Wprowadzenie. Marzena LENDO, Zdzisław SKUTNIK



Podobne dokumenty
WYKORZYSTANIE KONSOLIDOMETRU UPC DO BADAŃ NIENASYCONYCH GRUNTÓW SPOISTYCH

Badania wpływu ciśnienia ssania na wytrzymałość i sztywność gruntu spoistego i niespoistego

gruntów Ściśliwość Wytrzymałość na ścinanie

PĘCZNIENIE A ODPRĘŻENIE NIENASYCONYCH IŁÓW WARSZAWSKICH

BADANIE PARAMETRÓW WYTRZYMAŁOŚCIOWYCH PIASKU ŚREDNIEGO W APARACIE TRÓJOSIOWEGO ŚCISKANIA Z KONTROLOWANYM CIŚNIENIEM SSANIA

Konsolidacja podłoŝa gruntowego

Wprowadzenie. Edyta MALINOWSKA

Zakres wiadomości na II sprawdzian z mechaniki gruntów:

PRÓBNE OBCIĄśANIE GRUNTU ZA POMOCĄ PRESJOMETRU

WYKONANIE OZNACZENIA EDOMETRYCZNYCH MODUŁÓW ŚCIŚLIWOŚCI PIERWOTNEJ I WTÓRNEJ

NAPRĘśENIE PIERWOTNE W PODŁOśU GRUNTOWYM

ROZKŁAD NAPRĘśEŃ POD FUNDAMENTEM W KOLEJNYCH FAZACH REALIZACJI INWESTYCJI. σ ρ [kpa]

Katedra Geoinżynierii SGGW w Warszawie Department of Geotechnical Engineering Warsaw University of Life Sciences SGGW

ANALIZA WPŁYWU RODZAJU OBCIĄŻENIA NA ODKSZTAŁCALNOŚĆ PODŁOŻA SŁABONOŚNEGO

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ

Wpływ niepełnego nasycenia na charakterystyki przepuszczalności gruntów spoistych Influence of not full saturation on permeability of cohesive soils

NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH POBRANYCH Z PŁYT EPS O RÓŻNEJ GRUBOŚCI

Egzamin z MGIF, I termin, 2006 Imię i nazwisko

ŚCIŚLIWOŚĆ NASYCONEGO POPIOŁU LOTNEGO

Zadanie 2. Zadanie 4: Zadanie 5:

Przegląd metod badań przepływu wody w gruntach. Edyta MALINOWSKA, Alojzy SZYMAŃSKI, Wojciech SAS

Wyniki badań laboratoryjnych wybranych parametrów geotechnicznych dla gruntów spoistych z tematu:

WPŁYW ŚCIEŻKI NAPRĘŻENIA NA WYTRZYMAŁOŚĆ NA ŚCINANIE BEZ ODPŁYWU GRUNTÓW SPOISTYCH

Załącznik 10. Tytuł: Wyniki badań w aparacie trójosiowego ściskania

Wprowadzenie. Edyta MALINOWSKA, Przemysław DOMAŃSKI

Katedra Geoinżynierii SGGW w Warszawie Departament of Geotechnical Engineering WULS SGGW

Fundamentem nazywamy tę część konstrukcji budowlanej lub inżynierskiej, która wsparta jest bezpośrednio na gruncie i znajduje się najczęściej poniżej

Charakterystyka naprężeniowo-odkształceniowa dla próbek piaskowca z szorstkimi i gładkimi pęknięciami

CHARAKTERYSTYKA ROZKŁADU CIŚNIENIA POROWEGO W BADANIACH KONSOLIDACJI PAST GRUNTOWYCH Z PÓŁNOCNOPOLSKICH GLIN ZWAŁOWYCH

Badania charakterystyk odkształceniowych gruntów słabonośnych Laboratory investigations of deformation characteristics in soft soils

