WPŁYW WYBRANYCH ASPEKTÓW POLITYKI KLIMATYCZNEJ UE NA PRACĘ KRAJOWEGO SYSTEMU ELEKTROENERGETYCZNEGO Autor: Roman Korab ( Rynek Energii nr /11) Słowa kluczowe: polityka klimatyczna, uprawnienia do emisji CO, koszty wytwarzania energii elektrycznej Streszczenie. Od 13 roku systematycznie będzie się rozszerzać odpłatny (aukcyjny) sposób rozdziału uprawnień do emisji dwutlenku węgla. Wymiernym efektem tego procesu będzie wzrost kosztów wytwarzania energii elektrycznej w źródłach wykorzystujących paliwa kopalne. W artykule podjęto próbę oszacowania wpływu kosztów związanych z zakupem uprawnień do emisji CO na pracę krajowego systemu elektroenergetycznego (KSE) w horyzoncie do roku. W tym celu w pierwszej kolejności oszacowano zmienne koszty wytwarzania energii w krajowych jednostkach systemowych w założonym okresie. Następnie przy wykorzystaniu metody optymalizacji rozpływu mocy OPF (Optimal Power Flow) wykonano analizy rozpływowe dla krajowej sieci 4//11 kv, będące podstawą do określenia wskaźników charakteryzujących pracę KSE. 1. WSTĘP Głównym celem polityki klimatycznej Unii Europejskiej jest przeciwdziałanie zmianom klimatu, przy czym jako podstawową przyczynę tych zmian postrzega się rosnącą emisję gazów cieplarnianych, spośród których decydującą rolę przypisuje się dwutlenkowi węgla. Instrumentem pozwalającym na regulację poziomu emisji tego gazu są zbywalne uprawnienia do emisji CO [, 4]. W procesie rozwoju rynku uprawnień do emisji dwutlenku węgla można wyróżnić trzy etapy. Pierwszy etap (lata 5 7) to okres próbny, w którym uprawnienia dla poszczególnych podmiotów były przyznawane bezpłatnie na podstawie emisji historycznej. W drugim etapie (lata 8 1) bezpłatnie przyznawanych jest co najmniej 9% uprawnień, przy czym każde państwo członkowskie UE opracowuje plan ich rozdziału, podlegający zatwierdzeniu przez Komisję Europejską. Przyjęty przez Polskę dla tego okresu krajowy plan rozdziału uprawnień (KPRU II) konserwuje zasady przydziału uprawnień do emisji CO zastosowane w pierwszym etapie handlu, tzn. stosuje model wskaźnikowy, bazujący na nierynkowej zasadzie, którą można streścić w słowach kto dużo emituje, ten dostaje dużo uprawnień. W trzecim etapie rozwoju rynku uprawnień do emisji (lata 13 ) jako główny sposób ich rozdziału przyjmuje się aukcje, pozwalające poszczególnym podmiotom dokonać zakupu wymaganej liczby uprawnień do emisji CO. Dla sektora elektroenergetycznego z nowych państw UE wprowadzono możliwość odstępstwa od aukcyjnego (płatnego) sposobu rozdziału wszystkich uprawnień. Najprawdopodobniej skorzystają z niej także polscy wytwórcy, którzy część uprawnień mają otrzymywać bezpłatnie (w roku 13 ma to być 7%; w kolejnych latach ilość ta ma się zmniejszać liniowo do zera w roku ).
