50 zadań ze statystyki matematycznej dla studentów ZARZĄDZANIA z rozwiązaniami



Podobne dokumenty
Zadanie 1 W finale rzutu dyskiem startuje 12 zawodników. Ile jest wszystkich możliwych wyników? Odp. Możliwych wyników jest

Wykład 3 Hipotezy statystyczne

50 zadań ze statystyki matematycznej dla studentów ZARZĄDZANIA z rozwiązaniami

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

1 Estymacja przedziałowa

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Testowanie hipotez statystycznych cd.

Testowanie hipotez statystycznych.

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

Hipotezy statystyczne

Statystyka matematyczna dla leśników

Weryfikacja hipotez statystycznych

Jan Rusinek. Elementy statystyki matematycznej. dla studentów zarządzania

Hipotezy statystyczne

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

Testy zgodności. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 11

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)

Kolokwium ze statystyki matematycznej

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

WERYFIKACJA HIPOTEZ STATYSTYCZNYCH

Rozkłady statystyk z próby

Testowanie hipotez statystycznych

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

Wnioskowanie statystyczne Weryfikacja hipotez. Statystyka

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )

STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych

TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

166 Wstęp do statystyki matematycznej

Statystyka matematyczna i ekonometria

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Statystyka matematyczna i ekonometria

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:

Statystyka matematyczna

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

STATYSTYKA

STATYSTYKA MATEMATYCZNA, LISTA 3

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi

Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych

Testowanie hipotez statystycznych. Wprowadzenie

Wykład 10 Testy jednorodności rozkładów

Statystyka matematyczna

4.Zmienne losowe X 1, X 2,..., X 100 są niezależne i mają rozkład wykładniczy z α = 0.25 Jakie jest prawdopodobieństwo, że 1

Porównanie dwóch rozkładów normalnych

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

Estymatory i testy statystyczne - zadania na kolokwium

Estymacja punktowa i przedziałowa

Wykład 12 ( ): Testy dla dwóch prób w rodzinie rozkładów normalnych

Gdy n jest duże, statystyka ta (zwana statystyką chikwadrat), przy założeniu prawdziwości hipotezy H 0, ma w przybliżeniu rozkład χ 2 (k 1).

TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).

Statystyka. Zadanie 1.

STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów

Rozkłady zmiennych losowych

Weryfikacja hipotez statystycznych

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III

LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

Testy dla dwóch prób w rodzinie rozkładów normalnych

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą w oddzielnej kolumnie.

Przedziały ufności. Poziom istotności = α (zwykle 0.05) Poziom ufności = 1 α Przedział ufności dla parametru μ = taki przedział [a,b], dla którego

Wstęp do probabilistyki i statystyki. Wykład 4. Statystyki i estymacja parametrów

a. opisać badaną cechę; cechą X jest pomiar średnicy kulki

7. Estymacja parametrów w modelu normalnym( ) Pojęcie losowej próby prostej

LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

1 Podstawy rachunku prawdopodobieństwa

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd.

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.

WYKŁAD 5 TEORIA ESTYMACJI II

Testowanie hipotez statystycznych.

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas

Wydział Matematyki. Testy zgodności. Wykład 03

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej

Estymacja przedziałowa

Zadania ze statystyki cz. 8 I rok socjologii. Zadanie 1.

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

Testy nieparametryczne

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności

Prawdopodobieństwo Odp. Odp. 6 Odp. 1/6 Odp. 1/3. Odp. 0, 75.

Transkrypt:

Jan Rusinek 50 zadań ze statystyki matematycznej dla studentów ZARZĄDZANIA z rozwiązaniami UWAGA! Ten tekst jest w trakcie przygotowania i sprawdzania. Może zawierać błędy. Jest sukcesywnie poprawiany i umieszczany pod aktualną datą! Autor będzie wdzięczny za uwagi: j-rusinek@o2.pl Obecna data 18.11.2013

2

3 Wstęp Zbiorek ten zawiera zadania ze statystyki matematycznej wybrane z zadań przerabianych na zajęciach, zadań domowych i egzaminacyjnych na studiach drugiego stopnia kierunku zarządzanie w Wyższej Szkole Menedżerskiej w Warszawie. Część rachunków jest wykonana przy pomocy darmowego programu calc z pakietu OpenOffice. W zadaniach, w których trzeba samodzielnie obliczać wartości średnie i wariancje, próbki są bardzo niewielkiej liczności. Oczywiście w praktyce używa się znacznie większych próbek. Chodzi jednak o to, aby poznać metody, nie tracąc czasu na żmudne (nawet jeśli używamy komputera, to samo wpisanie danych z dużej próbki zajmuje sporo czasu) obliczenia. Mam nadzieję, że zbiorek ten pomoże studentom w opanowaniu tego przedmiotu i w przygotowaniu się do egzaminu.

4 WZORY I OZNACZENIA µ wartość średnia σ odchylenie standardowe n liczba prób k liczba sukcesów w n próbach x = 1 n n i=1 x i średnia z próby s 2 = 1 n n 1 i=1 (x i x) 2 wariancja z próby s = s 2 odchylenie standardowe z próby s n błąd standardowy u(p) p-ty kwantyl rozkładu normalnego N(0, 1) t(p, j) p-ty kwantyl rozkładu Studenta o j stopniach swobody χ 2 (p, j) p-ty kwantyl rozkładu χ 2 o j stopniach swobody F(p, i, j) p-ty kwantyl rozkładu Snedecora o i, j stopniach swobody D nobl statystyka testowa dla rozkładu Kołmogorowa d n(p) p-ty kwantyl statystyki D n Kołmogorowa k(p, i, j) wartość krytyczna rozkładu liczby serii Wzór na dystrybuantę rozkładu jednostajnego na przedziale [a; b]. { 0 dla x < a, x a F (x) = dla a x b, b a 1 dla x > b.

5 A) PRZEDZIAŁY UFNOŚCI DLA ŚREDNIEJ Model A1. Rozkład normalny, znane σ. P = [x l; x + l], l = u(1 α 2 ) σ n. Model A2. Rozkład normalny, nieznane σ. P = [x l; x + l], l = t(1 α 2, n 1) s n. Model A3. Rozkład dowolny, nieznane σ, n 30. P = [x l; x + l], l = u(1 α 2 ) s n.

