Transport i dystrybucja paliw gazowych Przeróbka paliw gazowych Wydział Energetyki i Paliw Katedra Technologii Paliw
Oczyszczanie i wzbogacanie gazu ziemnego PSA Pressure Swing Adsorption NGL Natural Gas Liquids
Osuszanie gazu Podział metod: polegające na chłodzeniu gazu, metody absorpcyjne, metody adsorpcyjne, metody kombinowane.
Obniżenie temperatury punktu rosy Metoda osuszania: Temperatura punktu rosy [ºC] 80 60 40 20 0 +20 +40 Chłodzenie: powietrzem wodą czynnikiem chłodzącym przez rozprężanie Absorpcja: w roztworze CaCl 2 w roztworach etylenoglikoli Adsorpcja: na żelu krzemionkowym na sitach molekularnych
Osuszanie gazu na sitach molekularnych Separator gazu wilgotnego Adsorbery z sitami molekularnymi Chłodnica gazu regeneracyjnego Separator gazu regeneracyjny Zużyty gaz regeneracyjny Dostarczany gaz wilgotny Podgrzewacz gazu regeneracyjny Skroplona ciecz Gaz regeneracyjny Skroplona ciecz Gaz paliwowy Filtr gazu wylotowego Produkt
Osuszanie gazu metodą stałego adsorbenta np. chlorek wapnia CaCl 2 1 osuszanie, 2 regeneracja.
Osuszanie gazu metodą glikolową Część osuszająca Para wodna Gaz paliwowy Glikol ubogi Gaz płuczący Gaz wilgotny Uzupełnienie świeżym glikolem Gaz suchy Glikol bogaty Część regeneracyjna
Osuszanie gazu metodą glikolową glikol dietylenowy DEG: O CH 2 CH 2 OH CH 2 CH 2 OH glikol trietylenowy TEG: CH 2 O CH 2 CH 2 OH CH 2 O CH 2 CH 2 OH Dla 98% DEG (TEG) przy temperaturze zetknięcia z gazem 0ºC możliwe jest osuszenie do temperatury punktu rosy 25ºC, natomiast dla 99,5% glikolu możliwe jest osuszenie do temperatury punktu rosy 25ºC. DEG zaczyna się rozkładać w temperaturze 164ºC, a TEG jest bardziej odporne (rozkład w temperaturze 207ºC) i możliwa jest ich regeneracja w wyższej temperaturze oraz uzyskanie większego stężenia.
Osuszanie gazu metodą adsorpcyjną Metoda wymagana, jeżeli osuszany gaz będzie poddawany niskotemperaturowemu rozdzielaniu bądź skraplaniu. Masa adsorbentu, potrzebna do osuszenia gazu: m a v 1 2 24a Q W W t Q v objętościowe natężenie przepływu gazu przez instalację, m 3 /s, W 1 wilgotność bezwzględna gazu przed osuszeniem, kg/m 3, W 2 wymagana wilgotność bezwzględna gazu po osuszeniu, kg/m 3, t czas, s, a zdolność adsorpcyjna adsorbentu.
Osuszanie gazu metodą adsorpcyjną Stosowane adsorbenty: - żel krzemionkowy SiO 2, - sita molekularne (zeolity), - tlenek glinu (bardzo rzadko). Właściwości: - duża pojemność adsorpcyjna (powierzchnia i objętość porów), - duża selektywność, - brak działania toksycznego i korozyjnego, - wytrzymałość mechaniczna, - odporność na działanie wody, - stałe w czasie właściwości adsorpcyjne.
Żel krzemionkowy SiO nh O 2 2 Właściwości: - sumaryczna powierzchnia porów do 700 m 2 /g, - mikropory (1-1,5 nm), - makropory (do 5 nm). - duża hydrofilowość, - łatwa regeneracja, - obniżenie zdolności adsorpcyjnej (regeneracja w temperaturze ponad 200ºC - spadek zdolności adsorpcyjnych w przypadku zanieczyszczeń siarkowodorem.
Sita molekularne (zeolity) Na2 O Al2O 3 2SiO 2 4,5H 2O Właściwości: - sumaryczna powierzchnia porów do 1200 m 2 /g, - połowę objętości kryształów stanowią puste przestrzenie, - różna wielkość okna sieci krystalicznej umożliwiająca selektywne rozdzielanie związków, Sieć krystaliczna zeolitu NaA
Sita molekularne (zeolity) Zeolit typu A Zeolit typu X Średnica otworu wejściowego [nm] 0,3 0,4 0,5 0,8 0,9 Oznaczenie KA NaA CaA CaX NaX A struktura sodalitu, X struktura fojazytu.