SPRAWOZDANIE Z BADAŃ LABORATORYJNYCH

ANALIZA ROZKŁADU OPORÓW NA POBOCZNICĘ I PODSTAWĘ KOLUMNY BETONOWEJ NA PODSTAWIE WYNIKÓW PRÓBNEGO OBCIĄśENIA STATYCZNEGO

Zarys geotechniki. Zenon Wiłun. Spis treści: Przedmowa/10 Do Czytelnika/12

STATYCZNA PRÓBA ROZCIĄGANIA

WPŁYW METOD INTERPRETACJI BADAŃ KONSOLIDACYJNYCH TYPU IL

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Łukasz ZAWADZKI, Mariusz LECH, Kazimierz GARBULEWSKI

Przykład 1.8. Wyznaczanie obciąŝenia granicznego dla układu prętowego metodą kinematyczną i statyczną

WPŁYW ZMIAN STOPNIA WILGOTNOŚCI NA CHARAKTERYSTYKI ŚCIŚLIWOŚCI W BADANIACH EDOMETRYCZNYCH

Wprowadzenie. Małgorzata K. WDOWSKA, Mirosław J. LIPIŃSKI

Pomiar pompy wirowej

Nazwa Tel. Opiekun. Laboratorium Gruntów Nienasyconych dr Emilia Wójcik. dr Emilia Wójcik mgr Marek Wróbel. Sekretariat Laboratorium

Wytrzymałość gruntów organicznych ściśliwych i podmokłych.

Trwałość zmęczeniowa złączy spawanych elementów konstrukcyjnych

Katedra Geoinżynierii SGGW Department of Geotechnical Engineering WULS SGGW

WPŁYW METODY BADANIA NA WYZNACZONE CIŚNIENIE PĘCZNIENIA NA PRZYKŁADZIE IŁÓW KRAKOWIECKICH

Ocena stateczności etapowo budowanego nasypu na podłożu organicznym Stability assessment of stage-constructed embankment on organic subsoil

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY.

ZMIANY SPOSOBU WZMANIANIA GRUNTÓW SŁABYCH NA OSTROWIE GRABOWSKIM W OPARCIU O BADANIA KONSOLIDACJI TORFÓW

PROJEKT STOPY FUNDAMENTOWEJ

Obciążenia, warunki środowiskowe. Modele, pomiary. Tomasz Marcinkowski

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ.

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E

Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża

. Diody, w których występuje przebicie Zenera, charakteryzują się małymi, poniŝej 5V, wartościami napięcia stabilizacji oraz ujemną wartością α

DEFORMACYJNE WŁAŚCIWOŚCI LAMINOWANYCH UTWORÓW ILASTYCH. 1. Wstęp. 2. Wyniki badań interpretacja i analiza. Grażyna Gaszyńska-Freiwald*

Sondowania statyczne CPTU Sprzęt, interpretacja, jakość

BADANIA WYTRZYMA OŒCI NA ŒCISKANIE PRÓBEK Z TWORZYWA ABS DRUKOWANYCH W TECHNOLOGII FDM

WYZNACZANIE KSZTAŁTU PROFILU STATECZNEGO METODA MASŁOWA Fp

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +

Ćw. 4. BADANIE I OCENA WPŁYWU ODDZIAŁYWANIA WYBRANYCH CZYNNIKÓW NA ROZKŁAD CIŚNIEŃ W ŁOśYSKU HYDRODYNAMICZNYMM

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

1. ZADANIA Z CECH FIZYCZNYCH GRUNTÓW

OCENA SKUTKÓW ZMIAN ZASILANIA W OPTOELEKTRONICZNYM SYSTEMIE POMIARU WILGOTNOŚCI GLEBY

WYZNACZENIE WYTRZYMAŁOŚCI NA ŚCINANIE BEZ ODPŁYWU W CYLINDRYCZNYM APARACIE SKRĘTNYM

AKADEMIA GÓRNICZO HUTNICZA Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki

ANIZOTROPIA WYTRZYMAŁOŚCI NA ŚCINANIE BEZ ODPŁYWU GRUNTÓW SPOISTYCH W CYLINDRYCZNYM APARACIE SKRĘTNYM

DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY PROGRAMU AGREGAT - 2

Badania gruntów nienasyconych dotychczasowe doświadczenia i perspektywy rozwoju

Data wykonania ćwiczenia Data oddania sprawozdania Ilość pkt/ocena... Nazwisko Imię:

Mechanika gruntów 5 Odkształcalność podłoża gruntowego

PRACE ORYGINALNE ORIGINAL PAPERS

Zapora ziemna analiza przepływu ustalonego

Mechanika gruntów - opis przedmiotu

LABORATORIUM POMIAROWO BADAWCZE ODDZIAŁ BIELSKO-BIAŁA

Indywidualne projektowanie konstrukcji nawierzchni dzięki metodzie mechanistyczno - empirycznej Dawid Siemieński Pracownia InŜynierska KLOTOIDA

METODA OKREŚLANIA CZASÓW OBRÓBKI CIEPLNEJ PRÓBEK ZIARNA NA PRZYKŁADZIE PROSA Zbigniew Oszczak, Marian Panasiewicz

Pale fundamentowe wprowadzenie

Walidacja modelu Hardening Soil small w badaniach trójosiowych gruntu z zastosowaniem czujników napróbkowych

Wykład 3. Diagramy fazowe P-v-T dla substancji czystych w trzech stanach. skupienia. skupienia

Czynniki warunkujące zmienność modułu odkształcenia gruntów spoistych Factors subjecting variability of Young s modulus of cohesive soils

SPECYFIKACJA TECHNICZNA D WYKONANIE NASYPÓW

ZASTOSOWANIE RÓWNANIA BOUSSINESQUE A DO OKREŚLANIA NAPRĘŻEŃ W GLEBIE WYWOŁANYCH ODDZIAŁYWANIEM ZESTAWÓW MASZYN

WYDZIAŁ MECHANICZNY POLITECHNIKI GDAŃSKIEJ KATEDRA SILNIKÓW SPALINOWYCH I SPRĘśAREK

BADANIA OSIOWEGO ROZCIĄGANIA PRĘTÓW Z WYBRANYCH GATUNKÓW STALI ZBROJENIOWYCH

Parcie na powierzchnie płaską

LABORATORIUM MECHANIKI PŁYNÓW

ZDALNY I ZAUTOMATYZOWANY POMIAR OSIADAŃ W LABORATORYJNYCH BADANIACH GRUNTU BUDOWLANEGO

2.3. Praca samotna. Rys Uproszczony schemat zastępczy turbogeneratora

Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii

BADANIE DRUTÓW ORTODONTYCZNYCH W ASPEKCIE WYTRZYMAŁOŚCI NA ROZCIĄGANIE

G E O T E C H N I C S

Ćwiczenie nr 1 Wyznaczanie charakterystyki statycznej termostatycznego zaworu rozprężnego

Maciej Kordian KUMOR. BYDGOSZCZ - TORUŃ stycznia 2012 roku. Katedra Geotechniki Wydział Budownictwa i Inżynierii Środowiska

CIŚNIENIA PREKONSOLIDOWANIA WYKORZYSTANIE W PRAKTYCE INŻYNIERSKIEJ

Instrukcja. Laboratorium

Ruch Demonstracje z kinematyki i dynamiki przeprowadzane przy wykorzystanie ultradźwiękowego czujnika połoŝenia i linii powietrznej.

OPTYMALIZACJA PARAMETRÓW PRACY PNEUMATYCZNEGO SEPARATORA KASKADOWEGO

BADANIA GRUNTU W APARACIE RC/TS.