6 B) PRZEDZIAŁY UFNOŚCI DLA FRAKCJI ELEMENTÓW WYRÓŻNIONYCH Model B1. Raczej duża próba (n 30). [ k P = n l; k ] ( ) k n + l, l = u 1 α n 2 ( ) 1 k n. n UWAGA. Można też stosować nieco dokładniejszy, ale bardziej skomplikowany wzór P = [ u(1 α 2 )2 + 2k 2(n + u(1 α 2 )2 ) l; u(1 α 2 )2 + 2k 2(n + u(1 α 2 )2 ) + l ], l = u u(1 α 2 )2 4 + k(n k) n n + u(1 α 2 )2.

7 C) PRZEDZIAŁY UFNOŚCI DLA ODCHYLENIA STANDARDOWEGO Model C1. Rozkład normalny. [ ] n 1 n 1 P = s χ 2 (1 α 2, n 1) ; s χ 2 ( α 2, n 1). Model C2. Rozkład normalny, duża próba (n 30). P = [ ] s 2(n 1) 2n 3 + u(1 α 2 ) ; s 2(n 1) 2n 3 u(1 α 2 ).

8 MINIMALNA LICZNOŚĆ PRÓBY Model M1. Przy wyznaczaniu przedziału ufności [x l; x + l] dla wartości średniej, rozkład normalny, znane σ. ( ( ) u 1 α 2 σ n l ) 2. Model M2. Przy wyznaczaniu przedziału ufności [x l; x + l] dla wartości średniej, rozkład normalny nieznane σ. gdzie n 0 liczność wstępnej próby, ( ( ) ) n t 1 α 2, n s 2 0 n 0 1 0 1 + 1, l n 0 n 0 x 0 = 1 n 0 i=1 x i, s 2 0 = 1 n 0 1 n 0 (x i x 0 ) 2. Model M3. Przy wyznaczaniu przedziału ufności [ k n l; k n + l] dla frakcji elementów wyróżnionych. i=1 n u(1 α 2 )2 4l 2.

9 TESTY ZGODNOŚCI Test χ 2 (wartość zaobserwowana wartość spodziewana) χ 2 2 obl =. wartość spodziewana Hipotezę odrzucamy, jeśli χ 2 obl > χ2 (1 α, k 1), k liczba składników w sumie. Test Kołmogorowa Sprawdzamy, czy próbki pochodzą z rozkładu o dystrybuancie F (x). Ustawiamy próbki w ciąg niemalejący: x 1,... x n. Statystyka testowa gdzie Hipotezę odrzucamy, jeśli D nobl = sup S n(x) F (x), x IR { 0 dla x < x1, i S n(x) = dla x n i x < x i+1, 1 dla x x n. D nobl > d n(1 α). Test serii Sprawdzamy, czy dwie próbki pochodzą z takego samego rozkładu. α - poziom istotności, i liczebność pierwszej, a j liczebność drugiej próbki. Dwie próbki ustawiamy we wspólny ciąg rosnący. Serią nazywamy podciąg kolejnych elementów z tej samej próbki. K oznacza liczbę serii. Hipotezę odrzucamy, jeśli K k(α, i, j).

10 PARAMETRYCZNE TESTY ISTOTNOŚCI DLA ŚREDNIEJ Hipoteza µ = µ 0, W zbiór krytyczny. Hipotezę odrzucamy, gdy g W Model D1. Rozkład normalny o znanym σ. g = u obl = x µ 0 n. σ W = ( ; u(1 α)] dla hipotezy przeciwnej µ < µ 0 ; W = [u(1 α); ) dla hipotezy przeciwnej µ > µ 0 ; W = ( ; u(1 α 2 )] [u(1 α 2 ); ) dla hipotezy przeciwnej µ µ 0. Model D2. Rozkład normalny o nieznanym σ, mała próba. g = t obl = x µ 0 n. s W = ( ; t(1 α, n 1)] dla hipotezy przeciwnej µ < µ 0 ; W = [t(1 α, n 1); ) dla hipotezy przeciwnej µ > µ 0 ; W = ( ; t(1 α 2, n 1)] [t(1 α 2, n 1); ) dla hipotezy przeciwnej µ µ 0. Model D3. Rozkład dowolny o nieznanym σ. Duża próba. W jak w modelu D1. g = u obl = x µ 0 n. s

11 PARAMETRYCZNE TESTY ISTOTNOŚCI DLA WARIANCJI Hipoteza σ = σ 0, W zbiór krytyczny. Hipotezę odrzucamy, gdy g W. Model E1. Rozkład normalny o nieznanych µ i σ, n 50. Mając do dyspozycji komputer można ten model stosować i do dużych n. g = χ 2 obl (n 1)s2 = σ0 2. W = (0; χ 2 (α, n 1)] dla hipotezy przeciwnej σ < σ 0 ; W = [χ 2 (1 α, n 1); ) dla hipotezy przeciwnej σ > σ 0 ; W = (0; χ 2 ( α 2, n 1)] [χ2 (1 α 2, n 1); ) dla hipotezy przeciwnej σ σ 0; Model E2. - Rozkład normalny o nieznanych µ i σ (n 50). g = u obl = 2(n 1)s 2 σ 2 0 2n 3. W = ( ; u(1 α)] dla hipotezy przeciwnej µ < µ 0 ; W = [u(1 α); ) dla hipotezy przeciwnej µ > µ 0 ; W = ( ; u(1 α 2 )] [u(1 α 2 ); ) dla hipotezy przeciwnej µ µ 0.

12 HIPOTEZY O RÓWNOŚCI FRAKCJI ELEMENTÓW WYRÓŻNIONYCH Hipoteza p = p 0. Hipotezę odrzucamy, gdy g W. Model F1. Próba powinna być raczej duża. g = u obl = k np 0. np 0 (1 p 0 ) W = ( ; u(1 α)] dla hipotezy przeciwnej p < p 0 ; W = [u(1 α); ) dla hipotezy przeciwnej p > p 0 ; W = ( ; u(1 α 2 )] [u(1 α 2 ); ) dla hipotezy przeciwnej p p 0.