Osuszanie na sitach molekularnych - adsorpcja 12-24h, - regeneracja 4-6h, - chłodzenie 1-2h.
Odsiarczanie gazów Odsiarczanie gazu Metody suche adsorpcja na uwodornionym tlenku żelaza adsorpcja na węglu aktywowanym Metody mokre absorpcja chemiczna absorpcja fizyczna
Odsiarczanie gazów podstawowe reakcje Wykorzystanie uwodnionego tlenku żelaza: Fe 2 O 3 H 2 O + 3H 2 S Fe 2 S 3 + 6H 2 O Fe 2 S 3 2FeS + S Reakcja ta przebiega prawidłowo w środowisku obojętnym lub zasadowym. Zużytą masę poddaje się regeneracji przez wietrzenie: FeS + S + 3H 2 O + 1,5O 2 Fe 2 O 3 3H 2 O + 3S lub poprzez równoczesną regeneracją przy pochłanianiu siarkowodoru: 2H 2 S + O 2 2H 2 O + 2S
Proces Clausa Etap termiczny procesu: 6H 2 S + 3O 2 4H 2 S + 2SO 2 + 2H 2 O Reakcja przebiega w kotle Clausa (2). Reakcja Clausa (usuwanie siarkowodoru z gazów kwaśnych): 2H 2 S + SO 2 3S + 2H 2 O rozpoczyna się w etapie termicznym, ale główny przebieg odbywa się w etapie katalitycznym (w reaktorach Clausa 5)
Instalacja Clausa
Proces Clausa Reakcja Clausa jest odwracalna i z tego powodu nie jest możliwe całkowite przereagowanie H 2 S i CO 2. Z tego względu opracowano metody: Superclaus-99 w stadium katalitycznym przebiega głównie nieodwracalna reakcja siarkowodoru do siarki (zamiast reakcji Clausa). Zastosowano katalizator (aktywny tlenek metalu), które minimalizuje powstawanie ditlenku siarki (nowy katalizator umieszczono w reaktorze selektywnego utlenienia 6a). Superclaus-99,5 rozszerzenie o węzeł uwodornienia umieszczony pomiędzy reaktorem Clausa a reaktorem selektywnego utlenienia. Uwodornienie przebiega na katalizatorze kobaltowomolibdenowym i powoduje przekształcenie związków siarki w siarkowodór. Dodatkowe zalety: możliwość rozbudowy zwykłych procesów Clausa, niewielkie objętości ścieków
Usuwanie H 2 S na węglu aktywnym Wstępnie dodawany jest tlen (poniżej 0,1%) oraz amoniak (0,1 g/m 3 ) ze względu na działanie katalityczne. H 2 S + 0, 5O 2 H 2 S + S Siarka gromadzi się na powierzchni węgla do momentu, aż będzie stanowiła d0 80% masy węgla. Regeneracja następuje przez przedmuchanie azotem i przemycie gorącą wodą (wymycie węglanu amonu) NH 4 2 S + n 1 S NH 4 2 S n
Usuwanie H 2 S na tlenku żelaza(iii) Tlenek żelaza(iii) zawarty jest na przykład w tak zwanej rudzie darniowej, którą wykorzystuje się jako główny składnik mas pochłaniających. 3H S+Fe O Fe S H O 2 2 3 2 3 2 2Fe S +3O 2Fe O 6S 2 3 2 2 3 Metody powyższe są coraz rzadziej stosowane, ze względu na wysokie koszty
Usuwanie H 2 S na sitach molekularnych Do adsorpcji wykorzystuje się najczęściej sita molekularne NaX. Zdolność pochłaniania: - przy ciśnieniu 50 mm Hg wynosi 80mg Hg/1 g sita, - przy ciśnieniu 5 mm Hg wynosi 20mg Hg/1 g sita, Wykorzystuje się również bardzo dobrą selektywność pochłaniania związków siarki w zależności od zastosowanego sita: R2S 2>R2S>RSH>H 2S>CO 2>CS 2>COS
Usuwanie H 2 S i CO 2 Metody usuwania siarkowodoru oraz ditlenku węgla: - adsorpcyjne (suche) stosowane przy niewielkich stężeniach H 2 S maksymalnie do 12 g/m 3, umożliwiają usunięcie tylko siarkowodoru, - absorpcyjne (mokre) stosowane gdy stężenie jest większe (20-40 g/m 3 ), równoczesne usuwanie H 2 S oraz CO 2. Zwykle instalacja pracuje dwuetapowo: - w pierwszym etapie następuje usuwanie związków kwaśnych, - w drugim etapie następuje regeneracja adsorbera.
