:00 15:00 16:00. Godzina Turysta A. Godzina. Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F jeśli jest fałszywe.

SPRAWDZIAN NR 1. Suma długości krawędzi prostopadłościanu o wymiarach 4 cm x 6 cm x 10 cm jest równa. A. 20 cm B. 40 cm C. 60 cm D.

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

Informacje do zadań 1. i 2. W tabeli przedstawiono informacje dotyczące wieku wszystkich uczestników obozu narciarskiego.

PRÓBNY EGZAMIN GIMNAZJALNY

Sprawdzian całoroczny kl. II Gr. A x

WOJEWÓDZTWO LUBUSKIE, WIELKOPOLSKIE, ZACHODNIOPOMORSKIE

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM. Etap Wojewódzki

PRÓBNY EGZAMIN GIMNAZJALNY

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015

Dla każdej własności zaznacz litery przyporządkowane trójkątom posiadającym tę własność. (rysunek powyżej) A/ B/ C/ D

Zadanie 1. (0 1) Cena okularów bez promocji wynosi 240 zł. Ile zapłaci za te okulary klient, który ma 35 lat? Wybierz odpowiedź spośród podanych.

13:00 13:30 14:00 14:30 15:00 15:30 godzina. Które z poniższych zdań jest fałszywe? Wybierz właściwą odpowiedź spośród podanych.

SPIS TREŚCI. PIERWIASTKI 1. Pierwiastki Działania na pierwiastkach Działania na pierwiastkach (cd.) Zadania testowe...

Praca kontrolna nr 3, listopad 2018 termin oddania pracy do ,( ) ma cyfrę 6 na dziewiątym miejscu po przecinku?

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 5 marca 2015 r. zawody III stopnia (wojewódzkie)

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne)

OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH

Czy pamiętasz? Zadanie 1. Rozpoznaj wśród poniższych brył ostrosłupy i graniastosłupy.

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015

ARKUSZ II

XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY

Matematyka. Zadanie 1. Zadanie 2. Oblicz. Zadanie 3. Zadanie 4. Wykaż, że liczba. 2 2 jest podzielna przez 5. Zadanie 5.

PRÓBNY EGZAMIN GIMNAZJALNY

Zadanie 2. (0 1) Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F jeśli jest fałszywe.

WOJEWÓDZKI KONKURS MATEMATYCZNY

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie

Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON. Kopiowanie w całości lub we fragmentach bez pisemnej zgody wydawcy zabronione.

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Listopad 2018 Matematyka

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM

EGZAMIN ÓSMOKLASISTY MATEMATYKA

E G Z A M I N P R Ó B N Y nr 1 Grupa B Matematyka wokó nas. Klasa 3

Sprawdzian 2. MATEMATYKA. Przed próbną maturą. (poziom podstawowy) Czas pracy: 90 minut Maksymalna liczba punktów: 26. Imię i nazwisko ...

ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2017/2018 ETAP TRZECI

WYPEŁNIA KOMISJA KONKURSOWA. Nr zadania Razem Liczba punktów możliwych do zdobycia

1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach.

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

PRÓBNY EGZAMIN ÓSMOKLASISTY

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 13 Zadania stereometria

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY

1 Odległość od punktu, odległość od prostej

MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019

ARKUSZ VIII

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybierasz odpowiedź FP:

Powodzenia! Zadanie 1 (0-1) Średnia arytmetyczna liczb a, b, c, wynosi 15. Średnia liczb a + 7, b + 3, c + 8 wynosi:

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019

Klasówka gr. A str. 1/3

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla

WYPEŁNIA KOMISJA KONKURSOWA

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY

IV WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

WOJEWÓDZKI KONKURS MATEMATYCZNY

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019

Nazwisko i imię.. PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

PROBNY EGZAMIN GIMNAZJALNY

XIV WOJEWÓDZKI KONKURS MATEMATYCZNY

MATEMATYKA KWIECIEŃ miejsce na naklejkę z kodem. dysleksja EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA

SPRAWDZIAN NR Oceń prawdziwość zdania. 2. Zaznacz poprawną odpowiedź. 3. Na rysunkach przedstawiono dwie bryły. Nazwij każdą z nich.

Egzamin ósmoklasisty od roku szkolnego 2018 / Matematyka. Przykładowy arkusz egzaminacyjny (EO_6) Czas pracy: do 150 minut

PRÓBNY EGZAMIN GIMNAZJALNY

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH

Transkrypt:

Informacje do zadań 1. i 2. Każda z dwóch kolejek górskich przebywa drogę 150 metrów w ciągu minuty. Na schemacie zaznaczono niektóre długości trasy pokonywanej przez kolejki. Górna stacja 750 m 120 m K? Dolna stacja Zadanie 1. (0 1) Jak długo trwa przejazd kolejki od górnej stacji do punktu K? Wybierz właściwą odpowiedź spośród podanych. A. 5 minut B. 5 minut i 8 sekund C. 5 minut i 48 sekund D. 6 minut Zadanie 2. (0 1) Z górnej stacji kolejka wyjeżdża o 1 minutę wcześniej niż z dolnej. Kolejki równocześnie wjeżdżają na pętlę mijania. Długość trasy kolejki od dolnej stacji do punktu K jest równa A. 240 m B. 450 m C. 600 m D. 900 m Zadanie 3. (0 1) Na osi liczbowej liczba równa wartości wyrażenia arytmetycznego 1 5 6 0,5 między A. 1 i 0,5 B. 0,5 i 0 C. 0 i 0,5 D. 0,5 i 1 znajduje się Strona 2 z 11 GM-M1

Zadanie 4. (0 1) Dane jest przybliżenie 5 2,236. Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F jeśli zdanie jest fałszywe. 20 2 2,236 P F 500 22,36 P F Zadanie 5. (0 1) Poniżej podano kilka kolejnych potęg liczby 7. 7 1 = 7 7 2 = 49 7 3 = 343 7 4 = 2401 7 5 = 16 807 7 6 = 117 649 7 7 = 823 543 7 8 = 5 764 801 7 9 = 40 353 607. Cyfrą jedności liczby 7 190 jest A. 1 B. 3 C. 7 D. 9 BRUDNOPIS GM-M1 Strona 3 z 11

Zadanie 6. (0 1) W dodatniej liczbie trzycyfrowej cyfra dziesiątek jest równa 5, a cyfra setek jest o 6 mniejsza od cyfry jedności. Ile jest liczb spełniających te warunki? Wybierz właściwą odpowiedź spośród podanych. A. Jedna. B. Dwie. C. Trzy. D. Cztery. Zadanie 7. (0 1) Zmieszano dwa gatunki herbaty, droższą i tańszą, w stosunku 2 : 3. Cena jednego kilograma tej herbacianej mieszanki wynosi 110 zł. Gdyby te herbaty zmieszano w stosunku 1 : 4, to cena za 1 kg tej mieszanki wynosiłaby 80 zł. Na podstawie podanych informacji zapisano poniższy układ równań. 2 x 5 1 x 5 3 y 5 4 y 5 110 80 Co oznacza x w tym układzie równań? Wybierz właściwą odpowiedź spośród podanych. A. Cenę 1 kg herbaty droższej. B. Cenę 1 kg herbaty tańszej. C. Cenę 5 kg herbaty droższej. D. Cenę 5 kg herbaty tańszej. Zadanie 8. (0 1) Na wykresie przedstawiono, jak zmienia się masa porcji lodów z wafelkiem w zależności od liczby gałek lodów. masa porcji lodów z wafelkiem (g) 70 50 30 10 0 1 2 3 liczba gałek Jaką masę ma jedna gałka tych lodów bez wafelka? Wybierz właściwą odpowiedź spośród podanych. A. 10 g B. 20 g C. 30 g D. 40 g Strona 4 z 11 GM-M1

Zadanie 9. (0 1) W konkursie przyznano nagrody pieniężne. Zdobywca pierwszego miejsca otrzymał 5000 zł. Nagroda za zdobycie drugiego miejsca była o 30% mniejsza niż nagroda za zajęcie pierwszego miejsca. Nagroda za zdobycie trzeciego miejsca była o 40% mniejsza niż nagroda za zajęcie drugiego miejsca. Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F jeśli zdanie jest fałszywe. Uczestnik konkursu, który zdobył trzecie miejsce, otrzymał 1400 zł. P F Nagroda za zdobycie trzeciego miejsca była o 70% mniejsza od nagrody za zajęcie pierwszego miejsca. P F Zadanie 10. (0 1) Doświadczenie losowe polega na dwukrotnym rzucie monetą. Jeśli wypadnie orzeł, zapisujemy 1, a jeśli reszka zapisujemy 2. Wynikiem doświadczenia jest zapisana liczba dwucyfrowa. Jakie jest prawdopodobieństwo, że zapisana liczba jest podzielna przez 3? Wybierz właściwą odpowiedź spośród podanych. A. 0 B. 4 1 C. 3 1 D. 2 1 BRUDNOPIS GM-M1 Strona 5 z 11

Zadanie 11. (0 1) Pięć różnych liczb naturalnych zapisano w kolejności od najmniejszej do największej: 1, a, b, c, 10. Mediana liczb: 1, a, b jest równa 3, a mediana liczb: a, b, c, 10 jest równa 5. Liczba c jest równa A. 4 B. 5 C. 6 D. 7 Zadanie 12. (0 1) Liczba x jest dodatnia, a liczba y jest ujemna. Ile spośród liczb: x y, x y, spośród podanych. x, (y x) 2 y jest dodatnich? Wybierz właściwą odpowiedź A. Jedna. B. Dwie. C. Trzy. D. Cztery. Zadanie 13. (0 1) Wzór y = 600 100x opisuje zależność objętości y (w litrach) wody w zbiorniku od czasu x (w minutach) upływającego podczas opróżniania tego zbiornika. Który wykres przedstawia tę zależność? Wybierz właściwą odpowiedź spośród podanych. Strona 6 z 11 GM-M1