13 HIPOTEZY O RÓWNOŚCI WARIANCJI W DWÓCH POPULACJACH Model G1. Hipoteza σ 1 = σ 2. Hipotezę odrzucamy, gdy g W. Gdy hipotezą przeciwną jest σ 1 > σ 2, to g = F obl = s2 1 s 2. 2 W = [F (1 α, n 1 1, n 2 1); ). Gdy hipotezą przeciwną jest σ 1 < σ 2, to zamieniamy kolejność próbek. Gdy hipotezą przeciwną jest σ 1 σ 2, to g = F obl = max(s2 1, s2 2 ) min(s 2 1, s2 2 ). W = [F(1 α 2, n l 1, n m 1); ), gdzie n l liczność probki o większej wariancji, a n m o mniejszej.

14 HIPOTEZY O RÓWNOŚCI WARTOŚCI ŚREDNIEJ W DWÓCH POPULACJACH Hipoteza µ 1 = µ 2, W zbiór krytyczny. Hipotezę odrzucamy, gdy g W Model H1 rozkłady normalne znane σ 1 i σ 2. g = u obl = x 1 x 2. σ 1 2 + σ2 2 n 1 n 2 W = ( ; u(1 α)] dla hipotezy przeciwnej µ 1 < µ 2 ; W = [u(1 α); ) dla hipotezy przeciwnej µ 1 > µ 2 ; W = ( ; u(1 α 2 )] [u(1 α 2 ); ) dla hipotezy przeciwnej µ 1 µ 2. Model H2. rozkłady normalne, nieznane, ale równe σ 1 i σ 2. g = t obl = x 1 x 2. (n 1 1)s 2 1 +(n 2 1)s 2 2 n1+n 2 n 1 +n 2 2 n 1 n 2 W = ( ; t(1 α, n 1)] dla hipotezy przeciwnej µ 1 < µ 2 ; W = [t(1 α, n 1); ) dla hipotezy przeciwnej µ 1 > µ 2 ; W = ( ; t(1 α 2, n 1)] [t(1 α 2, n 1); ) dla hipotezy przeciwnej µ 1 µ 2. Model H3. rozkłady normalne, nieznane σ 1 i σ 2, nieduża próbka. Stosujemy statystykę (tzw. statystyka Cochrana i Coxa) g = C obl = x 1 x 2. s 2 1 + s2 2 n 1 n 2 Przybliżoną wartość kwantyla c(p, n 1, n 2 ) znajdujemy z wzoru c(p, n 1, n 2 ) s 2 1 t(p, n n 1 1) + s2 2 t(p, n 1 n 2 1) 2. s 2 1 + s2 2 n 1 n 2 Zbiór krytyczny: W = ( ; c(1 α, n 1, n 2 )] dla hipotezy przeciwnej µ 1 < µ 2 ; W = [c(1 α, n 1, n 2 ); ) dla hipotezy przeciwnej µ 1 > µ 2 ; W = ( ; c(1 α 2, n 1, n 2 )] [c(1 α 2, n 1, n 2 ); ) dla hipotezy przeciwnej µ 1 µ 2 ; Model H4 rozkłady dowolne, nieznane σ 1 i σ 2 duża próba, n 1, n 2 50. g = u obl = x 1 x 2. s 2 1 + s2 2 n 1 n 2

W = ( ; u(1 α)] dla hipotezy przeciwnej µ 1 < µ 2 ; W = [u(1 α); ) dla hipotezy przeciwnej µ 1 > µ 2 ; W = ( ; u(1 α 2 )] [u(1 α 2 ); ) dla hipotezy przeciwnej µ 1 µ 2. 15

16 HIPOTEZY O RÓWNOŚCI FRAKCJI ELEMENTÓW WYRÓŻNIONYCH W DWÓCH POPULACJACH Model I1 raczej duża próbka (n 1, n 2 50) Stawiamy hipotezę p 1 = p 2. Stosujemy statystykę g = u obl = k 1 k 2 n 1 n 2 k 1 +k 2 ( ). n 1 n 1 k 1 +k 2 2 n 1 +n 2 Gdy liczność próby nie jest dostatecznie duża stosujemy statystykę: u obl = ( 2 arc sin ) k 1 k 2 n1 n 2 2 arc sin. n 1 n 2 n 1 + n 2 Zbiór krytyczny: W = ( ; u(1 α)] dla hipotezy przeciwnej p 1 < p 2 ; W = [u(1 α); ) dla hipotezy przeciwnej p 1 > p 2 ; W = ( ; u(1 α 2 )] [u(1 α 2 ); ) dla hipotezy przeciwnej p 1 p 2 ; gdzie n 1 i n 2 liczności pierwszej i drugiej próbki, k 1 i k 2 liczby sukcesów w pierwszej i drugiej próbce.

17 TEST χ 2 NIEZALEŻNOŚCI (wartość zaobserwowana wartość spodziewana) χ 2 2 obl =. wartość spodziewana Test odrzucamy, jeśli χ 2 obl > χ2 (1 α, (r 1)(s 1)), gdzie r liczba wartości pierwszej cechy, a s liczba wartości drugiej cechy. Współczynnik Cramera gdzie m = min(r, s) Współczynnik C Pearsona χ 2 obl V = n(m 1), χ 2 obl C = χ 2 obl + n. n liczba wszystkich danych w macierzy r s.