. CO A KOSZTY WYTWARZANIA ENERGII ELEKTRYCZNEJ Opisane rozwiązania w zakresie alokacji uprawnień do emisji dwutlenku węgla mają bezpośredni wpływ na koszty wytwarzania energii elektrycznej w źródłach wykorzystujących paliwa kopalne. W szczególności dotyczy to jednostek wytwórczych opalanych węglem kamiennym i brunatnym, stanowiących obecnie dominującą technologię wytwarzania w KSE. W przeprowadzonych poniżej oszacowaniach założono, że koszt zmienny wytwarzania energii elektrycznej obejmuje następujące składniki: koszt zużytego paliwa podstawowego, koszt transportu paliwa podstawowego, koszt zakupu uprawnień do emisji CO. W celu zobrazowania wpływu kosztów związanych z emisją CO na poziom kosztów wytwarzania przeanalizowane zostaną dwie elektrownie modelowe: 1. na węgiel kamienny (emisja CO :,9 t/mwh),. na węgiel brunatny (emisja CO : 1,65 t/mwh). Podane wyżej wskaźniki odzwierciedlają średnią wartość emisji na jednostkę produkcji brutto w krajowych jednostkach wytwórczych. Zostały one wykorzystane w algorytmie rozdziału uprawnień zastosowanym w obowiązującym planie KPRU II. Na podstawie tych wskaźników można również określić sprawność wytwarzania w rozpatrywanych elektrowniach modelowych. Zastosowanie ma tutaj zależność o postaci [9]: m 35,8 CO = η, (1) w której m CO, w kg/mwh, oznacza ilość dwutlenku węgla emitowanego przy produkcji energii, a η jest sprawnością wytwarzania. Wyznaczone sprawności brutto elektrowni modelowych są równe:,39 dla węgla kamiennego i,331 dla węgla brunatnego. Określenie kosztów zużytego paliwa podstawowego w analizowanych elektrowniach modelowych wymaga przyjęcia odpowiednich cen węgla. W przypadku węgla kamiennego założono, że cenę referencyjną węgla energetycznego wyznacza jego cena w portach ARA (Amsterdam, Rotterdam i Antwerpia) [6]. Po szczycie cenowym w roku 8, kiedy cena węgla w portach ARA osiągnęła poziom USD/t, w roku 9 nastąpił spowodowany ogólnoświatowym kryzysem gospodarczym skokowy spadek cen do poziomu około 65 USD/t [7]. W dalszych analizach przyjęto cenę węgla kamiennego na poziomie zł/t, przy kaloryczności równej GJ/t. Z kolei w przypadku węgla brunatnego do analiz przyjęto cenę sprzedaży równą 65 zł/t [3], przy kaloryczności wynoszącej 9 GJ/t. Na podstawie przyjętych danych oraz obliczonej wcześniej sprawności wytwarzania wyznaczono koszt zużytego paliwa podstawowego równy: 83,49 zł/mwh dla elektrowni opalanej węglem kamiennym oraz 78,49 zł/mwh dla elektrowni na węgiel brunatny. Kolejnym składnikiem zmiennego kosztu wytwarzania energii elektrycznej jest koszt transportu paliwa podstawowego. Przyjęto, że dla węgla brunatnego, który w Polsce praktycznie w całości zużywany jest w skojarzonych z poszczególnymi kopalniami elektrowniach, koszt ten jest równy zero. W przypadku węgla kamiennego założono transport kolejowy. Na podstawie danych uzyskanych od dużej krajowej firmy wytwórczej przyjęto, że koszt transportu jest równy,961 zł/t/km, natomiast opłaty bocznicowe wynoszą 1,85 zł/t. Wyznaczony na tej podstawie koszt transportu i rozładunku węgla kamiennego dla elektrowni modelowej oddalonej o 1 km od źródła paliwa jest równy,46 zł/t (8,54 zł/mwh).
