PRZEDMIOTOWY SYSTEM OCENIANIA (PSO)

Podobne dokumenty
wyjaśnić, dzięki czemu może odbywać się oddziaływanie ciał naelektryzowanych na odległość.

Tabela wymagań programowych i kategorii celów poznawczych z fizyki klasa III

1. Przedmiotowy system oceniania z fizyki dla klasy 3e. Tabela wymagań programowych i kategorii celów poznawczych

Przedmiotowy system oceniania do części 3 podręcznika Klasy 3 w roku szkolnym sem I i II

KOŃCOWOROCZNE KRYTERIA OCENIANIA Z FIZYKI DLA KLAS III. przygotowała mgr Magdalena Murawska

WYMAGANIA EDUKACYJNE w klasie trzeciej

Temat lekcji w podręczniku. D. Stosowanie wiadomości w sytuacjach

Wymagania programowe i kategorii celów poznawczych dla klasy 3 gimnazjum

PRZEDMIOTOWE ZASADY OCENIANIA Z FIZYKI dla klas III

Rozkład materiału nauczania

Przedmiotowy system oceniania. Cz Êç 3

Przedmiotowy system oceniania

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

Plan wynikowy. Elektrostatyka (6-7 godz. + 2 godz. (łącznie) na powtórzenie materiału (podsumowanie działu) i sprawdzian) R treści nadprogramowe

Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II

Wymagania edukacyjne Fizyka klasa III gimnazjum

Rozkład materiału dla klasy 8 szkoły podstawowej (2 godz. w cyklu nauczania) 2 I. Wymagania przekrojowe.

WYMAGANIA EDUKACYJNE Z FIZYKI

Tabela wymagań programowych i kategorii celów poznawczych do części 2 i 3. podręcznika

Przedmiotowy system oceniania (propozycja)

Wymagania edukacyjne fizyka kl. 3

Przedmiotowe ocenianie z fizyki klasa III Kursywą oznaczono treści dodatkowe.

Plan wynikowy (propozycja)

Rok szkolny 2017/2018; [MW] strona 1

wskazuje w otoczeniu zjawiska elektryzowania przez tarcie formułuje wnioski z doświadczenia sposobu elektryzowania ciał objaśnia pojęcie jon

WYMAGANIA EDUKACYJNE Z FIZYKI KLASA IIa Gimnazjum Rok szkolny 2016/17

opisuje przepływ prądu w przewodnikach, jako ruch elektronów swobodnych posługuje się intuicyjnie pojęciem napięcia

Wymagania podstawowe. (dostateczna) wskazuje w otoczeniu zjawiska elektryzowania przez tarcie objaśnia elektryzowanie przez dotyk

Test sprawdzający wiedzę z fizyki z zakresu gimnazjum autor: Dorota Jeziorek-Knioła

9. O elektryczności statycznej

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową.

Prąd elektryczny 1/37

Zasady oceniania. Ocena. dopuszczająca dostateczna dobra bardzo dobra

Zakres materiału: Elektryczność. Uczeń:

Kryteria osiągnięć na poszczególne oceny z fizyki w klasie 2 gimnazjum. Nauczyciel prowadzący: mgr Andrzej Pruchnik

WYMAGANIA EDUKACYJNE Z FIZYKI KL.II I-półrocze

Przedmiotowy system oceniania z przedmiotu fizyka dla klasy VIII sp. ocena śródroczna

Klasa VIII WYMAGANIA PODSTAWOWE UCZEŃ: wie, że równowaga ilościowa ładunków

KRYTERIA OCENIANIA UCZNIÓW W KLASIE II GIMNAZJUM Z FIZYKI

KRYTERIA OCEN Z FIZYKI DLA KLASY II GIMNAZJUM. ENERGIA I. NIEDOSTATECZNY - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce.

Fizyka. Klasa II Gimnazjum. Pytania egzaminacyjne. 1. Ładunkiem ujemnym jest obdarzony: a) kation, b) proton, c) neutron, d) elektron.