18 Jak używać programu calc? Będziemy posługiwać się tym programem do obliczanie wartości średniej, wariancji, odchylenia standardowego oraz wynikających z tego dalszych rezultatów. Pokażemy to na przykładzie. Zakładamy, że mamy dane empiryczne x 1 = 7, x 2 = 1, x 3 = 5, x 4 = 3, x 5 = 5 oraz liczbę µ 0 = 3. Mamy policzyć kolejno x = 1 n s 2 = 1 n 1 a następnie wstawić to do wzoru: n x k, k=1 n (x i x) 2, k=1 s = s 2, x µ 0 n. s Uruchamiamy program calc i wpisujemy dane np. w komórkach A1 A5. Daną µ 0 możemy wpisać np w kolejnej komórce B1, a liczbę prób (5) np. w komórce B2. Warto wpisywać te dane w komórkach, a nie w ostatecznym wzorze, bo wtedy przy rozwiązywaniu następnego zadania opartego na tym samym modelu, wystarczy zmienić dane bez konieczności zmiany wzoru. Wybieramy jakąć inną komórkę np. C1 i wpisujemy w niej wzór: =ŚREDNIA(A1:A5) Po zaakceptowaniu ukazuje się w tej komórce wynik 4.2. Wybieramy następną komórkę powiedzmy C2 i wpisujemy w niej wzór

19 =WARIANCJA(A1:A5) Po zatwierdzeniu ukazuje się w tej komórce wynik 5.2. Wybieramy kolejną komórkę np. C3 i wpisujemy w niej wzór =pierwiastek(c2) Po zatwierdzeniu ukazuje się w tej komórce wynik 2.28 (w zależności od tego jaką dokładność wybierzemy). Wybieramy następną komórkę (np. C4) i wstawiamy w niej wzór (patrz rysunek) =(C1-B1)*pierwiastek(B2)/C3 Zauważmy, że możemy wpisywać wzory zarówno małymi jak i dużymi literami. Po zaakceptowaniu otrzymamy już ostateczny wynik 1.1767. Program calc zamiast tablic statystycznych Większość danych potrzebnych do rozwiązywania zamieszczonych tu zadań zamiast z tablic, możemy wygenerować przy pomocy

20 programu calc. Niektóre są nieco inaczej zdefiniowane niż w tablicach statystycznych, dlatego podajemy dokładnie co trzeba zrobić, aby otrzymać dane zgodne z tablicami. Ia) Dystrybuanta rozkładu normalnego Aby wyznaczyć P (X < x), gdzie X jest zmienną o rozkładzie N(0, 1), a dana x jest umieszczona np. w komórce A1 wpisujemy w komórce wyniku =rozkład.normalny.s(a1) Ib) Kwantyle rozkładu normalnego Aby wyznaczyć kwantyl u(p) rozkładu normalnego N(0, 1) np. dla danej p umieszczonej w komórce B1 wpisujemy w komórce wyniku =rozkład.normalny.s.odw(b1) IIa) Dystrybuanta rozkładu t Studenta Aby wyznaczyć P (X < x), gdzie X jest zmienną o rozkładzie t Studenta z n stopniami swobody, a dana x jest umieszczona np. w komórce A1, a dana n w komórce B1 wpisujemy w komórce wyniku =1-rozkład.t(a1;b1;1) Program akceptuje tylko x-y dodatnie. Aby wyznaczyć P (X < x) dla x ujemnych wystarczy skorzystać z wzoru P (X < x) = P (X > x) = 1 P (X < x). IIb) Kwantyle rozkładu t Studenta Aby wyznaczyć kwantyl t(p, n) rozkładu t Studenta dla danej p umieszczonej w komórce A1, danej n w komórce B1 wpisujemy w komórce wyniku =rozkład.t.odw(2*(1-a1);b1) IIIa) Dystrybuanta rozkładu χ 2

21 Aby wyznaczyć P (X < x), gdzie X jest zmienną o rozkładzie χ 2 z n stopniami swobody, a dana x jest umieszczona np. w komórce A1, a dana n w komórce B1 wpisujemy w komórce wyniku =1-rozkład.chi(a1;b1) Gęstość rozkładu χ 2 (t) jest różna od zera tylko dla t dodatnich dlatego wzór działa tylko dla x 0. IIIb) Kwantyle rozkładu χ 2 Aby wyznaczyć kwantyl χ 2 (p, n) rozkładu χ 2 dla danej p umieszczonej w komórce A1, danej n w komórce A2 wpisujemy w komórce wyniku =rozkład.chi.odw(1-a1;a2) IVa) Dystrybuanta rozkładu F Snedecora Aby wyznaczyć P (X < x), gdzie X jest zmienną o rozkładzie F Snedecora z n, k stopniami swobody, dana x jest umieszczona np. w komórce A1, a dana n w komórce B1, dana k w komórce C1 wpisujemy w komórce wyniku =1-rozkład.f(a1;b1;c1) IVb) Kwantyle rozkładu F Snedecora Aby wyznaczyć kwantyl F(p, n, k) rozkładu F dla danej p umieszczonej w komórce B1, danej n w komórce B2 i danej k w komórce B3 wpisujemy w komórce wyniku =rozkład.f.odw(1-b1;b2;b3) Korzystanie programu zamiast z tablic ma dodatkową zaletę, że możemy znajdować wartości kwantyli dla nietypowych α, których nie ma w tablicach np. 0.03, 0.17 itp. W tablicach zwykle nie ma też dystrybuant innych rozkładów niż normalny. Możemy też włączyć te wzory do danego modelu otrzymując rozwiązanie w całości przy pomocy komputera. Odpowiedni przykład opiszemy przy rozwiązywaniu konkretnego zadania.

22 Zadania

23 ZADANIE 1. Dla zmiennej losowej X o rozkładzie jednostajnym na przedziale [ 1; 3] znajdź a) P (X < 0), b) P (X > 2), c) takie c, że P (X < c) = 0.95 = p, czyli p-ty kwantyl rozkładu jednostajnego na przedziale [ 1; 3]. Dystrybuanta rozkładu jednostajnego na przedziale [ 1; 3] jest równa 0 dla x < 1, x+1 F (x) = 4 dla 1 x 3, 1 dla x > 3. Zatem a) P (X < 0) = F (0) = 1 4., b) P (X > 2) = 1 P (X < 2) = 1 F (2) = 1 3 4 = 1 4. c) Trzeba rozwiązać równanie P (X < c) = 0.95, czyli c+1 4 = 0.95. Stąd c = 2.8.

24 ZADANIE 2. Przy pomocy tablic lub komputera znajdź dla zmiennej X o rozkładzie normalnym standardowym N(0, 1) i α = 0.02: a) P (X > 2.3), b) P (X < 1.2), c) u(α), d) u(1 α), e) u(1 α 2 ). a) i b) znajdujemy w tablicy 1 otrzymując: a) 1 0.9893 = 0.0107; b) 0.115 c), d) i e) można rozwiązać zarówno komputerem jak i przy pomocy tablic. Otrzymamy c) u(0.02) = 2.05, d) u(0.98) = 2.05, e) u(0.99) = 2.33.