Ostatnim składnikiem zmiennego kosztu wytwarzania uwzględnionym w analizach jest koszt zakupu uprawnień do emisji CO, których cena jest kształtowana przez mechanizmy rynkowe i może ulegać znaczącym zmianom. Przykładowo w połowie 8 roku cena uprawnienia przekraczała 5 /t, by na początku 9 roku spaść do około 1 /t. Obecnie cena ta kształtuje się na poziomie 15 /t, jednak według szacunków Komisji Europejskiej w roku można oczekiwać ceny w wysokości około 4 /t [9, 1], co w przybliżeniu odpowiada dodatkowym kosztom jakie niesie za sobą stosowanie separacji i przechowywania dwutlenku węgla (technologia CCS), szacowanym na około 16 zł/t [1]. W dalszych analizach przyjęto dwa warianty cen uprawnień do emisji CO wynoszące 15 i 4 /t (przyjęto kurs 3,89 zł/ ). Zakładając odpowiedni poziom deficytu darmowych uprawnień oraz przyjmując podane wyżej wskaźniki emisji dla elektrowni modelowych można wyznaczyć wartość kosztu związanego z koniecznością zakupu uprawnień do emisji dwutlenku węgla. Na rysunku 1 przedstawiono zmienne koszty wytwarzania energii elektrycznej (brutto) w analizowanych elektrowniach modelowych dla różnych poziomów deficytu darmowych uprawnień do emisji dwutlenku węgla. Zaprezentowane wartości kosztów wytwarzania obejmują trzy opisane wyżej składniki. 5 15 1 w. kamienny, 15 /t w. brunatny, 15 /t 5 w. kamienny, 4 /t w. brunatny, 4 /t 1 3 4 5 6 7 8 9 1 Rys. 1. Zmienne koszty wytwarzania, w zł/mwh, w elektrowniach modelowych w zależności od deficytu darmowych uprawnień do emisji CO, w % Na podstawie przedstawionych na rysunku 1 wyników obliczeń można stwierdzić, że przy cenie uprawnienia równej 15 /t oraz przy całkowitym braku darmowych uprawnień (deficyt równy 1%) zmienny koszt wytwarzania w elektrowni opalanej węglem kamiennym wzrasta o około 6% w stosunku do sytuacji, w której elektrownia ta dysponuje 1% pulą uprawnień darmowych (wzrost z 9,3 zł/mwh do 144,57 zł/mwh). W przypadku elektrowni zasilanej węglem brunatnym wzrost ten jest jeszcze większy i wynosi blisko 8% (wzrost z 78,49 zł/mwh do 14,66 zł/mwh), a przyczyną tego jest wyższy wskaźnik emisji CO na jednostkę produkcji. Dla drugiego wariantu cenowego uprawnienia (4 /t) zwiększenie kosztów zmiennych wytwarzania z tego tytułu wynosi około 15% dla węgla kamiennego (wzrost do 3,14 zł/mwh) i 1% dla węgla brunatnego (wzrost do 44,8 zł/mwh). Dodatkowo dla tego wariantu cenowego przy deficycie darmowych uprawnień wynoszącym 5% następuje zrównanie kosztów wytwarzania w obu analizowanych elektrowniach. Przy dalszym wzroście deficytu bezpłatnych uprawnień koszt wytwarzania energii elektrycznej w elektrowni opalanej węglem kamiennym jest niższy niż w przypadku elektrowni na węgiel brunatny. W związku z tym w tej sytuacji należy się spodziewać, że na rynku energia produkowana z węgla brunatnego będzie stopniowo wypierana przez energię produkowaną z węgla kamiennego (zadziała tutaj mechanizm konkurencyjnego wypierania produkcji energii w mniej ekologicznych źródłach).