Wymagania edukacyjne na poszczególne śródroczne oceny klasyfikacyjne z przedmiotu fizyka dla uczniów z klasy III gimnazjum na rok szkolny 2017/2018.

Szczegółowe wymagania na poszczególne stopnie (oceny) z fizyki - semestr I

Wymagania edukacyjne z fizyki klasa III

Wymagania edukacyjne z fizyki dla klasy III

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z fizyki dla klasy 3 gimnazjum

Rok szkolny 2017/2018; [MW] strona 1

ELEKTROSTATYKA. Ze względu na właściwości elektryczne ciała dzielimy na przewodniki, izolatory i półprzewodniki.

L.P. DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia

Kryteria wymagań z fizyki w klasie II gimnazjum na poszczególne oceny

(Plan wynikowy) - zakładane osiągnięcia ucznia. stosuje wzory

Szczegółowe warunki i sposób oceniania wewnątrzszkolnego w klasie III gimnazjum na lekcjach fizyki w roku szkolym 2015/2016

ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II

L.P. DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca wymagania konieczne

Elektryczność i magnetyzm cz. 2 powtórzenie 2013/14

Teresa Wieczorkiewicz. Fizyka i astronomia. Program nauczania, rozkład materiału oraz plan wynikowy Gimnazjum klasy: 3G i 3H

Powtórzenie wiadomości z klasy II. Elektromagnetyzm pole magnetyczne prądu elektrycznego

d) Czy bezpiecznik 10A wyłączy prąd gdy pralka i ekspres są włączone? a) Jakie jest natężenie prądu płynące przez ten opornik?

R - treści nadprogramowe. Prąd elektryczny (13 godz. + 2 godziny (łącznie) na powtórzenie materiału (podsumowanie działu) i sprawdzian) Wymagania

Plan wynikowy (propozycja)

Oblicza natężenie prądu ze wzoru I=q/t. Oblicza opór przewodnika na podstawie wzoru R=U/I Oblicza opór korzystając z wykresu I(U)

Wymagania edukacyjne z fizyki w klasie III gimnazjum

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH OCEN KLASYFIKACYJNYCH Z FIZYKI W KLASIE 3A W ROKU SZKOLNYM 2014/2015:

Wymagania edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym kl.4 9. Pole elektryczne Wymagania Zagadnienie

Temat lekcji Treści nauczania Metoda pracy Środki nauczania Uwagi

S16. Elektryzowanie ciał

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

FIZYKA. Klasa III gimnazjum

Anna Nagórna Wrocław, r. nauczycielka chemii i fizyki. Plan pracy dydaktycznej na fizyce w klasach trzecich w roku szkolnym 2016/2017

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI

Podstawa programowa III etap edukacyjny

Termodynamika. Kryteria ocen z fizyki na poszczególne oceny w klasie 2 gimnazjum

Wymagania edukacyjne z Fizyki w klasie III gimnazjum w roku szkolnym 2018/2019

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot. fizyka Klasa pierwsza... druga... trzecia... Rok szkolny Imię i nazwisko nauczyciela przedmiotu

Plan wynikowy do programu DKW /99

Badanie wyników nauczania z fizyki w klasie 3 gimnazjum.

Przedmiotowy System Oceniania Klasa 8

FIZYKA. Nauczanie fizyki odbywa się według programu: Barbary Sagnowskiej Świat fizyki (wersja 2) wydawnictwo Zamkor

Przedmiotowe zasady oceniania Fizyka klasa III a i III b gimnazjum Nauczyciel prowadzący mgr Iwona Bieganowska

Przedmiotowy System Oceniania Klasa 8

Przedmiotowy System Oceniania Klasa 8

Przedmiotowy System Oceniania Klasa 8

Wymagania podstawowe (dostateczna) wymienia składniki energii wewnętrznej (4.5)

Przedmiotowy System Oceniania Klasa 8

Przedmiotowe zasady ocenianie z fizyki i astronomii klasa 3 gimnazjum. Szczegółowe wymagania na poszczególne stopnie ( oceny ).

