Nanorurki mają moc N N N O S NH NH SO 3



Podobne dokumenty
Laboratorium z Konwersji Energii. Ogniwo Paliwowe PEM

Wyciskamy z cytryny... prąd elektryczny. Wpisany przez Administrator środa, 04 lipca :26 -

Schemat ogniwa:... Równanie reakcji:...

Akademickie Centrum Czystej Energii. Ogniwo paliwowe

LABORATORIUM PRZEMIAN ENERGII

Celem ćwiczenia jest wyznaczenie charakterystyki prądowo- napięciowej elektrolizera typu PEM,

Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej. Część V

1. za pomocą pomiaru SEM (siła elektromotoryczna róŝnica potencjałów dwóch elektrod) i na podstawie wzoru wyznaczenie stęŝenia,

CHP z ogniwem paliwowym Przegląd rynku

Ogniwo paliwowe typu PEM (ang. PEM-FC)

PODSTAWY KOROZJI ELEKTROCHEMICZNEJ

Podstawowe pojęcia 1

Podstawy elektrochemii

Wrocław dn. 22 listopada 2005 roku. Temat lekcji: Elektroliza roztworów wodnych.

Przetwarzanie energii: kondensatory

Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu. (na prawach rękopisu)

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali

Kryteria oceniania z chemii kl VII

Przetwarzanie energii: kondensatory

WYMAGANIA EDUKACYJNE Z CHEMII 2013/2014

K, Na, Ca, Mg, Al, Zn, Fe, Sn, Pb, H, Cu, Ag, Hg, Pt, Au

Materiały katodowe dla ogniw Li-ion wybrane zagadnienia

Ćwiczenie 5. Testowanie ogniwa paliwowego wodorowego zasilanego energią pochodzącą z konwersji fotowoltaicznej

Chemia - laboratorium

Reakcje chemiczne. Typ reakcji Schemat Przykłady Reakcja syntezy

Ćwiczenie 5. Testowanie ogniwa paliwowego wodorowego zasilanego energią pochodzącą z konwersji fotowoltaicznej

POWTÓRKA Z ELEKTROCHEMII


wykład 6 elektorochemia

Fragmenty Działu 8 z Tomu 1 PODSTAWY ELEKTROCHEMII

Opracowała: mgr inż. Ewelina Nowak

Obwody prądu stałego. Materiały dydaktyczne dla kierunku Technik Optyk (W12)Kwalifikacyjnego kursu zawodowego.

Elektrochemia - szereg elektrochemiczny metali. Zadania

TYPY REAKCJI CHEMICZNYCH

IV A. Reakcje utleniania i redukcji. Metale i niemetale

IV. Reakcje utleniania i redukcji. Metale i niemetale

CHEMIA. Wymagania szczegółowe. Wymagania ogólne

Budowa i zasada działania akumulatora

Laboratorium odnawialnych źródeł energii. Ćwiczenie nr 5

Samochody na wodór. Zastosowanie. Wodór w samochodach. Historia. Przechowywanie wodoru

Praca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna

Politechnika Gdańska Wydział Chemiczny Katedra Technologii Chemicznej. Rozprawa doktorska

uczeń opanował wszystkie wymagania podstawowe i ponadpodstawowe

Repetytorium z wybranych zagadnień z chemii

Cel ogólny lekcji: Omówienie ogniwa jako źródła prądu oraz zapoznanie z budową ogniwa Daniella.

Karta pracy III/1a Elektrochemia: ogniwa galwaniczne

Fascynujący świat chemii

Chemia analityczna. Redoksymetria. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego

CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU.

Katedra Inżynierii Materiałowej

Cukry właściwości i funkcje

PRZEWODNIK PO PRZEDMIOCIE

10. OGNIWA GALWANICZNE

W tej reakcji stopień utleniania żelaza wzrasta od 0 do III. Odwrotnie tlen zmniejszył stopień utlenienia z 0 na II.

(zwane również sensorami)

Opracowała: mgr inż. Ewelina Nowak

1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 2 Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.

Nauka przez obserwacje - Badanie wpływu różnych czynników na szybkość procesu. korozji

Czy prąd przepływający przez ciecz zmienia jej własności chemiczne?

Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II

Scenariusz lekcji chemii w klasie III gimnazjum. Temat lekcji: Białka skład pierwiastkowy, budowa, właściwości i reakcje charakterystyczne

Elektrochemia. Reakcje redoks (utlenienia-redukcji) Stopień utlenienia

10. OGNIWA GALWANICZNE

Lista materiałów dydaktycznych dostępnych w Multitece Chemia Nowej Ery dla klasy 7

Moduł: Chemia. Fundamenty. Liczba godzin. Nr rozdziału Tytuł. Temat lekcji. Rozdział 1. Przewodnik po chemii (12 godzin)

VII Podkarpacki Konkurs Chemiczny 2014/2015

BIOSENSORY SENSORY BIOMEDYCZNE. Sawicki Tomasz Balicki Dominik

Elektroliza - rozkład wody, wydzielanie innych gazów. i pokrycia galwaniczne.

Elektroliza: polaryzacja elektrod, nadnapięcie Jakościowy oraz ilościowy opis elektrolizy. Prawa Faraday a

Zastosowanie nanomateriałów węglowych do konstrukcji enzymatycznych bioczujników i bioogniw

NAPIĘCIE ROZKŁADOWE. Ćwiczenie nr 37. I. Cel ćwiczenia. II. Zagadnienia wprowadzające

Pytania przykładowe na kolokwium zaliczeniowe z Podstaw Elektrochemii i Korozji

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 35: Elektroliza

Materiały elektrodowe

1. BUDOWA I ZASADA DZIAŁANIA OGNIWA PALIWOWEGO

Czynniki wpływające na szybkość reakcji

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY. PRACOWNIA MATERIAŁOZNAWSTWA ELEKTROTECHNICZNEGO KWNiAE

węgiel węgiel obecnego w cząsteczce C 2 H 5 OH, jednak mechanizm tego procesu pozostaje nadal niejasny. Analiza poszczególnych materiałów

Reakcje redoks polegają na przenoszeniu (wymianie) elektronów pomiędzy atomami.

... imię i nazwisko,nazwa szkoły, miasto

Zagadnienia. Budowa atomu a. rozmieszczenie elektronów na orbitalach Z = 1-40; I

Elektrochemia cz.1 Podstawy i jonika

Powtórzenie wiadomości z kl. I

Sem nr. 10. Elektrochemia układów równowagowych. Zastosowanie

Marta Radomska. Projektowanie i charakterystyka fizykochemiczna hybrydowych układów do utleniania glukozy

Tematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj.

SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU BIOLOGIA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA

Procesy biotransformacji

UNIWERSYTET W BIAŁYMSTOKU WYDZIAŁ BIOLOGICZNO-CHEMICZNY

10.2. Źródła prądu. Obwód elektryczny

Nowe kierunki rozwoju technologii superkondensatorów

Grafen perspektywy zastosowań

Wymagania edukacyjne na poszczególne roczne oceny klasyfikacyjne z przedmiotu chemia dla klasy 7 w r. szk. 2019/2020

Eksperyment 2.2. Charakterystyka IU elektrolizera. Zadanie. Wykonanie

1. Zaproponuj doświadczenie pozwalające oszacować szybkość reakcji hydrolizy octanu etylu w środowisku obojętnym

Substancje o Znaczeniu Biologicznym

Sprawozdanie z przedsięwzięcia "Budowa ekologicznego pojazdu zasilanego ogniwem paliwowym." WFOŚ/D/201/54/2015

Reakcje redoks polegają na przenoszeniu (wymianie) elektronów pomiędzy atomami.

Transkrypt:

anorurki mają moc H H 3 H

W 2003 roku naukowcy z Uniwersytetu w Teksasie zaprezentowali nowe źródło energii elektrycznej winogrono. Układ składał się z dwóch elektrod węglowych umieszczonych w owocu winogrona. Średnica elektrod była mniejsza niż średnica ludzkiego włosa. Taka winogronowa bateryjka działała jeden dzień i produkowała 2,4 μw energii. Biorąc pod uwagę, że do zasilenia jednej żarówki trzeba by było połączyć w układ miliony takich winogron z elektrodami, wynik ten nie wydaje się być spektakularnym. Jednakże perspektywa zbudowania źródła mocy z surowców całkowicie odnawialnych budzi w chwili obecnej ogromne zainteresowanie. W tym miejscu należy również podkreślić, że te mizernie kilka mikrowatów wystarczyłoby do zasilenia np. mikroczujnika. Pewnie niejeden z czytelników zastanawia się co w tym nowego. Większość z nas widziała na lekcji chemii, że cytryna lub ogórek kiszony, do których wbito elektrody np. z żelaza i miedzi mogą stanowić ogniwo o mocy wystarczającej do zasilenia małej żarówki. To co za różnica, czy będzie to winogrono czy cytryna? Różnica jest i to olbrzymia. gniwo na bazie elektrod metalicznych i np. cytryny to tzw. ogniwo galwaniczne. Energia elektryczna powstaje na skutek reakcji chemicznych zachodzących samorzutnie między elektrodami i elektrolitem. W wyniku reakcji utleniania jedna z elektrod ulega zużyciu, co sprawia, że po pewnym czasie ogniwo przestaje działać. atomiast przytoczone ogniwo na bazie winogron jest tzw. bioogniwem paliwowym. W bioogniwie paliwowym energia elektryczna jest otrzymywana na skutek biochemicznych reakcji redoks katalizowanych enzymami. ubstratami dla takich reakcji mogą być między innymi węglowodany (np. glukoza) i tlen. W bioogniwie paliwowym elektrody nie ulegają zużyciu. Energia elektryczna jest generowana na skutek reakcji utleniania i redukcji substratów (paliwa). bie te reakcje zachodzą w obecności odpowiednich enzymów, stąd ogniwo takie nazywa się enzymatycznym bioogniwem paliwowym (patrz Rysunek 1). a anodzie zachodzi reakcja utleniania np. glukozy, tzn. elektrony zostają oddane do elektrody. atomiast na drugiej elektrodzie (katodzie) zachodzi reakcja redukcji tlenu, czyli elektrony zostają pobrane z katody. Gdy elektrody zostaną połączone przewodem, w układzie płynie prąd elektryczny. Praca na konkurs komplikowane i proste trona 2 z 8

V utlenianie A R redukcja glukoza H 2 glukonolakton ksydaza glukozowa lakaza 2 Rysunek 1. chemat budowy bioogniwa paliwowego. W opisanym ogniwie winogronowym elektrody węglowe zostały zmodyfikowane enzymami i umieszczone w miąższu winogrona, które jako owoc bogaty w glukozę jest dobrym paliwem do zasilania bioogniwa. Elektrody z węgla szklistego Warto podkreślić, że glukoza jest podstawowym związkiem energetycznym dla większości organizmów, a reakcja utleniania glukozy jest podstawową reakcją metabolizmu organizmów żywych. gniwo wykorzystujące enzymatyczną reakcję utleniania glukozy jest kolejnym przykładem próby naśladowania i wykorzystania osiągnięć natury. Więcej mocy W bioogniwie paliwowym płynie prąd, ponieważ następuje ciągła wymiana elektronów między enzymem i substratem (paliwem), a następnie między enzymem i elektrodą. posób w jaki enzym wymienia elektrony z elektrodą ma bardzo istotne znaczenie dla pracy bioogniwa paliwowego. Ważne jest, aby przeniesienie elektronów było jak najbardziej efektywne i zachodziło w sposób możliwie najprostszy, wówczas otrzymywane moce będą wyższe. Istnieje niewiele enzymów, które są zdolne wymieniać elektrony bezpośrednio z elektrodą. Bezpośrednie przeniesienie elektronów zależy od struktury enzymu, w szczególności od miejsca położenia centrów redoks w enzymie, orientacji enzymu względem elektrody i odległości na jaką muszą być przenoszone elektrony. Większość enzymów, Praca na konkurs komplikowane i proste trona 3 z 8