3. DANE I ZAŁOŻENIA PRZYJĘTE W ANALIZACH ROZPŁYWOWYCH Ocena wpływu kosztów związanych z zakupem uprawnień do emisji CO na pracę KSE w okresie 1 została przeprowadzona na podstawie wyników analiz rozpływowych. Analizy te wykonano dla modeli KSE tzw. układów normalnych obejmujących krajowe sieci 4//11 kv odwzorowujących zimowy szczyt wieczorny oraz letni szczyt poranny. W modelach sezonowych KSE dla kolejnych lat rozpatrywanego okresu uwzględniono przyrost zapotrzebowania (na poziomie 4 MW rocznie dla sezonu zimowego i 45 MW dla sezonu letniego) oraz planowany rozwój systemu krajowego. Rozwój sieci 4 i kv dotyczył przede wszystkim poprawy zasilana aglomeracji warszawskiej, wrocławskiej i poznańskiej, wzmocnienia sieci NN w północnej Polsce, a także poprawy zdolności przesyłowych KSE na przekroju północ południe. Ponadto uwzględniono szereg mniejszych inwestycji sieciowych (budowa nowych stacji NN, budowa nowych punktów transformacji 4/ kv, instalacja dodatkowych transformatorów NN/11 kv oraz urządzeń do kompensacji mocy biernej). Ze względu na brak danych nie uwzględniono rozwoju sieci 11 kv. Rozwój sektora wytwórczego (źródła wielkoskalowe) w analizowanym okresie obejmował jedynie wprowadzenie do eksploatacji nowego bloku w elektrowni Bełchatów (86 MW) oraz planowaną modernizację bloków MW w elektrowni Pątnów. Nie uwzględniono ewentualnej budowy kolejnych źródeł wielkoskalowych oraz rozwoju generacji rozproszonej. W związku z tym założony wzrost zapotrzebowania w kolejnych latach rozpatrywanego okresu był pokrywany przez istniejące jednostki wytwórcze o coraz wyższych zmiennych kosztach wytwarzania. Analizy rozpływowe wykonano przy zastosowaniu metody optymalizacji rozpływu mocy (Optimal Power Flow OPF). Metoda ta polega na wyznaczeniu takiego stanu pracy systemu elektroenergetycznego (takiego rozpływu mocy), który minimalizuje założoną funkcję celu, przy jednoczesnym uwzględnieniu ograniczeń technicznych związanych z wytwarzaniem i przesyłem mocy. Jako funkcję celu przyjęto godzinowy koszt bilansowania zapotrzebowania (koszt wytwarzania) w KSE, określony na podstawie mocy czynnych generowanych przez poszczególne jednostki wytwórcze oraz cen po jakich oferują one energię. Założono, że ceny energii oferowanej przez jednostki wytwórcze centralnie dysponowane (JWCD) są równe ich zmiennym kosztom wytwarzania, wyznaczonym zgodnie z przedstawioną wyżej metodą, przy przyjęciu stałych cen węgla i kosztów jego transportu w analizowanym okresie oraz obecnych wartości sprawności i współczynników emisji dwutlenku węgla dla poszczególnych elektrowni krajowych. Koszty wytwarzania obliczono przy założeniu: 1. 1% puli darmowych uprawnień do emisji CO,. deficytu uprawnień, przy cenie ich zakupu 15 /t, 3. deficytu uprawnień, przy cenie ich zakupu 4 /t, przy czym przyjęty poziom deficytu darmowych uprawnień w poszczególnych latach, zgodny z opisanym wcześniej procesem rozwoju rynku, przedstawia rysunek. Generacja zdeterminowana (moc generowana przez jednostki nie będące centralnie dysponowanymi njwcd) została uwzględniona z zerową ceną. W analizach OPF minimum funkcji celu wyznaczono z uwzględnieniem ograniczeń technicznych obejmujących: bilanse mocy czynnej i biernej w węzłach sieci, moce czynne i bierne generowane przez poszczególne jednostki wytwórcze, poziomy napięć węzłowych, przepływy mocy w liniach i transformatorach. Obliczenia wykonano z wykorzystaniem pracującego w środowisku MATLAB programu MATPOWER.