Przedmiotowy System Oceniania Klasa 8

Test (4 p.) 2. (1 p.) Wskaż obwód, który umożliwi wyznaczenie mocy żarówki. A. B. C. D. 3. (1 p.) str. 1

Wymagania z fizyki dla klasy 8 szkoły podstawowej

WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III GIMNAZJUM

Wymagania podstawowe (dostateczna) Uczeń: wymienia składniki energii wewnętrznej (4.5)

Dział VII: Przemiany energii w zjawiskach cieplnych

Przedmiotowy System Oceniania z fizyki dla klasy 8

Wymagania edukacyjne z Fizyki w klasie 8 szkoły podstawowej w roku szkolnym 2018/2019

WYMAGANIA NA OCENY DLA KLASY III GIMNAZJUM

Przedmiotowy System Oceniania Klasa 8

Przedmiotowy System Oceniania

Transkrypt:

PRZEDMIOTOWY SYSTEM OCENIANIA (PSO) 14 21 Tabela wymagań programowych i kategorii celów poznawczych 22 Kryteria oceny uczniów

Przedmiotowy system oceniania (PSO) Ciekawa fizyka Przedmiotowy system oceniania. Część 3 Proponowany system oceniania uczniów ucz cych si zyki w gimnazjum ma u atwi nauczycielowi codzienn prac oraz pomóc w tak trudnym elemencie pracy dydaktycznej, jakim jest ocenianie. Niew tpliwie zamieszczone poni ej wymagania programowe, taksonomia celów poznawczych, a szczególnie kryteria oceniania, stanowi wa ny element pracy dydaktyczno-wychowawczej nauczyciela. Niniejszej propozycji PSO nie nale y traktowa jako jedynie s usznego i ostatecznego wzoru, zach camy do przekszta cania i uzupe niania PSO stosownie do potrzeb i warunków istniej cych w danej szkole, a nawet klasie. Warto jednak pami ta, e najwa niejszym celem naszej pracy dydaktyczno-wychowawczej jest rozwój intelektualny i kszta towanie osobowo ci uczniów. W tym kontek cie nale y elastycznie podchodzi zarówno do wymaga programowych, jak i wszelkich taksonomii celów, które stawiamy przed uczniem, pami taj c o tym, e zbyt drobiazgowe i kategoryczne ich egzekwowanie mo e przynie negatywne i nieodwracalne skutki. Tabela wymagań programowych i kategorii celów poznawczych Temat lekcji w podręczniku Wiadomości Umiejętności Wymagania programowe K + P konieczne + podstawowe R rozszerzające D dopełniające A. Zapamiętanie B. Rozumienie Kategorie celów poznawczych C. Stosowanie wiadomości w sytuacjach typowych Uczeń umie: I. Elektryczność i magnetyzm D. Stosowanie wiadomości w sytuacjach problemowych 1. Oddziaływania elektrostatyczne wymienić sposoby elektryzowania ciał: przez tarcie, dotyk i indukcję, podać przykłady zjawisk związanych z elektryzowaniem ciał, podać nazwę jednostki ładunku elektrycznego. opisać budowę atomu i wymienić jego składniki, scharakteryzować elektron i proton jako cząstki o określonym ładunku, wyjaśnić, kiedy ciało jest nienaelektryzowane (równa liczba protonów i elektronów), naelektryzowane ujemnie (nadmiar elektronów) lub dodatnio (niedomiar elektronów), wyjaśnić, że podczas elektryzowania ciał stałych przemieszczają się tylko elektrony. opisać sposoby elektryzowania ciał przez tarcie i dotyk; wyjaśnić, że zjawiska te polegają na przepływie elektronów między ciałami, przeprowadzić eksperyment polegający na elektryzowaniu ciał przez tarcie i zademonstrować wzajemne oddziaływanie ciał naelektryzowanych jednoimiennie oraz różnoimiennie, opisać (jakościowo) oddziaływanie ładunków jednoimiennych i różnoimiennych, posługiwać się pojęciem ładunku elektrycznego jako wielokrotności ładunku elementarnego. wyjaśnić, od jakich wielkości fizycznych zależy oddziaływanie ciał naelektryzowanych (jakościowo). 14