25 ZADANIE 3. Przy pomocy tablic lub komputera znajdź dla zmiennej X rozkładzie t Studenta z n = 9 oraz α = 0.05: a) P (X > 1.3), b) P (X < 1.4), c) t(1 α, n), d) t(1 α 2, n), a) i b) najlepiej rozwiązać programem calc otrzymując: a) 1 0.8870 = 0.1129; b) Musimy skorzystać z faktu, że t( p, n) = 1 t(p, n). Otrzymamy wynik 0.0.0975. c) t(0.95, 9) = 1.83, d) t(0.975, 9) = 2.26.

26 ZADANIE 4. Przy pomocy tablic lub komputera znajdź dla zmiennej X o rozkładzie χ 2 z n = 20 i α = 0.05: a) P (X < 20), b) P (X > 10), c) χ 2 (α, n), d) χ 2 (1 α, n) e) χ 2 (1 α 2, n). Dla a) i b) skorzystamy z programu calc. Otrzymamy dla a) wartość 0.542, a dla b) 1 0.0318 = 0.9682. Dla c) - e) można też skorzystać z tablic mamy: c) χ 2 (0.05, 20) = 10.851, d) χ 2 (0.95, 20) = 31.41, e) χ 2 (0.975, 20) = 34.17.

27 ZADANIE 5. Przy pomocy tablic lub komputera znajdź dla zmiennej X o rozkładzie F z n = 8, k = 4, oraz dla α = 0.05: a) P (X > 3), b) P (X < 4), c) F(1 α, n, k), d) F(1 α 2, n, k). Dla a) i b) skorzystamy z programu calc otrzymując dla a) wartość 0.8489, a dla b) wartość 1 0.9025 = 0.0975. c) F(0.95, 9, 4) = 6.04, d) F(0.975, 9, 4) = 8.98.

28 ZADANIE 6. Przy pomocy programu calc znajdź dla próbki x 1 = 1.31, x 2 = 2.45, x 3 = 3.45, x 4 = 2.71: a) x, b) s 2, c) s, d) błąd standardowy. a) x = 1.125, b) s 2 = 7.3009, c) s = 2.702, d) s n = 1.351.

29 ZADANIE 7. Zaobserwowano, że waga noworodków w pewnym szpitalu ma rozkład normalny z wartością średnią 3.6 kg i odchyleniem standardowym 0.26 kg. Jakie jest prawdopodobieństwo, że dziecko urodzone w tym szpitalu waży: a) więcej niż 4 kg?; b) mniej niż 3 kg? a) a = 4, b =. Stąd c = 4 3.6 0.26, d =. Zatem P (4 < X) = 1 Φ(c) = 0.40. b) a =, b = 3, Stąd c =, d = 3 3.6 0.26 = 2.31. Zatem P (X > 3) = Φ( 2.31) = 1 Φ(2.31) = 1 0.989 = 0.0.11.

30 ZADANIE 8. Czas pracy żarówek produkowanych w pewnym zakładzie ma rozkład normalny z wartością średnią 700 godzin i odchyleniem standardowym 220 godzin. Jakie jest prawdopodobieństwo, że żarówka zepsuje się przed upływem 500 godzin pracy? Mamy µ = 700, σ = 220, a =, b = 500. Stąd c =, d = 500 700 220 = 0.91. Zatem P (X < 500) = Φ( 0.91) = 1 Φ(0.91) = 1 0.82 = 0.18.

31 ZADANIE 9. Plony zboża w gospodarstwach rolnych mają rozkład normalny z wartością średnią 45 kwintali/ha i odchyleniem standardowym 14 kwintali/ha. Jaki procent gospodarstw ma wydajność większą niż 50 kwintali z hektara? Dane: µ = 45, σ = 14, a = 50, b =. Stąd c = 50 45 14 = 0.36, d =. Zatem Odp. 36%. P (50 < X) = 1 Φ(.36) = 1 0.64 = 0.36.

32 ZADANIE 10. Wzrost żołnierzy ma rozkład normalny ze średnią 177 cm i odchyleniem standardowym 13 cm. W jednostce wojskowej służy 1050 żołnierzy. Do kompanii honorowej zostanie wybranych 90 najwyższych. Ile trzeba mieć wzrostu, aby zostać wybranym? 90 1050 W tym zadaniu mamy dane prawdopodobieństwo P (X > a) = = 0.086, a musimy wyznaczyć a. Mamy 0.086 = P (X > a) = 1 Φ(c), gdzie c = a 177 13. Stąd Φ(c) = 0.914. W tablicach rozkładu normalnego znajdujemy, że c = 1.35. Stąd mamy równanie skąd a = 194.5. 1.35 = a 177, 13 Odp. Trzeba mieć co najmniej 194 cm wzrostu.

33 ZADANIE 11. Wiadomo, że maszyna do paczkowania cukru pakuje wg rozkładu normalnego z odchyleniem standardowym σ = 2dkg. Nastawiono ją na 1 kg i przebadano losowo 10 torebek otrzymując rezultaty w dkg: 103, 96, 99, 97, 99, 100, 101, 95, 97, 99. Oszacuj punktowo i przedziałowo średnią wagę torebki na poziomie ufności 1 α = 0.95. a) Oszacowanie punktowe: Mamy x = 98.60, s = 2.41. Zatem błąd standardowy jest równy s n = 0.76. Ponieważ odchylenie standardowe jest znane stosujemy model A1, gdzie l = u(1 α 2 ) σ n. W naszym przypadku l = 1.24 i P = [97.36; 99.84].

34 ZADANIE 12. Rozwiąż poprzednie zadanie przy założeniu, że odchylenie standardowe nie jest znane. Tym razem stosujemy model A2, w którym P = [x l; x + l], l = t(1 α 2, n 1) s n. W naszym przypadku n = 10, 1 α 2 = 0.975, t(0.975) = 2.26. Stąd l = 1.72, skąd P = [96.88; 100.32].