Zadanie 14. (0 1) Jeżeli a, b i c są długościami boków trójkąta oraz c jest najdłuższym bokiem, to ten trójkąt jest: prostokątny, gdy a 2 + b 2 = c 2 rozwartokątny, gdy a 2 + b 2 < c 2 ostrokątny, gdy a 2 + b 2 > c 2. Z odcinków o długościach: 2 3, 3 2, 3 A. nie można zbudować trójkąta. B. można zbudować trójkąt prostokątny. C. można zbudować trójkąt rozwartokątny. D. można zbudować trójkąt ostrokątny. Zadanie 15. (0 1) Proste m i n są styczne do okręgu i przecinają się pod kątem 30. m α 30 n Miara kąta α jest równa A. 210 B. 230 C. 240 D. 270 BRUDNOPIS GM-M1 Strona 7 z 11

Zadanie 16. (0 1) Na rysunku przedstawiono sześciokąt foremny o boku równym 2 cm. Przekątna AD dzieli go na dwa przystające trapezy równoramienne. A D B C Wysokość trapezu ABCD jest równa A. 2 cm B. 3 cm C. 3 cm D. 2 cm 2 Zadanie 17. (0 1) Ania wycięła z kartki papieru dwa jednakowe trójkąty prostokątne o bokach długości 12 cm, 16 cm i 20 cm. Pierwszy z nich zagięła wzdłuż symetralnej krótszej przyprostokątnej, a drugi wzdłuż symetralnej dłuższej przyprostokątnej. W ten sposób otrzymała czworokąty pokazane na rysunkach. C C D F D A I E B A II B Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F jeśli zdanie jest fałszywe. Pole czworokąta I jest równe polu czworokąta II. P F Obwód czworokąta I jest mniejszy od obwodu czworokąta II. P F Strona 8 z 11 GM-M1

Zadanie 18. (0 1) Rysunki przedstawiają bryłę, której wszystkie cztery ściany są trójkątami równobocznymi. widok bryły z boku widok bryły z góry Które wielokąty I, II, III przedstawiają siatki bryły takiej, jaką pokazano na powyższych rysunkach? Wybierz właściwą odpowiedź spośród podanych. A. I, II i III B. tylko I i III C. tylko II i III D. tylko I i II I II III BRUDNOPIS GM-M1 Strona 9 z 11

Zadanie 19. (0 1) Szklane naczynie w kształcie prostopadłościanu o wymiarach 6 cm, 15 cm i 18 cm napełniono częściowo wodą i szczelnie zamknięto. Następnie naczynie postawiono na jego ścianie o największej powierzchni i wtedy woda sięgała do wysokości 4 cm. Kiedy naczynie postawiono na ścianie o najmniejszej powierzchni, to woda sięgała do wysokości A. 8 cm B. 10 cm C. 12 cm D. 16 cm Zadanie 20. (0 1) Na rysunku przedstawiono ostrosłup prawidłowy czworokątny i sześcian. Bryły mają jednakowe podstawy i równe wysokości, a suma objętości tych brył jest równa 36 cm 3. Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F jeśli zdanie jest fałszywe. Objętość sześcianu jest trzy razy większa od objętości ostrosłupa. P F Krawędź sześcianu ma długość 3 cm. P F Strona 10 z 11 GM-M1

Zadanie 21. (0 3) Maja, Ola i Jagna kupowały zeszyty. Maja za 3 grube zeszyty i 8 cienkich zapłaciła 10 zł. Ola kupiła 4 grube oraz 4 cienkie zeszyty i również zapłaciła 10 zł. Czy Jagnie wystarczy 10 złotych na zakup 5 grubych zeszytów i 1 cienkiego? Zapisz obliczenia i odpowiedź.! Rozwiązanie zadania 21. zapisz w wyznaczonym miejscu na karcie rozwiązań zadań. Zadanie 22. (0 2) Przekątna prostokąta ABCD nachylona jest do jednego z jego boków pod kątem 30. Uzasadnij, że pole prostokąta ABCD jest równe polu trójkąta równobocznego o boku równym przekątnej tego prostokąta. D C A 30 B! Rozwiązanie zadania 22. zapisz w wyznaczonym miejscu na karcie rozwiązań zadań. Zadanie 23. (0 4) Po rozklejeniu ściany bocznej pudełka mającego kształt walca otrzymano równoległobok. Jeden z boków tej figury ma długość 44 cm, a jej pole jest równe 220 cm 2 22. Oblicz objętość tego pudełka. Przyjmij przybliżenie π równe. Zapisz 7 obliczenia. 44 cm! Rozwiązanie zadania 23. zapisz w wyznaczonym miejscu na karcie rozwiązań zadań. GM-M1 Strona 11 z 11