Przedmiotowy system oceniania. Część 3 2. Pole elektryczne podać określenie pola podać przykłady pól centralnych i pól jednorodnych. wyjaśnić, dzięki czemu może odbywać się oddziaływanie ciał naelektryzowanych na odległość. zademonstrować oddziaływanie elektrostatyczne na odległość, narysować linie pola elektrycznego dla różnych pól, uzasadnić twierdzenie, że pole elektryczne ma energię. zaproponować doświadczenie pozwalające zademonstrować linie pola elektrycznego dla różnych pól, omówić zasady działania lampy oscyloskopowej lub kineskopowej. 3. Zasada zachowania ładunku elektrycznego podać treść zasady zachowania ładunku. wyjaśnić, że podczas elektryzowania ładunki nie są wytwarzane i nie znikają. stosować zasadę zachowania ładunku elektrycznego do wyjaśniania elektryzowania przez tarcie, dotyk i indukcję, omówić budowę butelki lejdejskiej i kondensatora płaskiego. zaprojektować i przeprowadzić eksperyment ilustrujący zasadę zachowania ładunku, zaprojektować i zbudować elektroskop, zaprojektować i przeprowadzić eksperyment obrazujący zasadę działania elektroskopu. 4. Mikroskopowy model zjawisk elektrycznych podać przykłady substancji będących przewodnikami, izolatorami i półprzewodnikami, wymienić, gdzie znalazły zastosowanie przewodniki, izolatory i półprzewodniki (w najbliższym otoczeniu ucznia). wyjaśnić różnice w mechanizmie elektryzowania przewodników i izolatorów. dokonać podziału ciał ze względu na ich właściwości elektryczne na przewodniki, izolatory i półprzewodniki, analizować kierunek przepływu elektronów. wymienić elementy elektroniczne wytwarzane z materiałów półprzewodnikowych. 5. Natężenie prądu elektrycznego podać definicję prądu podać jednostkę natężenia prądu i jej definicję. rozróżnić rzeczywisty i umowny kierunek przepływu prądu wyjaśnić zjawiska zachodzące po połączeniu przewodnikiem ciała naelektryzowanego dodatnio z ciałem naelektryzowanym ujemnie, podać określenie natężenia prądu podać wzór na natężenie prądu elektrycznego. posługiwać się pojęciem natężenia prądu zmierzyć natężenie prądu elektrycznego w prostym obwodzie, przeliczać wielokrotności i podwielokrotności jednostek w odniesieniu do natężenia prądu elektrycznego. stosować wzór na natężenie prądu elektrycznego w zadaniach rachunkowych. 15