35 ZADANIE 13. Pewien algorytm sortowania przetestowano na 9 bazach danych losowo wymieszanych i uzyskano czasy sortowania w sekundach: 9, 13, 21, 7, 21, 14, 12, 21, 11. Oszacuj wartość średnią punktowo i przedziałowo przyjmując, że rozkład jest normalny oraz współczynnik ufności 1 α = 0.95. a) Oszacowanie punktowe: Obliczamy wartość średnią i wariancję. Otrzymujemy Błąd standardowy jest równy x = 14.33, s = 5.41. b) Oszacowanie przedziałowe: s 9 = 1.8. Ponieważ próba jest mała i odchylenie standardowe nie jest znane i rozkład jest normalny, stosujemy model A2. l = t(1 α 2, n 1) s n. W naszym przypadku znajdujemy t(0.975, 8) = 2.306. Stąd l = 2.306 5.41 3 = 4.16. Zatem przedział ufności jest równy [10.18; 18.49].

36 ZADANIE 14. Pewna duża firma komputerowa chce ustalić średnią wielkość sprzedaży w ciągu dnia. Na podstawie danych z 3 miesięcy (78 dni) obliczono wartość x równą 2953 tys. zł. i odchylenie standardowe empiryczne s = 1034 tys. zł. Oszacuj średnią wielkość dziennej sprzedaży przy współczynniku ufności 1 α = 0.95. Ponieważ próbka jest duża, skorzystamy z modelu A3. Mamy α = 0.05, skąd 1 α 2 = 0.975. Znajdujemy w tablicach u(1 α 2 ) = 1.96. Stąd l = 1.96 1034 78 = 229.5 Ostatecznie Znajdujemy P = [2723.5; 3182.5].

37 ZADANIE 15. Trzysta wylosowanych rodzin z danej miejscowości zapytano, czy posiadają w domu komputer. 121 rodzin odpowiedziało, że tak, w tym 91 rodzin ma komputer stacjonarny, a 42 rodziny laptop. Wyznacz przedziały ufności z 95%-ową wiarygodnością dla procentu rodzin: a) posiadających komputer; b) posiadających komputer stacjonarny; c) posiadających laptop; d) posiadających i komputer stacjonarny i laptop. Stosujemy model B1, czyli wzór [ k P = n l; k ] n + l, gdzie l = u(1 α 2 ) k n(1 k n) n. Mamy n = 300. Znajdujemy w tablicach u(1 α 2 ) = 1.96. W punkcie a) mamy k = 121, skąd k/n = 0.403 oraz l = 0.056. Zatem P = [0.348; 0.459] = [34.8%; 45.9%]. W punkcie b) mamy k = 91, skąd k/n = 0.303 oraz l = 0.052. Zatem P = [0.251; 0.355] = [25.1%; 35.5%]. W punkcie c) mamy k = 42, k/n = 0.14, l = 0.039. Stąd P = [0.101; 0.179] = [10.1%; 17.9%]. W punkcie d) mamy k = 12 (dlaczego?), skąd k/n = 0.04 oraz l = 0.022. Zatem P = [0.018; 0.062] = [1.8%; 6.2%].

38 ZADANIE 16. Pewna firma cukiernicza zakupiła automat do produkcji i porcjowania lodów. Nastawiono automat na 5 dkg i sprawdzono na bardzo dokładnej wadze 9 losowo wybranych porcji otrzymując wyniki w dkg: 5.07, 5.08, 4.91, 4.95, 5.00, 5.09. 4.98, 4.95, 4.96. Zakładając, że rozkład jest normalny wyznacz przedziały ufności dla odchylenia standardowego na poziomie ufności 1 α = 0.99. Stosujemy model C1. W tablicach rozkładu χ 2 znajdujemy χ 2 (1 α 2, n 1) = χ2 (0.995, 8) = 21.96, χ 2 ( α 2, n 1) = χ2 (0.005, 8) = 1.34. Natępnie mamy s = 0.065659. Stąd [ ] n 1 P = s χ 2 (1 α 2, n 1); s n 1 χ 2 ( α 2, n 1) = [0.0396; 0.1602]. Opiszemy krok po kroku jak można rozwiązać to zadanie całkowicie przy użyciu pakietu calc Wpisujemy w komórkach A1-A9 dane. Wpisujemy w komórce B2 liczbę 0.99. Wpisujemy w komórce B3 liczbę 9. Wpisujemy w komórce C1 Wpisujemy w komórce C2 Wpisujemy w komórce C3 Wpisujemy w komórce C4 Wpisujemy w komórce C5 =średnia(a1:a9) =pierwiastek(wariancja(a1:a9)) =rozkład.chi.odw(b1/2;8) =rozkład.chi.odw(1-b1/2;8) =c2*pierwiastek((b3-1)/c3)

39 To będzie lewy koniec przedziału. Wpisujemy w komórce D5 =c2*pierwiastek((b3-1)/c4) To będzie prawy koniec przedziału.

40 ZADANIE 17. W celu sprawdzenia, czy automat do pakowania mąki porcjuje precyzyjnie firma młynarska przed ewentualnym zakupem zważyła 200 kilogramowych torebek mąki i otrzymała wyniki w kg: x = 0.99 i odchylenie standardowe z próbki s = 0.077 dkg. Wyznacz przedział ufności dla odchylenia standardowego przy współczynniku ufności 1 α = 0.95. Dla dużej próby stosujemy nodel C2. Mamy u(1 α 2 ) = 1.96. Stąd [ 0.077 398 0.077 ] 398 P = ; = [0.072; 0.083]. 397 + 1.96 397 1.96

41 ZADANIE 18. Mamy zważyć sztabkę złota. Chcemy, na poziomie ufności 0.95 otrzymać przedział ufności [x l; x + l] z l = 0.01 mg. Elektroniczna waga ma rozkład błędów normalny z odchyleniem standardowym 0.02 mg. Ile niezależnych pomiarów trzeba wykonać? Ponieważ odchylenie standardowe jest znane, stosujemy wzór M1. Z tablic kwantyli rozkładu normalnego znajdujemy u(1 α 2 ) = 1.96. A więc ( ) 2 1.96 0.02 n > = 15.37. 0.01 Trzeba wykonać 16 pomiarów.