Wykorzystanie amin monoetanoloamina MEA HOCH 2 CH 2 NH 2 dietanoloamina DEA (HOCH 2 CH 2 ) 2 NH trietanoloamina TEA (HOCH 2 CH 2 ) 3 N Metoda absorpcji w wodnych roztworach alkanoloamin. Roztwory te umożliwiają równoczesne usunięcie z gazu siarkowodoru oraz ditlenku węgla. Wybierając absorbent bierze się pod uwagę właściwości: - zdolność absorpcyjną (decyduje o ilości absorbentu), - łatwość rozkładu związków utworzonych z H 2 S i CO 2, - lotność, - stopień korozyjnego oddziaływania na aparaturę.
Wykorzystanie amin Monoetanoloamina posiada największą zdolność absorpcyjną, ale wadą jest stosunkowo duża prężność par oraz łatwość wchodzenia w nieodwracalną reakcję z tlenosiarczkiem węgla (COS) z której produktów można odzyskać tylko 4% MEA Reakcje (MEA) absorpcji H 2 S i CO 2 : 2HO C 2 H 4 NH 2 + H 2 S (HO C 2 H 4 NH 3 ) 2 S 2HO C 2 H 4 NH 2 + CO 2 (HO C 2 H 4 NH 3 ) 2 CO 3 do 50ºC reakcja przebiega w prawo (tworzenie siarczku i węglanu monoetanoloaminy), w temperaturze około 120ºC następuje desorpcja siarkowodoru i ditlenku węgla. Takiemu przebiegowi reakcji sprzyja również obniżenie ciśnienia.
Proces MEA
Proces MEA MEA niskie koszty absorbentu oraz mała rozpuszczalność węglanów w jego roztworach wodnych. Wady: - aktywność w reakcja z organicznymi związkami siarki, - łatwe utlenianie się do kwasów (glikolowego, szczawiowego i mrówkowego), - tworzenie mydeł w kontakcie z kwasami organicznymi (silne pienienie się), - ograniczenie temperatury regeneracji do 125ºC (korozja siarkowodorowa, rozkład MEA, unoszenie MEA), - duże straty w procesie rzędu nawet kilkuset gramów na 1000 m 3 oczyszczanego gazu (większa przy wzroście zawartości RSJ, COS), - konieczność stosowania rozcieńczonych roztworów.
Proces DEA
Proces DEA DEA: większy stopień oczyszczenia H 2 S do 5-7mg/m 3 i CO 2 poniżej 200mg/m 3, - łatwiejszy proces regeneracji absorbera, - mniejsza energochłonność regeneracji, Wady: - mniejsza stabilność termiczna, - reaktywność z kwaśnymi składnikami gazu, - produkty nieodwracalnych reakcji z niektórymi składnikami oczyszczanego gazu mają podobne do DEA temperatury wrzenia co uniemożliwia oczyszczenie roztworu.
Usuwanie CO 2 i H 2 S z wykorzystaniem amin gaz oczyszczony zanieczyszczenia Legenda podzespołów 1. Wieża absorbera 2. Kolumna płucząca 3. Chłodnica gazu kwaśnego 4. Zbiornik oddzielający 5. Pompa 6. Wymiennik roz. średni/ubogi 7. Kolumna płucząca 8. Podgrzewacz 9. Pompa rozpusz. ubogiego 10.Chłodnica rozpusz. ubogiego gaz surowy Legenda płynów Gaz procesowy Rozpusz. ubogi Rozpusz. średni Rozpusz. bogaty Kondensat Woda chłodząca Para nasycona Gaz kwaśny
Usuwanie ditlenku węgla (CO 2 ) Oczyszczony gaz Absorber Skraplacz Gaz kwaśny Zbiornik kondensatu Chłodnica rozpusz. ubogiego Kolumna płucząca Gaz zanieczyszczony Zbiornik płuczący Pompa kondensatu Wymiennik rozpuszczalnik ubogi/bogaty Rozpuszczalnik bogaty
Usuwanie gazów kwaśnych Proces Benfielda Gaz kwaśny Zbiornik Gaz oddzielający oczyszczony gazu kwaśnego Skraplacz gazu kwaśnego Pompa Regenerator Benfielda Absorber Benfielda Pompa kondensatu Filtr Gaz zanieczyszczony Turbina hydraul. (opcja) Pompa Zbiornik Podgrzewacz węglanu Podgrzewacz kondensatu
Usuwanie gazów kwaśnych Proces Benfielda Absorpcja H 2 S i CO 2 na roztworach soli metali alkalicznych. Proces Bensona-Fielda absorpcja na 25-35% wodnych roztworach węglanu potasu: CO +H O HCO +H - + 2 2 3 - + 3 3 2KHCO 3 KCO +HCO +H KCO +H S KHS+KHCO 3 2 3 szybkość uwodnienia dwutlenku węgla jest większa w wyższej temperaturze i dlatego stosuje się gorący (125ºC) roztwór węglanu potasu. Dodatkowo umożliwia usunięcie COS i CS (hydroliza do CO 2 i H 2 S), proces nieskuteczny przy usuwaniu merkaptanów.