Przedmiotowy system oceniania (PSO) Ciekawa fizyka 6. Napięcie elektryczne podać jednostkę napięcia elektrycznego i jej definicję. wyjaśnić różnicę między ogniwami chemicznymi a fotoogniwami. posługiwać się (intuicyjnie) pojęciem napięcia zmierzyć napięcie wytwarzane przez ogniwo lub baterię ogniw, przedstawić budowę ogniwa chemicznego, obliczyć napięcie między dwoma punktami obwodu jako iloraz pracy wykonanej przy przemieszczeniu ładunku i wartości tego ładunku, przeliczać wielokrotności i podwielokrotności jednostek w odniesieniu do napięcia elektrycznego. wyjaśnić, że źródłami napięcia są ogniwa chemiczne i akumulatory, podać przykłady używanych ogniw i akumulatorów, przedstawić osiągnięcia naukowe Alessandra Volty. 7. Budowa obwodów elektrycznych narysować schemat prostego obwodu narysować schemat obwodu z włączonym amperomierzem i woltomierzem, podać oznaczenia elementów obwodu elektrycznego: ogniwa, opornika, żarówki, wyłącznika, woltomierza, amperomierza. podać i omówić warunki przepływu prądu elektrycznego w obwodzie (w obwodzie musi być źródło napięcia, obwód musi być zamknięty). budować proste obwody elektryczne i rysować ich schematy, budować prosty obwód elektryczny według zadanego schematu, rozpoznawać symbole elementów obwodu elektrycznego: ogniwa, opornika, żarówki, wyłącznika, woltomierza, amperomierza, zbudować obwód prądu elektrycznego i dokonać pomiaru napięcia między dwoma punktami tego obwodu oraz natężenia płynącego w nim prądu. zaprojektować i wykonać latarkę elektryczną. 8. Prawo Ohma podać zależność między natężeniem prądu płynącego przez przewodnik a napięciem przyłożonym do jego końców i oporem przewodnika, podać wzór na obliczenie oporu przewodnika, podać treść prawa Ohma, podać jednostkę oporu elektrycznego. wyjaśnić, co to znaczy, że natężenie prądu w przewodniku jest wprost proporcjonalne do napięcia elektrycznego przyłożonego do jego końców. posługiwać się pojęciem oporu elektrycznego i stosować prawo Ohma, wyznaczyć opór elektryczny przewodnika za pomocą woltomierza i amperomierza, wyjaśnić, dlaczego opór przewodników metalowych rośnie wraz ze wzrostem temperatury, zaprojektować i wykonać doświadczenie, na podstawie którego można zbadać, od czego i jak zależy natężenie prądu elektrycznego w obwodzie, zbadać, jak opór przewodników metalowych zależy od temperatury. 16

Przedmiotowy system oceniania. Część 3 przeliczać wielokrotności i podwielokrotności jednostek w odniesieniu do napięcia natężenia prądu elektrycznego i oporu wyznaczyć opór elektryczny z wykresu zależności natężenia prądu od napięcia porównać opory elektryczne różnych przewodników na podstawie wykresów zależności natężenia prądu od napięcia elektrycznego (jakościowo i ilościowo). 9. Połączenia szeregowe i równoległe w obwodach elektrycznych podać rodzaje obwodów elektrycznych w zależności od sposobu podłączenia odbiorników, podać, że amperomierz zawsze włączamy do obwodu szeregowo, podać, że woltomierz włączamy do obwodu równolegle. wyjaśnić, do czego służy bezpiecznik w instalacjach elektrycznych. połączyć obwód z miernikami do pomiaru napięcia i natężenia prądu przy równoległym oraz szeregowym łączeniu odbiorników i wykonać pomiary, porównać, co się dzieje z napięciem, natężeniem i oporem przy połączeniu oporników szeregowo oraz równolegle, budować proste obwody elektryczne szeregowe i równoległe oraz rysować ich schematy, budować proste obwody elektryczny szeregowe i równoległe według zadanego schematu, podać przykłady zastosowania połączeń szeregowych i równoległych odbiorników prądu elektrycznego w życiu codziennym, posługiwać się pojęciem oporu elektrycznego i stosować prawo Ohma w prostych obwodach elektrycznych. wyjaśnić, dlaczego w instalacji domowej stosuje się połączenie równoległe odbiorników, wyjaśnić, dlaczego żaróweczki stosowane w lampkach choinkowych po podłączeniu do domowej instalacji elektrycznej (napięcie 230 V) nie przepalają się, chociaż są przystosowane do pracy przy maksymalnym napięciu 1,5 V. 17