Ćwiczenie laboratoryjne Parcie wody na stopę fundamentu

Transkrypt:

Marzena LENDO, Zdzisław SKUTNIK Katedra GeoinŜynierii SGGW Department of Geotechnical Engineering WAU Badanie współczynnika konsolidacji (c v ) nienasyconych iłów plioceńskich Tests of the coefficient of consolidation (c v ) of unsaturated pliocen clays Słowa kluczowe: współczynnik konsolidacji, konsolidometr UPC, ciśnienie ssania, ił plioceński Key words: coefficient of consolidation, UPC consolidometer, suction pressure, pliocen clays Wprowadzenie Głównym celem wykonywania badań konsolidacji jest uzyskanie danych niezbędnych do oszacowania wielkości i prędkości odkształceń próbek iłów badanych w warunkach zadanego jednoosiowego obciąŝenia (σ v ) przy uniemoŝliwionej rozszerzalności bocznej. Podstawowym parametrem określającym powyŝsze wielkości jest współczynnik konsolidacji (c v ). W iłach, gruntach o bardzo małej przepuszczalności, proces odkształceń po przyłoŝeniu obciąŝenia jest niezmiernie długotrwały. Stąd wypływa teŝ niechęć inŝynierów rozumiejących to zagadnienie do posadowienia obiektów budowlanych na podłoŝu, w którym grunty te występują. Nie mniej jednak w terenach wielkomiejskich bardzo często decydują o tym inne względy, głównie ekonomiczne, a inŝynierowie i naukowcy muszą znaleźć właściwe rozwiązanie powyŝszych problemów. Najbardziej oczywistym przykładem konieczności wyznaczania współczynnika konsolidacji (c v ) jest określenie przebiegu procesu konsolidacjim w tym: wartości osiadania i całkowitego czasu, w jakim to nastąpi, oraz oszacowania stopnia konsolidacji (U) po upływie dowolnego czasu. Znajomość stopnia konsolidacji w dowolnym czasie procesu konsolidacji jest bardzo pomocnym wskaźnikiem przy ocenie przebiegu osiadań podłoŝa i określeniem ewentualnych dalszych obciąŝeń itp. Podstawowy model konsolidacji Terzaghiego (1923) oparty jest na załoŝeniu, Ŝe konsolidacja pierwotna to przede wszystkim odpływ wody, na skutek czego coraz większe obciąŝenie przejmuje szkielet gruntowy. Dlatego teŝ obciąŝenie gruntu nasyconego powoduje natychmiastowy wzrost ciśnienia 40 M. Ledo, Z. Skutnik

wody w porach do wartości poziomu obciąŝenia. Następnie ciśnienie wody w porach rozprasza się z prędkością zaleŝną od przepuszczalności danego gruntu. Gdy grunt nie jest w pełni nasycony, układ jest trójfazowy. W toku badania moŝemy wyróŝnić dwa etapy: etap związany z nieustalonym przebiegiem procesu konsolidacji, nie w pełni zgodny z rozwiązaniami teoretycznymi udział wody w przenoszeniu obciąŝeń, etap właściwy, o ustalonym przebiegu procesu konsolidacji. W gruntach nienasyconych współczynnik przepuszczalności zaleŝy od stopnia nasycenia, który jest funkcją ciśnienia ssania (Alonso i in. 1990, Fredlund i in. 1993). W odróŝnieniu od gruntów w pełni nasyconych obserwuje się zupełnie inne oddziaływanie na szkielet gruntowy napręŝenia od zewnętrznych obciąŝeń i ciśnienia wody, wypełniającej tylko częściowo pory gruntowe. Na stan napręŝenia w gruntach nienasyconych ma wpływ równieŝ ssanie macierzyste s = u a u w. Bishop i Donald (1961) proponują równanie do określania napręŝenia efektywnego gruntu nienasyconego w postaci: σ = σ [u a χ(u a u w )] (1) gdzie: σ napręŝenie efektywne, σ napręŝenie całkowite, u a ciśnienie powietrza w porach, u w ciśnienie wody w porach, χ parametr zaleŝny od stopnia nasycenia, równy 0 dla gruntów suchych i 1 dla gruntów nasyconych. WaŜność tego równania została zakwestionowana przez Jenningsa i Burlanda (1962), którzy na podstawie przeprowadzonych badań konsolidacji dowiedli, Ŝe moŝe być ono stosowane tylko w pewnych zakresach wartości stopnia nasycenia gruntu (S r ). Dlatego teŝ do opisu stanu napręŝenia gruntów nienasyconych wprowadzono dodatkowe zmienne (Bishop i Blight 1963, Fredlund i Morgenstern 1977): napręŝenie efektywne gruntów nienasyconych, zwane napręŝeniem netto: σ net = σ u a, oraz ssanie macierzyste: s = u a u w. Wprowadzenie tych zmiennych w mechanice gruntów nienasyconych miało wpływ na opis matematyczny obejmujący: wytrzymałość na ścinanie, zmiany objętości (odkształcenia) i przepływ w ośrodku nienasyconym. Metody wyznaczania współczynnika konsolidacji (c v ) Na podstawie badań laboratoryjnych (badań ściśliwości) współczynnik konsolidacji moŝe być wyznaczony dwiema metodami (Head 1982): metodą Casagrandea i metodą Taylora. Metoda Casagrandea polega na określeniu współczynnika konsolidacji (c v ) na podstawie zaleŝności wysokości próbki od czasu w podziałce półlogarytmicznej (rys. 1): c v = T v h t 2 50 [cm 2 /s] (2) gdzie: c v współczynnik konsolidacji [cm 2 /s], T v czynnik czasu równy 0,196 dla stopnia konsolidacji U = 0,5, h połowa wysokości próbki w edometrze [cm], t 50 odczytany ze skorygowanej krzywej konsolidacji czas dla U = 0,5 [min], Badanie współczynnika konsolidacji... 41