42 ZADANIE 19. Pewien program sortujący dane został przetestowany na 7 losowo wybranych różnego rodzaju plikach długości 1000000 rekordów, i otrzymano czas sortowania w sek. 111, 22, 33, 42, 199, 77, 138. Ile jeszcze należy dodatkowo dokonać testów, aby otrzymać na poziomie ufności 1 α = 0.95 przedział ufności nie dłuższy niż 80 sek?. Zakładamy, że cecha ma rozkład normalny. Zastosujemy procedurę Steina (model M2). Mamy x 0 = 88.86, s 0 = 64.5, l = 80 2 = 40, n 0 = 7, t(0.975, 6) = 2.447. Wstawiając to wszystko do wzoru M2 otrzymujemy n > ( 2.447 64.5 ) 2 6 40 7 + 1 = 14.35. Trzeba jeszcze dodać 15 7 = 8 dodatkowych pomiarów.

43 ZADANIE 20. Pewien informatyk skonstruował program rozpoznający linie papilarne. Ile prób należy przeprowadzić, aby na poziomie ufności 1 α = 0.95 otrzymać przedział ufności długości 10%? Zastosujemy wzór M3. Mamy u(1 α 0.10 2 ) = 1.96, l = 2 = 0.05. Zatem n 1.962 4 0.05 2 = 384.2. Trzeba wykonać 385 prób.

44 ZADANIE 21. Pewien sklep chce przeprowadzić badanie, jaki procent klientów po raz drugi dokonuje zakupów w tym sklepie. Ilu klientów powinien uwzględnić w badaniu aby na poziomie ufności 1 α = 0.9 otrzymać przedział ufności długości 6%? Ponownie skorzystamy z wzoru M3. Mamy u(1 α 2 ) = 1.64. l = 0.03. n 1.642 4 0.03 2 = 747.11. Powinien w badaniu uwzględnić 748 klientów. 1 1 Liczba 1.64 jako wartość kwantyla u(0.95) jest w tablicach podana w przybliżeniu. Dlatego, jeśli użyjemy do obliczeń programu calc to użyta zostanie jako u(0.95) dokładniejsza liczba 1.64485 i otrzymamy w tym zadaniu wynik 751.

45 ZADANIE 22. Rzucamy 20 razy kostką. Otrzymaliśmy wyniki otrzymane w tabelce: liczba oczek 1 2 3 4 5 6 liczba rzutów 0 2 7 5 3 3 Zweryfikuj hipotezę, że kość jest uczciwa, przyjmując α = 0.05. to 20 6 Zastosujemy test χ 2. Wartość spodziewana dla każdej liczby oczek = 3.33. W takim razie wartość statystyki testowej wynosi χ 2 obl = (0 3.33)2 3.33 (5 3.33) 2 + 3.33 + (3 3.33)2 3.33 (2 3.33)2 3.33 + + (3 3.33)2 3.33 (7 3.33)2 + 3.33 = 8.8. W tablicach kwantyli rozkładu χ 2 lub przy pomocy komputera znajdujemy χ 2 (0.95, 5) = 11.071. Nie ma powodu odrzucania hipotezy, bo 8.8 < 11.071.

46 ZADANIE 23. Ruletka ma 4 równe pola: dwa czerwone, jedno białe i jedno czarne. Uruchomiono ją 100 razy; 60 razy wypadło pole czerwone, 29 razy białe i 11 razy czarne. Zweryfikuj hipotezę, że ruletka jest uczciwa przyjmując: a) α = 0.05 i b) α = 0.005. Ponownie zastosujemy test χ 2. Przy 100 losowaniach wartości spodziewane to: 50 razy pole czerwone i po 25 razy pole białe i pole czarne. Zatem statystyka testowa wynosi χ 2 obl = (60 50)2 50 + (29 25)2 25 + (11 25)2 25 = 10.48. W tablicach rozkładu χ 2 lub przy pomocy komputera znajdujemy χ 2 (0.95, 2) = 5.991 oraz χ 2 (0.995, 2) = 10.597 Hipotezę odrzucamy w punkcie a), a punkcie b) nie.

47 ZADANIE 24. Łucznik strzelał z łuku do tarczy o promieniu 10 cm. W 10 próbach otrzymał następujące odległości od środka tarczy (z dokładnością 1cm): 4, 7, 8, 8, 0, 3, 2, 5, 7, 6. Zweryfikuj na poziomie istotności α = 0.05 hipotezę, że rozkład odległości trafień od środka tarczy jest jednostajny na przedziale [0; 10]. Stosujemy test Kołmogorowa. Rozkład jednostajny na przedziale [0; 10] ma dystrybuantę 0 dla x < 0, x F (x) = 10 dla 0 x 10, 1 dla x > 10. Tworzymy tabelę x i F (x i ) i 1 i i 1 9 9 9 F (x i) i 9 F (x i) 0 0 0 0,1 0 0,1 2 0,2 0,1 0,2 0,1 0,0 3 0,3 0,2 0,3 0,1 0,0 4 0,4 0,3 0,4 0,1 0,0 5 0,5 0,4 0,5 0,1 0,0 6 0,6 0,5 0,6 0,1 0,0 7 0,7 0,6 0,7 0,1 0,0 7 0,7 0,7 0,8 0,0 0,1 8 0,8 0,8 0,9 0,0 0,1 8 0,8 0,9 1,0 0,1 0,2 max 0,1 0,2 Stąd maksimum=0.2. W tablicach rozkładu Kołmogorowa znajdujemy d 10 (0.95) = 0.409. Wartość statystyki testowej jest mniejsza. Hipotezy nie odrzucamy.