Przedmiotowy system oceniania (PSO) Ciekawa fizyka 10. Praca i moc prądu elektrycznego podać przykłady zamiany energii elektrycznej na inne formy energii, zapisać wzór na pracę (energię) prądu wyjaśnić, o czym informuje nas moc urządzeń podawana na tabliczce znamionowej (informacyjnej) urządzenia lub w instrukcji obsługi. wyjaśnić, od czego i jak zależy wartość pracy wykonanej przy przepływie prądu zapisać wzór na moc prądu elektrycznego i podać definicję mocy prądu uzasadnić konieczność oszczędzania energii elektrycznej (z punktu widzenia ekologicznego i ekonomicznego), wyjaśnić, do czego służy licznik energii elektrycznej. podać przykłady mocy (orientacyjnie) urządzeń zasilanych prądem elektrycznym, posługiwać się pojęciem pracy i mocy prądu przeliczać energię elektryczną podaną w kilowatogodzinach na dżule i dżule na kilowatogodziny, wymienić i opisać urządzenia, w których energia elektryczna przekształca się w inne formy energii, wyznaczyć moc żarówki zasilanej z baterii, korzystając z woltomierza i amperomierza. opisać budowę i zastosowanie licznika energii elektrycznej. *11. Przepływ prądu elektrycznego w cieczach, gazach i próżni podać definicje pojęć: jon, elektrolit, elektroliza, wymienić przykłady elektrolitów, podać zasady bezpiecznego korzystania z urządzeń elektrycznych. wyjaśnić, jakie zjawiska zachodzą w elektrolicie po doprowadzeniu do niego napięcia wyjaśnić, że przepływ prądu przez elektrolit jest związany z przenoszeniem ładunków elektrycznych (ukierunkowany ruch jonów), wyjaśnić, na czym polega przepływ prądu elektrycznego w gazach (ukierunkowany ruch jonów i elektronów), podać zasady bezpieczeństwa podczas wyładowania atmosferycznego. zaplanować i przeprowadzić badanie przewodności różnych cieczy i roztworów wodnych, przedstawić zastosowanie zjawiska elektrolizy, podać przykłady zastosowania przepływu prądu elektrycznego w gazach. omówić niebezpieczeństwa związane z niewłaściwym eksploatowaniem urządzeń elektrycznych oraz sposoby zabezpieczania się przed porażeniem prądem elektrycznym i zasady bezpiecznego posługiwania się odbiornikami energii elektrycznej w gospodarstwie domowym, wyjaśnić, na czym polega wyładowanie atmosferyczne i wskazać przemiany energii elektrycznej na inne formy energii podczas wyładowania. 12. Oddziaływania magnetyczne wymienić substancje, które zaliczamy do ferromagnetyków, podać znaczenie pojęć: ferromagnetyk, domeny magnetyczne, magnes, bieguny magnesu (oznaczenia biegunów), pole magnetyczne. wyjaśnić przyczynę ustawiania się igły magnetycznej w kompasie, wyjaśnić, w jaki sposób odbywa się magnesowanie i rozmagnesowywanie ferromagnetyków. zbadać, między jakimi ciałami zachodzą oddziaływania magnetyczne, zademonstrować oddziaływania między magnesami a przedmiotami z żelaza, uzasadnić, że magnesu trwałego nie da się rozdzielić tak, aby miał tylko jeden biegun, rozróżnić bieguny magnetyczne magnesów trwałych i opisać oddziaływania między nimi, podać informacje dotyczące zmiany ziemskich biegunów magnetycznych, podać przykłady zastosowania magnesów w urządzeniach technicznych. 18