Czas / time [min] wysokość próbki / height of sample [mm] konsolidacja pierwotna / konsolidacja wtórna primary consolidation / secondary consolidation RYSUNEK 1. Metoda Casagrandea wyznaczania współczynnika konsolidacji (c v ) FIGURE 1. Determination of the coefficient of consolidation (c v ) by Casagrande method stąd po podstawieniu otrzymujemy: c v = 0,196 h t 2 50 [cm 2 /s] (3) Podczas stosowania metody Casagrandea podstawową czynnością, jaką naleŝy wykonać jest wyznaczenia czasu t 50 (rys. 1). Po ustaleniu osiadania początkowego naleŝy poprowadzić proste, które są przedłuŝeniem końcowych odcinków krzywych konsolidacji pierwotnej i wtórnej. Punkt przecięcia tych krzywych wyznacza na krzywej konsolidacji miejsce, w którym zachodzi 100% konsolidacji (U = 100%). Prowadząc proste poziome pierwszą przechodzącą przez początek krzywej konsolidacji i kolejną przechodzącą przez punkt, w którym konsolidacja zachodzi w 100% (U = 100%), moŝemy wyznaczyć zakres konsolidacji pierwotnej. Połowę róŝnicy rzędnych wyŝej opisanych prostych, określi nam czas t 50, w którym zachodzi 50% konsolidacji. Metoda Taylora polega na sporządzeniu wykresu zmian wysokości próbki w zaleŝności od pierwiastka kwadratowego czasu (rys. 2). Prostoliniowy odcinek wykresu naleŝy przedłuŝyć do przecięcia z osią rzędnych, następnie z tego punktu poprowadzić prostą nachyloną do osi rzędnych pod kątem β (tgβ = 1,15tgα, gdzie α kąt nachylenia prostoliniowego odcinka wykresu do osi rzędnych). Punkt przecięcia otrzymanej prostej z krzywą konsolidacji odpowiada czasowi t 90, w którym konsolidacja zachodzi w 90%, a czynnik czasu dla U = = 90 % wynosi T = 0,848. Współczynnik 42 M. Ledo, Z. Skutnik