Usuwanie rtęci na sitach molekularnych Absorber węgiel aktywny HGR LNG Skroplony gaz ziemny Gaz zanieczyszczony Usuwanie gazów kwaśnych Osuszanie Węglowodory ciężkie Schładzanie skraplanie Zawartość rtęci w gazach kierowanych do: - przeróbki kriogenicznej 0,001 mghg/m 3, - odbiorców komunalnych 0,04 mghg/m 3.
Odazotowanie gazu ziemnego
Instalacja niskotemperaturowa do wydzielania czystego helu
Gaz ziemny jako paliwo Zalety: - nie wymaga magazynowania u użytkownika, - praktycznie niezmienna jakość i równomierna temperatura spalania, - spalanie bez dymu, sadzy i popiołu, - łatwość dostosowania wielkości płomienia do rozmiarów komory spalania, - dostosowywanie temperatury płomienia do wymagań technologicznych, - łatwa obsługa palenisk, - prosty sposób zastosowania automatyzacji.
Gaz ziemny jako paliwo Udział gazu ziemnego w produkcji energii elektrycznej
Gaz ziemny jako paliwo Udział nośników energii w produkcji energii elektrycznej w Polsce
Gaz ziemny jako paliwo Sprzedaż gazu ziemnego do sektora energetyki w Polsce
Gaz ziemny jako paliwo Lokalizacja elektrowni gazowych w Polsce: 1. Siedlce (TG), 2. Lublin-Wrotków (BGP), 3. Tarnobrzeg (BGP), 4. Nowa Sarzyna (BGP), 5. Rzeszów (BGP), 6. Zawidawie (BGP), 7. Zielona Góra (BGP), 8. Kostrzyń (BGP), 9. Gorzów (BGP), 10. Władysławowo (BGP).
Porównanie emisji dla różnych paliw
Pojazdy CNG na świecie Udział całkowitej liczby pojazdów NGV na świecie Kraj Udział [%] Pakistan 21,85 Iran 15,87 Argentyna 14,57 Brazylia 12,62 Indie 8,43 Włochy 5,59
Stacja CNG
Stacja CNG
Stacja CNG
Stacje CNG w Polsce
Samochody CNG osobowe Parametr CNG benzyna pojemność [cm 3 ] 1368 moc [KM] 69 77 moment obr. [Nm] 115 104 prędkość [km/h] 157 163 przyśpieszenie [s] 14,9 12,8 zużycie paliwa [/100 km] miasto 7,6 m 3 7,7 l poza 5,0 m 3 5,0 l mieszany 6,0 m 3 6,0 l Fiat Panda NaturalPower 2009 r. poj. zbiornika 17,9 m 3 30 l zasięg teoret. [km] 358 600
Samochody CNG osobowe Parametr CNG benzyna pojemność [cm 3 ] 1999 moc [KM] 126 145 moment obr. [Nm] prędkość [km/h] 196 206 przyśpieszenie [s] 12,4 zużycie paliwa [/100 km] miasto poza mieszany 7,6 m 3 7,1 l Ford Focus CNG 2008 r. poj. zbiornika 23,1 m 3 55 l zasięg teoret. [km] 300 770
Samochody CNG osobowe Parametr CNG benzyna pojemność [cm 3 ] 1390 moc [KM] 150 150 moment obr. [Nm] 220 220 prędkość [km/h] 214 214 przyśpieszenie [s] 9,8 zużycie paliwa [/100 km] miasto 7,8 m 3 9,0 l poza 4,8 m 3 5,4 l mieszany 5,8 m 3 6,8 l Volkswagen Passat EcoFuel 1.4 TSI CNG 2010 r. poj. zbiornika 28,5 m 3 31 l zasięg teoret. [km] 590 570
Samochody CNG osobowe Parametr CNG benzyna pojemność [cm 3 ] 1796 moc [KM] 163 163 moment obr. [Nm] 240 240 prędkość [km/h] 224 227 przyśpieszenie [s] 10,8 10,4 zużycie paliwa [/100 km] miasto 10,7 m 3 11,7 l poza 6,0 m 3 6,3 l mieszany 7,6 m 3 8,3 l Mercedes klasy E 200 NGT 2010 r. poj. zbiornika 26,5 m 3 59 l zasięg teoret. [km] 440 930
Samochody CNG dostawcze
Samochody CNG ciężarowe
Samochody CNG autobusy
Gaz ziemny w przemyśle chemicznych Z węglowodorów wydzielonych z gazu ziemnego można wytworzyć: - bezpośrednio końcowe produkty np. chlorometany, dwusiarczek węgla, cyjanowodór, kwas octowy itp., - podstawowe półprodukty acetylen, olefiny C 2 -C 4 oraz gaz syntezowy CO+H 2 (głównie do produkcji amoniaku, metanolu i wodoru).