stosowanych zazwyczaj do budowy bioogniw paliwowych nie wykazuje zdolności do bezpośredniej wymiany elektronów z elektrodą lub wymiana ta jest niewystarczająca i zbyt powolna. W takich przypadkach stosuje się elektrochemicznie aktywne związki, aby pośredniczyły w przenoszeniu elektronów. ubstancje te, nazywane mediatorami, można porównać do elektrycznych pomostów, które łączą enzym z elektrodą, znacznie poprawiając wydajność bioogniwa. a Rysunku 2 przedstawiono cykl reakcji zachodzących w układzie substrat - enzym - mediator, strzałki pokazują drogę elektronu. Mediator bierze udział w katalizowanej reakcji, reagując bezpośrednio z enzymem. am ulega utlenieniu lub redukcji, wymieniając wówczas elektrony z powierzchnią elektrody. atomiast enzym utlenia bądź redukuje substrat. e Mediator (zredukowany) Enzym (zredukowany) ubstrat (zredukowany) powierzchnia elektrody Mediator (utleniony) Enzym (utleniony) ubstrat (utleniony) Rysunek 2. chemat przenoszenia elektronów w układzie enzym-mediator-substrat Moc jest w nas Jednym z potencjalnie ważnych zastosowań bioogniw, stanowiących jednocześnie mój główny cel badań, jest zasilanie urządzeń wszczepialnych np. czujników glukozy, rozruszników serca itp. Kiedy ogniwo zostanie zaimplantowane do organizmu, paliwem do jego pracy może być glukoza i tlen, które są zawarte w płynach ustrojowych. Czyli takie urządzenie nie będzie wymagało zewnętrznego zasilania, a energię potrzebną do jego prawidłowego działania będzie czerpało ze składników naturalnie występujących w organizmie. Z drugiej strony, w skład budowy wszczepialnego bioogniwa nie mogą wchodzić, jak również w wyniku jego pracy nie mogą powstawać związki szkodliwe dla organizmu. Z tego względu dobór elementów składających się na bioogniwo wszczepialne musi być dobrze przemyślany. Elektrody w bioogniwie paliwowym wykonywano początkowo z platyny. Ze względu na to, że platyna jest metalem drogim (cena zbliżona do ceny złota), Praca na konkurs komplikowane i proste trona 4 z 8

zastąpiono ją innym materiałem, tzw. węglem szklistym, który otrzymuje się na skutek zwęglania związków bogatych w węgiel np. polimerów. Istotną cechą węgla szklistego jest to, że nie dezaktywuje stosowanych w bioogniwie enzymów, co niestety obserwuje się dla niektórych metali. ajczęściej stosowanym enzymem pracującym na katodzie w bioogniwie jest lakaza. Lakazy to miedzioproteiny, które występują głównie w grzybach. Katalizują one reakcję redukcji tlenu bezpośrednio do wody. Jest to bardzo ważne, zwłaszcza z punktu widzenia bioogniw wszczepialnych. Większość enzymów redukuje tlen do nadtlenku wodoru. Choć trzyprocentowy wodny roztwór nadtlenku wodoru to znana woda utleniona, stosowana do odkażania ran, to nadtlenek wodoru w dużych stężeniach wykazuje właściwości żrące wobec żywych tkanek, więc jego obecność jest niepożądana. Do konstrukcji anody bioogniwa paliwowego zazwyczaj wykorzystuje się oksydazę glukozową (Gx) osadzoną na węglu szklistym. ksydaza glukozowa utlenia glukozę do glukonolaktonu, ten następnie ulega hydrolizie do kwasu glukonowego, który jest naturalnym metabolitem. bydwa enzymy powinny mieć jak największy kontakt z elektrodą. Z tego względu stosuje się tzw. matryce polimerowe, które unieruchamiają enzymy na elektrodach. Matryce te nie pozwalają enzymom oddalić się od elektrody, natomiast małe cząsteczki tlenu i glukozy mogą się poruszać wewnątrz matrycy. Aby poprawić wydajność bioogniwa stosuje się mediatory, które dobiera się do każdego enzymu osobno. Z reguły stosuje się pewien nadmiar mediatora rozpuszczonego w roztworze, w którym zanurzone są elektrody. Z zastosowaniem mediatorów wiąże się kilka niedogodności, a mianowicie różna stabilność i selektywność mediatora, dodatkowe koszty związane z produkcją i koniecznością stosowania dużych stężeń mediatora, czy możliwość wyciekania mediatora, co ogranicza zastosowanie takiego bioogniwa jako zasilania do urządzeń wszczepialnych. Pomimo wymienionych powyżej negatywnych aspektów stosowania mediatorów przy budowie bioogniw, rozwiązanie to jest nadal korzystne. Gęstości prądu i mocy otrzymywane w bioogniwie z udziałem mediatorów są znacznie wyższe, niż dla układów opartych na bezpośrednim przeniesieniu elektronów. To gdzie te nanorurki? Węgiel odgrywa szczególna rolę w naturze. Zdolność atomów węgla do wiązania się w skomplikowane sieci jest podstawą chemii organicznej i warunkiem istnienia życia, Praca na konkurs komplikowane i proste trona 5 z 8