czas / time [min] wysokość próbki / height of sample [mm] konsolidacja w tórna primary consolidation stopień konsolidacji /degree of consolidation [U] RYSUNEK 2. Metoda Taylora wyznaczania współczynnika konsolidacji (c v ) FIGURE 2. Determination of the coefficient of consolidation (c v ) by Taylor method konsolidacji (c v ) obliczamy z poniŝszego równania: c v = 0,848 2 h [cm 2 /s] (4) t 90 gdzie h = połowa wysokości próbki w edometrze [cm]. Badania konsolidacyjne w edometrze UPC Metodyka badań. Badania konsolidacyjne próbek iłu plioceńskiego w warunkach kontrolowanego ciśnienia ssania przeprowadzono w konsolidometrze UPC. Konsolidometr został skonstruowanym w Laboratorium Geotechnicznym Politechniki Katalońskiej w Barcelonie, stąd nazwa urządzenia UPC Universitat Politècnica de Catalunya (Skutnik 2002). Widok aparatury i schemat ideowy urządzenia przedstawiono na rysunku 3. W odróŝnieniu od tradycyjnego edometru próbka gruntu jest szczelnie zamknięta. Kluczowym elementem urządzenia jest kamień ceramiczny HAEV (high air entry value), stanowiący podstawę próbki umieszczonej w pierścieniu edometrycznym. Zastosowany kamień HAEV, o ciśnieniu wejścia dla powietrza wynoszącym 1500 kpa, pozwala na utrzymywanie ciśnienia powietrza w próbce gruntu większego od ciśnienia wody w porach Badanie współczynnika konsolidacji... 43

a źródło ciśnienia/ pressure source b reduktor ciśnienia pressure regulator ua reduktor ciśnienia pressure regulator czujnik odkształceń sensorof defor mation σv reduktor ciśnienia pressure regulator biureta/ biurette cera mika HAEV cera mics HAEV edometr/oedometer uw RYSUNEK 3. Stanowisko badawcze do badań gruntów nienasyconych; a widok aparatury, b schemat ideowy (Tyszka 2002) FIGURE 3. The testing equipment for unsaturated soils: a view of the apparatus, b scheme of the connections (Tyszka 2002) 44 M. Ledo, Z. Skutnik

zadanego przez tę ceramikę. ObciąŜenie pionowe próbki przykładane jest pneumatycznie za pomocą spręŝonego powietrza działającego na membranę przekazującą nacisk na górny kamień porowy i na próbkę. Ciśnienie powietrza porowego odseparowane jest od ciśnienia działającego na próbkę gumową membraną grubości 1mm. Zmiany objętości wody, dopływającej bądź odpływającej z próbki gruntu, mierzone są za pomocą specjalnej biurety umieszczonej w cylindrze wypełnionym wodą, w którym panuje takie samo ciśnienie jak w biurecie. Zapewnia to niezaleŝność odczytu od zmieniających się wartości ciśnień Dokładność pomiaru wynosi 0,02 ml. Zmiany wysokości próbki rejestrowane są za pomocą mechanicznego czujnika przemieszczeń o dokładności pomiaru 2 µm. W konsolidometrze moŝna wykonywać badania gruntów nienasyconych, kontrolując ssanie i napręŝenie oraz odkształcenie objętościowe próbki i jej wilgotność. Ssanie macierzyste jest kontrolowane poprzez zastosowanie techniki translacji osi (axis translation technique), umoŝliwiającej badanie gruntów nienasyconych w warunkach bardzo wysokiego ssania macierzystego. Technika ta pozwala pokonać ograniczenie 1 atm ( 101,3 kpa, czyli ciśnienie absolutnego zera). Polega na translacji ciśnienia powietrza (u a ) i ciśnienia wody w porach (u w ) w zakres wartości dodatnich w taki sposób, Ŝe w próbce gruntu ssanie (s = u a u w ) pozostaje stałe, niezaleŝne od ciśnienia atmosferycznego powietrza (u atm ). Jest to zatem układ hydraulicznie zamknięty Przykładowo, początkowe ciśnienie wody w porach (u w ) mierzone poniŝej ceramiki (HAEV high air entry value) wynosi 100 kpa. Następnie na próbkę od górnej powierzchni zadawane jest ciśnienie powietrza, wynoszące 200 kpa, co zwiększa ciśnienie powietrza w porach (u a ) do tej samej wartości, tj. u a = 200 kpa. W wyniku tego ciśnienie wody w porach wzrasta o taką samą wielkość, ale ostatecznie wynosi 100 kpa. Podsumowując, moŝna stwierdzić, Ŝe oprócz translacji ciśnienia powietrza w porach od wartości odniesienia równej 0 kpa do 200 kpa ssanie macierzyste w próbce gruntu (s = u a u w ) pozostanie stałe i będzie równe 100 kpa. Chcąc wyznaczyć charakterystyki konsolidacyjne gruntu dla załoŝonych wielkości obciąŝenia i ciśnienia ssania, badania prowadzi się według ścieŝek poziomych (rys. 4). Przy czym dla kaŝdego etapu obciąŝenia rejestruje się zmiany wysokości próbki w odstępach czasu jak w badaniach konsolidacji w tradycyjnym edometrze, aŝ do chwili osiągnięcia zarówno stabilizacji osiadań, jak i zmian objętości wody mierzonych za pomocą biurety. Następnie dla kaŝdego etapu obciąŝenia sporządzono wykresy przebiegu konsolidacji. Właściwości badanego gruntu. Badania zostały wykonane na 3 próbkach gruntu o nienaruszonej strukturze NNS, pobranych na poligonie badawczym Stegny. Poligon ten znajduje się w Warszawie na osiedlu mieszkaniowym między ulicami Warneńską i Czerniakowską. Badanie współczynnika konsolidacji... 45