1 8 6 4 Rys.. Deficyt darmowych uprawnień do emisji CO, w %, w kolejnych latach rozpatrywanego okresu 4. OCENA WPŁYWU UREGULOWAŃ W ZAKRESIE EMISJI CO NA PRACĘ KSE Przeprowadzone analizy rozpływowe pozwoliły na wyznaczenie różnych wskaźników charakteryzujących pracę KSE w okresie 1. Pierwszym z nich jest koszt bilansowania zapotrzebowania (funkcja celu w zadaniu OPF). Zgodnie z przyjętymi założeniami wartość tego wskaźnika odwzorowuje sumaryczny w danej godzinie, zmienny koszt wytwarzania w krajowych jednostkach JWCD, obejmujący koszty paliwa i jego transportu oraz koszty związane z zakupem wymaganej liczby uprawnień do emisji CO. Wartości kosztu bilansowania w poszczególnych latach przedstawia rysunek 3. Obserwowany wzrost kosztu bilansowania dla wariantu zakładającego 1% dostępność darmowych uprawnień wynika głównie z założonego wzrostu zapotrzebowania, skutkiem czego jest konieczność wprowadzenia do pracy kolejnych, coraz droższych, jednostek wytwórczych (w analizach założono, że w poszczególnych latach rezerwa mocy jest utrzymywana na stałym poziomie). Wariant ten stanowi punkt odniesienia dla kolejnych dwóch wariantów, charakteryzujących się postępującym deficytem darmowych uprawnień (rys. ), pozwalając na określenie wpływu kosztów związanych z ich zakupem na wartość kosztu bilansowania zapotrzebowania. W pierwszych trzech latach analizowanego okresu wpływ ten jest stosunkowo niewielki i wynosi blisko 1% dla ceny uprawnienia 15 /t oraz około % przy cenie 4 /t. Silniej wpływ uregulowań w zakresie emisji CO zaczyna się ujawniać od roku 13, kiedy to zachodzi konieczność zakupu na wolnym rynku coraz większej liczby uprawnień do emisji. W roku, gdy 1% uprawnień musi zostać zakupione na aukcji, wzrost kosztów bilansowania zapotrzebowania w KSE jest największy i wynosi 17% dla ceny uprawnienia równej 15 /t oraz blisko 3% przy cenie 4 /t. a. 5 4 3 1 5 4 3 1 Rys. 3. Koszt bilansowania zapotrzebowania w KSE, w mln zł/h, dla różnych poziomów deficytu darmowych uprawnień do emisji CO oraz cen ich zakupu: a). zimowy szczyt wieczorny, b). letni szczyt poranny
Zgodnie z polityką klimatyczną UE zbywalne uprawnienia do emisji są instrumentem pozwalającym na regulację ilości emitowanego CO, przy czym wyższe ceny uprawnień powinny prowadzić do obniżenia sumarycznej emisji. Efekty działania tego mechanizmu w KSE zostały pokazane na rysunku 4. Wyniki przeprowadzonych analiz wskazują, że w każdym przypadku ilość dwutlenku węgla emitowanego przez krajowe jednostki JWCD w wariancie zakładającym 1% dostępność darmowych uprawnień jest wyższa niż w wariantach zakładających konieczność zakupu tych uprawnień na wolnym rynku, przy czym zmniejszenie emisji z tego tytułu jest minimalne (w najlepszym przypadku nie przekracza 3%). a. 1 19 18 17 19 18 17 16 15 14 Rys. 4. Sumaryczna emisja dwutlenku węgla przez jednostki JWCD, w tys. t/h, dla różnych poziomów deficytu darmowych uprawnień do emisji CO oraz cen ich zakupu: a). zimowy szczyt wieczorny, b). letni szczyt poranny Przedstawione na rysunku 4 wyniki obliczeń wskazują ponadto, że głębsze obniżenie ilości emitowanego CO ma miejsce w wariancie zakładającym konieczność zakupu brakujących uprawnień po cenie 4 /t. Jest to wynikiem konkurencyjnego wypierania produkcji energii w mniej ekologicznych źródłach opalanych węglem brunatnym i zastępowania ich produkcji energią wytwarzaną w źródłach opalanych węglem kamiennym, co ilustruje rysunek 5. a. 13 1 11 1 9 8 węgiel kamienny węgiel brunatny 7 11 1 9 8 7 6 węgiel kamienny węgiel brunatny 5 Rys. 5. Sumaryczna generacja krajowych jednostek JWCD, w GW/h, dla różnych poziomów deficytu darmowych uprawnień do emisji CO oraz cen ich zakupu: a). zimowy szczyt wieczorny, b). letni szczyt poranny