Gaz syntezowy
Gaz syntezowy Proces prowadzi się przepuszczając mieszaninę par lekkiego surowca węglowodorowego i pary wodnej nad katalizatorem niklowym: CH 4+H2 O CO+3H 2 jest to reakcja silnie endotermiczna i przy wzroście temperatury jej równowaga przesuwa się w prawo. Ponieważ przebiega ze wzrostem objętości, wzrost ciśnienia niekorzystnie wpływa na położenie stanu równowagi. Ze wzrostem temperatury rośnie stopień konwersji metanu, co powoduje zmiany równowagowe składu gazu. Wzrasta zawartość wodoru i ditlenku węgla.
Gaz syntezowy
Gaz syntezowy Oprócz konwersji metanu przebiega również reakcja konwersji CO+H O CO +H 2 2 2 Jest to reakcja ezgotermiczna i z podwyższeniem temperatury jej równowaga przesuwa się w lewą stronę, przy czym nadmiar pary wodnej wzmaga tworzenie się ditlenku węgla. W procesie konwersji metanu z parą wodną uzyskujemy uzyskujemy gaz syntezowy o dużej wartości stosunku objętościowego H 2 :CO (3:1). Jest ogromną zaletą, jeżeli wykorzystamy go do produkcji wodoru lub amoniaku. W przypadku procesów syntezy organicznej potrzebujemy gaz o mniejszej zawartości wodoru (1:1 do 2:1). Możemy to uzyskać przez dodanie do pary wodnej ditlenku węgla. CH 4+CO 2 2CO+H 2
GTL Gas To Liquids Proces rafineryjny umożliwiający konwersję gazu ziemnego lub innych węglowodorów gazowych do węglowodorów o długim łańcuchu takich jak benzyna czy olej napędowy. Gazy bogate w metan przetwarzane są na płynne paliwa syntetyczne w konwersji bezpośredniej lub z wykorzystaniem półproduktu (gazu syntezowego) w procesie Fischera-Tropscha. Ogólny zapis reakcji tworzenia się węglowodorów: m n CO+ n H2 CnH m+ n H2O 2 lub dwie główne reakcje tworzenia węglowodorów: 2 n 2n 2 2 n CO+ 2 n 1 H C H + n H O n CO+2 n H C H + n H O 2 n 2n 2
Proces Fischera-Tropscha
Gaz ziemny dla odbiorców komunalnych Grupy taryfowe sprzedaży gazu ziemnego w dystrybucyjnej sieci gazowej o ciśnieniu do 0,5 MPa: Grupa taryfowa Moc umowna [m 3 /h] Roczna ilość pobranego gazu [m 3 ] W-1 10 300 W-2 10 300-1200 W-3 10 1200-8000 W-4 10 > 8000
Gaz ziemny dla odbiorców komunalnych Opłata za dostawę gazu do odbiorców komunalnych w ramach umowy kompleksowej w taryfach W-1 do W-4: O k=c Q+S zs Q+S ss k+s a k O k opłata za dostawę gazu, zł, C cena gazu, zł, Q objętość gazu dostarczona w okresie rozliczeniowym, m 3, S zs stawka sieciowa opłaty zmiennej, zł/m 3, S ss stawka sieciowa opłaty stałej, zł/miesiąc, S a stawka opłaty abonamentowej, zł/miesiąc, k ilość miesięcy w okresie rozliczeniowym.
Gaz ziemny dla odbiorców komunalnych Ceny gazu w taryfie W-2 dla KSG w roku 2009.
Gaz ziemny dla odbiorców komunalnych Ceny gazu w taryfie W-2 dla różnych spółek gazownictwa w roku 2009.