przynajmniej w znanej nam formie. Już elementarny węgiel ujawnia swoją złożoną naturę przejawiającą się w licznych formach alotropowych, tzn. składających się wyłącznie z atomów węgla, ale różniących się właściwościami chemicznymi i fizycznymi. Diament i grafit, znane od czasów starożytnych, nie tak dawno odkryte fulereny, nanorurki i grafen skupiają nieustanną uwagę naukowców. anorurki znajdują się w sferze intensywnych badań od kilku lat. Można je sobie wyobrazić jako walce bez szwu utworzone ze zwiniętej warstwy grafenowej (pojedynczej warstwy grafitu) zbudowanej z regularnych sześciokątów. Znane są jednościenne nanorurki węglowe, zbudowane z jednej warstwy atomów (Rysunek 3 a) oraz wielościenne nanorurki węglowe, które tworzy kilka koncentrycznie ułożonych cylindrów węglowych (Rysunek 3 b). a) b) Rysunek 3. Wyidealizowana struktura a) Jednościennej nanorurki węglowej; b) Wielościennej nanorurki węglowej anorurki mają postać czarnego proszku. ą praktycznie nierozpuszczalne w wodzie i w rozpuszczalnikach organicznych, odznaczają się dużą wytrzymałością na rozciąganie oraz odpornością na wysoką temperaturę oraz co najważniejsze przewodzą prąd elektryczny. Co więcej, okazało się, że nanorurki węglowe obniżają nadpotencjał reakcji redukcji tlenu oraz mają korzystny wpływ na zjawisko bezpośredniego przeniesienia elektronów pomiędzy enzymem a elektrodą, co sprawia, że stają się doskonałym materiałem do budowy elektrody w bioogniwie paliwowym. Jak wspomniano wcześniej wydajność bioogniwa znacznie się zwiększa kiedy zastosuje się odpowiedni mediator. A co się stanie, gdy połączy się nanorurki z mediatorem? Przeprowadzone przeze mnie badania dały odpowiedź na to pytanie. Praca na konkurs komplikowane i proste trona 6 z 8

Zacznijmy od początku, czyli od syntezy. anorurki węglowe są materiałem biernym chemicznie tzn. reagują niechętnie. Ulegają jednak pewnym reakcjom chemicznym, co pozwala na przyłączenie różnych związków do ich struktury. ie będę szczegółowo opisywać etapów syntezy. Pragnę tylko zapewnić, że nie jest to czarna - jak nanorurki - magia, ale zwykła, choć trochę zmieniona chemia. Kolejnym etapem było sprawdzenie, czy to co otrzymałam, jest tym co zamierzałam otrzymać. W przypadku nanorurek, potwierdzenie ich chemicznej modyfikacji jest chyba najtrudniejszym zadaniem. ie ma jednej metody, która pozwoliłaby na jednoznaczne opisanie otrzymywanych struktur. Konieczne jest zastosowanie kilku metod i po uważnym przeanalizowaniu otrzymanych wyników, wyciągnięcie właściwych wniosków. zczęśliwie dla mnie, wyniki przeprowadzonych eksperymentów potwierdziły skuteczność moich działań. Przykłady otrzymanych przeze mnie struktur tzn. nanorurek i przyłączonych do nich mediatorów pokazano na Rysunku 4. Fe H H Fe H H 3 H Rysunek 4. U góry nanorurka z ferrocenem, na dole nanorurka z ABT Zmodyfikowane nanorurki zostały wykorzystane do budowy elektrod w bioogniwie paliwowym. anorurki z ferrocenem zostały naniesione na anodę, natomiast nanorurki z ABT osadzono na katodzie. Chemiczne przyłączenie mediatora do nanorurek pozwoliło na otrzymanie materiału, który jest trwały, nierozpuszczalny, stąd nie wymywa się, gdy zastosujemy go jako element budowy wszczepialnego bioogniwa. Uzyskane wyniki były dla mnie sporym, ale bardzo pozytywnym zaskoczeniem. Dla pary modyfikowanych nanorurek Praca na konkurs komplikowane i proste trona 7 z 8

pokazanych na rysunku moc zbudowanego prototypowego ogniwa wzrosła stukrotnie w porównaniu z analogicznym ogniwem, w którym nie zastosowano modyfikowanych nanorurek. Jest to wynik, który mówi sam za siebie i motywuje do prowadzenia dalszych badań w tym zakresie. Jednym zdaniem: anorurki mają moc! Praca na konkurs komplikowane i proste trona 8 z 8