450 ssanie/suction (ua uw) [kpa] 400 350 300 250 200 150 100 50 0 próbka 1 / sample 1 eo=0,798 próbka 2 /sample 2 eo=0,799 próbka 3/sample 3 eo=0,7981 0 100 200 300 400 500 600 napręŝenie pionowe netto / vertical net stress (σ v u a ) [kpa] RYSUNEK 4. ŚcieŜki obciąŝenia w badaniach konsolidacyjnych próbek iłu FIGURE 4. Loading path during consolidation tests of clay samples TABELA 1. Zestawienie właściwości fizycznych badanych gruntów TABLE 1. Physical properties of tested soils Próbka Sample ρ s [Mg/m 3 ] ρ [Mg/m 3 ] ρ d [Mg/m 3 ] e [ ] W n [%] W p [%] W L [%] I p [%] 1 2,72 1,88 1,44 0,9 31,0 41,0 96,0 55,0 2 2,69 1,95 1,48 0,82 31,7 35,0 83,0 48,0 3 2,71 2,05 1,61 0,69 27,5 22,5 69,5 47,0 Próbki gruntu zostały pobrane w próbniki typu Shelby, z otworów wiertniczych wykonywanych w ramach prac geologicznych. Próbki trzeciorzędowych iłów pobrano z następujących głębokości: próbka 1 (6,0 7,0 m), próbka 2 (7,6 8,0 m) i próbka 3 (8,0 8,7 m). Zestawienie właściwości fizycznych badanych próbek gruntu zawiera tabela 1 (Lendo 2004). Wyniki badań. KaŜdą z próbek poddano badaniu konsolidacji, stosując róŝne wartości ciśnienia ssania przy zmianie obciąŝeń dla kaŝdej z nich. Przyjęty sposób badań pozwolił sporządzić charakterystykę, jaką jest krzywa konsolidacji dla kaŝdej wartości ciśnienia ssania a następnie na tej podstawie określić zaleŝność między ciśnieniem ssania, a badanym współczynnikiem konsolidacji Dla próbki nr 1 wzbudzone metodą translacji osi ciśnienie ssania wynosiło 200 kpa, a obciąŝenia w kolejnych etapach wynosiły: 250, 300 i 400 kpa. Próbka nr 2 była poddana ciśnieniu ssania wynoszącym 400 kpa, a obciąŝenia wynosiły: 250, 300, 350 i 400 kpa. Podczas badania próbki nr 3 zadane ciśnienie ssania wynosiło 50 kpa, a obciąŝenia: 350, 400, 450, 500 i 550 kpa. 46 M. Ledo, Z. Skutnik