Przedmiotowy system oceniania. Część 3 zbadać i opisać zachowanie igły magnetycznej w obecności magnesu, wyjaśnić zasadę działania kompasu, zademonstrować powstawanie linii pola magnetycznego, narysować linie pola magnetycznego dla różnych pól magnetycznych i zaznaczyć ich zwrot na podstawie ułożenia opiłków żelaza lub/i igieł magnetycznych, opisać oddziaływanie magnesu na żelazo i podać przykłady wykorzystania tego oddziaływania. 13. Pole magnetyczne wokół przewodu z prądem elektrycznym podać, że przewodnik, przez który płynie prąd elektryczny, oddziałuje na magnesy (np. igły magnetyczne) i ferromagnetyki (np. opiłki żelaza), podać określenie elektromagnesu. wyjaśnić, dlaczego miedziany przewód, w którym nie płynie prąd elektryczny, nie oddziałuje na igłę magnetyczną i na opiłki żelazne; natomiast ten sam przewód, gdy płynie przez niego prąd elektryczny, oddziałuje na igłę magnetyczną i na opiłki żelazne. zademonstrować działanie przewodu z prądem na igłę magnetyczną, zademonstrować (za pomocą opiłków żelaza lub/i igieł magnetycznych) linie pola magnetycznego wytworzonego przez przewód prostoliniowy i zwojnicę, wyznaczyć położenie biegunów magnetycznych zwojnicy, przez którą płynie prąd elektryczny, opisać działanie elektromagnesu i rolę rdzenia w elektromagnesie. wykonać elektromagnes i zademonstrować jego działanie, podać przykłady zastosowania elektromagnesów w urządzeniach technicznych. 14. Silnik elektryczny podać przykłady urządzeń z najbliższego otoczenia, w których zastosowano silniki elektryczne. podać określenie siły elektrodynamicznej, wyjaśnić, co jest źródłem siły elektrodynamicznej, wyjaśnić, że w silniku zachodzi zamiana energii elektrycznej na energię mechaniczną. opisać wzajemne oddziaływanie magnesów z elektromagnesami i wyjaśnić działanie silnika zademonstrować działanie siły elektrodynamicznej, zbadać, od czego zależy wartość, kierunek i zwrot siły elektrodynamicznej, wyznaczyć kierunek i zwrot siły elektrodynamicznej za pomocą reguły lewej dłoni, opisać budowę i zasadę działania silnika elektrycznego. zademonstrować oddziaływanie dwóch przewodów z prądem elektrycznym i zbadać, jak zależy zwrot sił oddziaływania między nimi od kierunków płynących w nich prądów, zbudować model silnika elektrycznego. 19

Przedmiotowy system oceniania (PSO) Ciekawa fizyka *15. Prądnica prądu przemiennego podać określenie zjawiska indukcji elektromagnetycznej. wskazać różnicę między napięciem stałym otrzymywanym z akumulatorów lub baterii a napięciem przemiennym, wyjaśnić znaczenie pojęć: okres i częstotliwość prądu przemiennego, napięcie skuteczne, wyjaśnić przemiany energii zachodzące w prądnicach prądu przemiennego. zademonstrować wzbudzanie prądu indukcyjnego, wyjaśnić, że prąd elektryczny powstający w elektrowniach jest prądem indukcyjnym, opisać, jak jest zbudowana najprostsza prądnica prądu przemiennego. udowodnić doświadczalnie, że natężenie prądu indukcyjnego zależy od szybkości zmian pola magnetycznego prądu wyjaśnić, dlaczego energia elektryczna jest przesyłana na duże odległości pod wysokim napięciem, opisać przemiany energii zachodzące w elektrowniach: wodnych, węglowych (gazowych i na olej opałowy), jądrowych, wiatrowych, słonecznych. II. Fale elektromagnetyczne 16. Rodzaje fal elektromagnetycznych podać określenie pola elektromagnetycznego i fali elektromagnetycznej, dokonać podziału fal elektromagnetycznych ze względu na długość i częstotliwość tych fal, nazwać rodzaje fal elektromagnetycznych (radiowe, mikrofale, promieniowanie podczerwone, światło, nadfioletowe, rentgenowskie, gamma), podać przybliżoną wartość prędkości światła w próżni i w powietrzu, podać, że światło jest falą elektromagnetyczną o długości od 400 nm (fiolet) do 700 nm (czerwień). podać, że wszystkie fale elektromagnetyczne przenoszą energię, mają określoną prędkość, są falami poprzecznymi, odbijają się i załamują, wzmacniają się lub osłabiają w wyniku nakładania się, podać prędkość światła jako maksymalną prędkość przepływu informacji, wyjaśnić związek między częstotliwością i długością fal elektromagnetycznych, wyjaśnić, od czego zależy prędkość rozchodzenia się fal elektromagnetycznych. porównać (wymieniać cechy wspólne i różnice) rozchodzenie się fal mechanicznych i elektromagnetycznych, przeliczać długości fal w różnych jednostkach, określić rodzaj fali, obliczając jej długość przy znanej częstotliwości. podać i omówić przykłady zastosowania fal elektromagnetycznych, wyjaśnić rolę jonosfery i atmosfery w zatrzymywaniu szkodliwego promieniowania elektromagnetycznego docierającego do powierzchni Ziemi z kosmosu. 17. Fale radiowe i mikrofale podać zakresy częstotliwości i długości fal dla fal radiowych oraz mikrofal. opisać znaczenie fal elektromagnetycznych (w szczególności fal radiowych i mikrofal) w radiokomunikacji i łączności telefonicznej, podać przykład zastosowania mikrofal w gospodarstwie domowym, zaznaczyć na osi częstotliwości zakresy fal radiowych i mikrofal. wyjaśnić, na czym polega modulacja i w jakim celu jest stosowana, wymienić urządzenia do wytwarzania fal elektromagnetycznych i przesyłania informacji. opisać zastosowanie radioteleskopu, opisać zastosowanie fal radiowych i mikrofal (np. radary i urządzenia radiolokacyjne), opisać zasadę działania kuchenki mikrofalowej, omówić zasadę działania mikrofonu i głośnika. 20