Regulacje dotyczące emisji CO wpływają również na pracę krajowej sieci 4//11 kv, powodując m.in. zmianę wartości strat przesyłowych oraz liczby aktywnych ograniczeń sieciowych. Rysunek 6 pokazuje poziom strat przesyłowych w sieci zamkniętej KSE w kolejnych latach rozpatrywanego okresu. Dla wariantu zakładającego 1% dostępność darmowych uprawnień do emisji CO straty mocy osiągają największą wartość. W wyniku założonego wzrostu obciążenia, rosną one w kolejnych latach, przy czym na ich poziom ma również wpływ założony rozwój sieci. W wariantach zakładających konieczność zakupu wymaganej liczby uprawnień każdorazowo wartość strat jest niższa niż w wariancie bazowym, przy czym dla ceny uprawnienia równej 4 /t obniżenie strat jest głębsze i w niektórych latach osiąga 1 15%. Główną przyczyną zmniejszenia strat jest zmiana rozkładu mocy generowanej w KSE, spowodowana wypieraniem produkcji energii w elektrowniach opalanych węglem brunatnym (w efekcie rozkład przestrzenny generacji w KSE staje się bardziej równomierny). Zmniejszenie strat prowadzi do wzrostu ogólnej sprawności dostawy energii, co jest zbieżne z celami pakietu energetycznoklimatycznego 3. a. 7 6 5 4 3 6 5 4 3 Rys. 6. Straty mocy w krajowej sieci 4//11 kv, w MW/h, dla różnych poziomów deficytu darmowych uprawnień do emisji CO oraz cen ich zakupu: a). zimowy szczyt wieczorny, b). letni szczyt poranny Kolejnym wskaźnikiem obrazującym stan pracy krajowej sieci 4//11 kv jest liczba aktywnych ograniczeń sieciowych 1, przedstawiona na rysunku 7. Zaprezentowane rezultaty wskazują, że uregulowania w zakresie emisji CO w wielu przypadkach nie mają w ogóle wpływu na liczbę ograniczeń sieciowych. W pozostałych przypadkach wpływ ten jest niewielki, ale jeżeli występuje, to jest on najczęściej korzystny (następuje zmniejszenie liczby aktywnych ograniczeń). Dzieje się tak dlatego, że w rozpatrywanych stanach pracy KSE ograniczenia uaktywniały się głównie głęboko w sieci 11 kv, w związku z czym zmiana rozkładu generacji w jednostkach JWCD dla różnych poziomów deficytu darmowych uprawnień do emisji CO oraz cen ich zakupu nie miała praktycznie wpływu ma przepływy mocy w gałęziach powodujących ograniczenia. 1 Ograniczenie sieciowe jest aktywne, jeżeli przepływ mocy w danej gałęzi sieci osiągnął wartość dopuszczalną.
a. 14 1 1 8 6 4 3 5 15 1 5 Rys. 7. Liczba ograniczeń w sieci 4//11 kv, w szt., dla różnych poziomów deficytu darmowych uprawnień do emisji CO oraz cen ich zakupu: a). zimowy szczyt wieczorny, b). letni szczyt poranny 5. UWAGI KOŃCOWE W artykule zaprezentowano wyniki analiz obrazujących możliwy wpływ kosztów związanych z zakupem uprawnień do emisji CO na pracę krajowego systemu elektroenergetycznego w horyzoncie do roku. Analizy zostały wykonane dla obecnego stanu sektora wytwórczego w Polsce, w związku z czym ich rezultaty mogą stanowić tło dla różnych scenariuszy rozwojowych. Uzyskane wyniki wskazują, że wraz z powiększającym się deficytem darmowych uprawnień do emisji CO następuje znaczący zależny od ceny zakupu uprawnień wzrost zmiennych kosztów wytwarzania energii elektrycznej w źródłach węglowych. Z uwagi na wyższą emisję dwutlenku węgla wzrost ten jest szybszy w elektrowniach opalanych węglem brunatnym. Efektem wzrostu kosztów wytwarzania jest silny (nawet trzykrotny) wzrost kosztów bilansowania zapotrzebowania w KSE. Wykonane analizy pozwoliły również na określenie poziomu redukcji ilości dwutlenku węgla emitowanego przez krajowych wytwórców systemowych uzyskanego w wyniku wprowadzenia aukcyjnego (płatnego) sposobu rozdziału uprawnień do emisji CO. Uzyskane wyniki obliczeń pozwalają stwierdzić, że dla obecnego stanu sektora wytwórczego w Polsce zmniejszenie emisji CO z tego tytułu jest minimalne, przy czym jest ono efektem