48 ZADANIE 25. Zważono losowo 9 paczek wysyłanych w pewnym urzędzie pocztowym i uzyskano wyniki w kg. 6.0, 1.5, 0.7, 2.5, 6.3, 1.1, 2.2, 2.8, 1.1. Postaw hipotezę, że rozkład jest typu N(x, s) 2 i zweryfikuj ją na poziomie istotności α = 0.05. Obliczając przy pomocy komputera mamy x = 1.52, s = 0, 70. stawiamy hipotezę, że próbka pochodzi z rozkładu N(1.52, 0.70). Stosujemy test Kołmogorowa. Tworzymy tabelkę: x i F (x i ) i 1 i i 1 9 9 9 F (x i) i 9 F (x i) 0.7 0,17 0 0,11 0,17 0,06 1.1 0,22 0,11 0,22 0,11 0,00 1.1 0,22 0,22 0,33 0,00 0,11 1.5 0,28 0,33 0,44 0,05 0,16 2.2 0,41 0,44 0,56 0,04 0,15 2.5 0,46 0,56 0,67 0,09 0,20 2.8 0,52 0,67 0,78 0,14 0,26 6.0 0,94 0,78 0,89 0,16 0,06 6.3 0,96 0,89 1,00 0,07 0,06 max 0,17 0,26 D nobl = 0.26. Znajdujemy w tablicach d 9 (0.95) = 0.43. Hipotezy nie odrzucamy. 2 W zasadzie test Kołmogorowa powinno stosować się wtedy, gdy parametry rozkładu, z którym porównujemy próbkę są z góry dane.

49 ZADANIE 26. Próbka dała następujące wyniki 0, 0, 0, 0, 0, 6. Pokaż przy pomocy testu Kołmogorowa, że na poziomie istotności α = 0.10 należy odrzucić hipotezę, że rozkład jest typu N(x, s). Mamy x = 1, s = 2.45. Tworzymy tabelkę dla testu Kołmogorowa. Stawiamy hipotezę, że próbka pochodzi od rozkładu N(1, 0.245). x i F (x i ) i 1 i i 1 6 6 6 F (x i) i 6 F (x i) 0 0.33 0 0.17 0.34 0.17 0 0.33 0.17 0.33 0.17 0.01 0 0.33 0.33 0.50 0.01 0.16 0 0.33 0.50 0.67 0.16 0.32 0 0.33 0.67 0.83 0.33 0.49 6 0.96 0.83 1 0.15 0.02 max 0.34 0.49 D nobl jest równe 0.49. Natomiast d 6 (0.90) = 0.468. Zatem hipotezę odrzucamy.

50 ZADANIE 27. Rozważ próbę z poprzedniego zadania. Pokaż, że przy innym wyborze µ na tym samym poziomie istotności nie odrzucimy hipotezy, że rozkład jest typu N(µ, s). Jeśli ustalimy średnią na przykład na 0.5, to test Kołmogorowa da rezultat x i F (x i ) i 1 i i 1 6 6 6 F (x i) i 6 F (x i) 0 0.42 0 0.17 0.42 0.25 0 0.42 0.17 0.33 0.25 0.09 0 0.42 0.33 0.50 0.09 0.08 0 0.42 0.50 0.67 0.08 0.25 0 0.42 0.67 0.83 0.24 0.41 6 0.99 0.83 1 0.15 0.01 max 0.42 0.41 D nobl = 0.42. Natomiast d 6 (0.90) = 0.468. Zatem hipotezy nie odrzucamy.

51 ZADANIE 28. Jeszcze raz rozważ próbkę z poprzedniego zadania. Pokaż, że nie odrzucimy hipotezy na tym samym poziomie istotności, że rozkład jest jednostajny na przedziale [a; b] przy pewnym wyborze a i b. Wybierzmy np. a = 6, b = 8. Wtedy 0 dla x < 6 x+6 F (x) = 14 dla x [ 6; 8] 1 dla x > 8. Zatem tabela do testu Kołmogorowa wygląda następująco: x i F (x i ) i 1 i i 1 6 6 6 F (x i) i 6 F (x i) 0 0.43 0 0.17 0.43 0.26 0 0.43 0.17 0.33 0.26 0.10 0 0.43 0.33 0.50 0.10 0.07 0 0.43 0.50 0.67 0.07 0.24 0 0.43 0.67 0.83 0.24 0.40 6 0.86 0.83 1 0.02 0.14 max 0.43 0.40 Maksimum jest równe 0.43. Natomiast d 6 (0.90) = 0.468. Zatem hipotezy nie odrzucamy.

52 ZADANIE 29. Pewien sklep sprowadził jabłka tej samej odmiany od dwóch dostawców. Wybrał losowo po 7 jabłek z każdej dostawy i zważył je. Otrzymał rezultaty w gramach: u pierwszego dostawcy 123, 111, 134, 144, 122, 133, 145. U drugiego dostawcy 122, 133, 117, 129, 137, 159, 161. Czy na poziomie istotności α = 0.05 można stwierdzić, że obaj dostawcy dają analogiczną ofertę? Zastosujemy test serii. Ustawimy wszystkie wartości w ciąg rosnący. Oznaczmy pierwszego dostawcę przez x, drugiego przez y. Otrzymamy tabelkę: 111 117 122 122 123 129 133 133 134 137 144 145 159 161 x y x(y) y(x) x y x(y) y(x) x y x x y y W dwóch przypadkach mamy te same wartości w obu próbkach, zatem serii może być najmniej 8, a najwięcej 10, w zależności od tego jak ustawimy próbki o tej samej wartości. Znajdujemy w tablicy 8 k(0.05, 7, 7) = 4. Widzimy, że niezależnie od ustawienia kolejności takich samych wartości, mamy K > 4. Uznajemy, że obaj dostawcy mają podobną ofertę.

53 ZADANIE 30. Producent wag twierdzi, że jego wagi działają z odchyleniem standardowym 0.1 dkg. Aby sprawdzić, czy dostarczone nam z hurtowni torebki cukru są kilogramowe, zważyliśmy 100 losowo wybranych torebek i otrzymaliśmy wartość średnią 0.995 kg. Czy na poziomie istotności α = 0.05 możemy mieć do hurtownika zastrzeżenia? Należy zastosować model D1. Stawiamy hipotezę µ = 100 przeciwko hipotezie µ < 100. Wartość statystyki testowej jest równa (po przeliczeniu wszystkich danych na dekagramy) u obl = 99.5 100 0.1 Zbiorem krytycznym jest przedział 10 = 5. ( ; u(0.95)] = ( ; 1.64]. Wartość statystyki testowej należy do zbioru krytycznego (i to wyraźnie!). Powinniśmy mieć poważne zastrzeżenia.