Przedmiotowy system oceniania. Część 3 18. Promieniowanie podczerwone i nadfioletowe opisać, jak wykryto promieniowanie podczerwone, podać źródła promieniowania podczerwonego i nadfioletowego. wymienić właściwości promieniowania podczerwonego i nadfioletowego, wyjaśnić niebezpieczeństwo związane z dziurą ozonową i podać, jak się zabezpieczać przed skutkami związanymi z dziurą ozonową, wymienić sposoby przeciwdziałania powiększaniu dziury ozonowej. wymienić i omówić zastosowania promieniowania podczerwonego, wymienić i omówić zastosowania promieniowania nadfioletowego, wykazać, w jaki sposób możemy chronić się przed szkodliwym działaniem promieniowania nadfioletowego, wyjaśnić rolę kremów (filtrów UV) w ochronie skóry przed promieniowaniem UV. wyjaśnić zagrożenia dla życia biologicznego ze strony krótkofalowego promieniowania elektromagnetycznego, opisać zasadę działania kamery termowizyjnej i jej zastosowanie. 19. Promieniowanie rentgenowskie i promieniowanie gamma wymienić właściwości promieni rentgenowskich i promieni gamma. wymienić źródła promieni rentgenowskich i promieniowania gamma, wyjaśnić, które właściwości promieni Roentgena są wykorzystywane w diagnostyce medycznej, wyjaśnić, które właściwości promieni Roentgena są wykorzystywane w walce z nowotworami oraz do sterylizacji narzędzi medycznych, materiałów opatrunkowych i żywności. podać i opisać zastosowanie promieni rentgenowskich i gamma w medycynie i technice, podać zasady ochrony przed szkodliwym działaniem promieniowania rentgenowskiego i promieniowania gamma (ochrona radiologiczna). III. Powtórzenie wiadomości 20. Właściwości materii Wymagania programowe do tej części powtórzenia można znaleźć w PSO do części I cyklu podręczników Ciekawa fizyka opublikowanej w poradniku dla nauczyciela i na stronie internetowej wydawnictwa WSiP. 21. Ruch. Opory ruchu 22. Dynamika Wymagania programowe do tych części powtórzenia można znaleźć w PSO do części II cyklu podręczników Ciekawa fizyka opublikowanej w poradniku dla nauczyciela i na stronie internetowej wydawnictwa WSiP. 23. Termodynamika 24. Drgania i fale mechaniczne 25. Optyka 21