konkurencyjnego wypierania energii produkowanej w mniej ekologicznych źródłach opalanych węglem brunatnym przez energię produkowaną w elektrowniach na węgiel kamienny. Przy obecnej strukturze wytwarzania w KSE nie będzie możliwe wypełnienie do roku postawionego przed Polską celu w zakresie redukcji CO jedynie poprzez wprowadzenie obowiązku zakupu uprawnień do emisji tego gazu. Konieczne jest zatem podjęcie działań inwestycyjnych zmierzających do budowy silnego segmentu energetyki odnawialnej [5, 8, 9], przy czym postępująca internalizacja kosztów zewnętrznych (włączanie kosztów związanych z emisją CO do kosztów wytwarzania) będzie się przyczyniała do zwiększenia efektywności ekonomicznej źródeł rozproszonych. W ocenie konkurencyjności energii produkowanej w źródłach rozproszonych w stosunku do energii produkowanej w źródłach węglowych (ale także w źródłach wykorzystujących inne technologie wytwarzania) może być pomocny opisany w artykule mechanizm konkurencyjnego wypierania energii. Mechanizm ten pozwala bowiem
na wyznaczenie m.in. poziomu deficytu darmowych uprawnień do emisji CO, przy którym przy założonej cenie uprawnienia rozpocznie się proces wypierania energii produkowanej w źródłach węglowych. LITERATURA [1] Badyda K., Lewandowski J.: Perspektywy eksploatacji zasobów polskiej energetyki w uwarunkowaniach emisyjnych wynikających z regulacji unijnych. Energetyka, 1/1. [] Czarnecki P.: Zarządzanie ryzykiem cen uprawnień do emisji dwutlenku węgla. Rynek Energii, 5/7. [3] Czopek K., Trzaskuś-Żak B.: Koszty i ceny węgla brunatnego w warunkach rynkowych. Polityka Energetyczna, /9. [4] Graczyk A.: Rozwój rynku handlu pozwoleniami na emisje CO w Unii Europejskiej. Acta Energetica, 1/9. [5] Kocot H.: Nakłady inwestycyjne niezbędne do realizacji scenariuszy rozwojowych podsektora wytwarzania. Rynek Energii, /1. [6] Lorenz U.: Rynki międzynarodowe jako punkt odniesienia dla cen węgla energetycznego w kraju. Polityka Energetyczna, /1. [7] Lorenz U.: Rynki węgla energetycznego w dobie kryzysu gospodarczego. Polityka Energetyczna, /9. [8] Popczyk J.: Polska sytuacja w aspekcie unijnej strategii energetycznej do roku. Rynek Energii, 3/8. [9] Popczyk J., Żmuda K., Kocot H., Korab R., Siwy E.: Bezpieczeństwo elektroenergetyczne w społeczeństwie postprzemysłowym na przykładzie Polski. Wydawnictwo Politechniki Śląskiej, Gliwice, 9. [1] Stawski P.: Wytwarzanie energii elektrycznej uwarunkowania emisji CO. Energetyka, 1/8. INFLUENCE OF SOME ASPECTS OF EU CLIMATE POLICY ON POLISH POWER SYSTEM Key words: climate policy, carbon credits, electricity generation costs Summary. From 13 it will be gradually decreasing the amount of carbon credits that are distributed among power producers free of charge. The most important effect of this process will be an increase in the total cost of electricity generation in fossil fuel sources. The paper makes an attempt to assess the impact of costs associated with the purchase of carbon credits on the working condition of Polish Power System in the horizon. To do so, first a variable costs of power generation in Polish main power plants were estimated. Then by using the optimal power flow method the power flow analysis for a 4//11 kv network was performed. The results of analyses were the basis for determining some indicators characterizing the state of Polish Power System. Roman Korab, Od 1998 roku pracuje na Wydziale Elektrycznym Politechniki Śląskiej w Gliwicach, w Instytucie Elektroenergetyki i Sterowania Układów. Jego zainteresowania naukowe koncentrują się głównie wokół problemów związanych z operatorskim planowaniem pracy i sterowaniem pracą systemu elektroenergetycznego działającego w warunkach rozwiniętego rynku energii elektrycznej. roman.korab@polsl.pl