Na podstawie pomiarów zmiany wysokości próbki w czasie dla kaŝdego etapu obciąŝenia, sporządzono wykresy krzywych konsolidacji. Przykładowy wykres krzywej konsolidacji dla ciśnienia ssania wynoszącego 50 kpa i obcią- Ŝenia 500 kpa przedstawiono na rysunku 5. Wyniki pozostałych badań konsolidacyjnych oraz obliczone na ich podstawie wartości współczynnika konsolidacji (c v ) zestawiono w tabeli 2. We wszystkich przypadkach do określenia współczynnika konsolidacji zastosowano metodę Casagrandea. Uzyskane wartości współczynnika konsolidacji (c v ) naniesiono na wykres w zaleŝności od napręŝenia pionowego (rys. 6). Analiza uzyskanych zaleŝności współczynnika (c v ) od napręŝenia pionowego i ciśnienia ssania wskazuje, Ŝe dla kaŝdej wartości ciśnienia ssania, wartość współczynnika konsolidacji (c v ) maleje wraz ze wzrostem napręŝenia pionowego. Natomiast dla danej wartości napręŝenia pionowego wartość współczynnika konsolidacji (c v ) maleje, gdy wzrasta ciśnienie ssania. Wnioski Współczynnik konsolidacji (c v ), moŝe być rozpatrywany w aspekcie matematycznym jako stała w równaniu róŝniczkowym konsolidacji oraz w aspekcie fizycznym, wiąŝącym takie cechy, jak przepuszczalność i ściśliwość. Zarówno współczynnik przepuszczalności, jak i moduł ściśliwości są parametrami, które zaleŝą od stopnia nasycenia. Na podstawie przeprowadzonych badań określono zaleŝności współczynnika (c v ) od napręŝenia pionowego i ciśnienia ssania, z których wynika, Ŝe wartość współczynnika konsolidacji (c v ) maleje wraz ze wzrostem obciąŝenia. Wartości współczynnika konsolidacji (c v ) zmieniają się w zakresie od 1,1 10 5 cm 2 /s, dla obciąŝenia wynoszącego 400 kpa i ciśnienia ssania równego 400 kpa, do 4,38 10 4 cm 2 /s, dla obciąŝenia 250 kpa i ciśnienia ssania 200 kpa. Natomiast dla danej wartości napręŝenia pionowego, kiedy zwiększamy metodą wysokość próbki height of sample [mm] 19,700 19,695 19,690 19,685 19,680 19,675 t 1 4t 1 c b a ab=bc σ v u a = 500 kpa t 50 = 20000 10 100 1000 10 000 100 000 1000 000 czas / time [s] 0 % 50 % 100 % u=100 % RYSUNEK 5. Przykładowa krzywa konsolidacji iłu FIGURE 5. Typical consolidation curve of clay Badanie współczynnika konsolidacji... 47

TABELA 2. Zestawienie wyników badań TABLE 2. Test results Póbka s = u a u w e Sr u a u w Sample [kpa] [ ] [ ] [kpa] [kpa] 1 200 0,798 0,951 310 110 2 400 0,799 0,886 410 10 3 50 0,7981 0,881 60 10 σ v [kpa] σ v u a [kpa] t 50 [s] C v [cm 2 /s] 560 250 1800 0,000438 610 300 2200 0,000358 710 400 11000 0,000072 660 250 2000 0,000394 710 300 5800 0,000136 760 350 12000 0,000066 810 400 70000 0,000011 410 350 3000 0,000263 460 400 7000 0,000113 510 450 7000 0,000113 560 500 20000 0,000039 610 550 30000 0,000026 współczynnik konsolidacji coefficient of consolidation [cm 2 /s] v c 0,000600 0,000500 0,000400 0,000300 0,000200 0,000100 r 2 = 0,93 1,0 próbka 1/sample 1, s=200 Kpa próbka 2/sample 2, s=400 kpa próbka 3/sample 3, s=50 kpa 0,000000 0 100 200 300 400 500 600 napręŝenie pionowe netto / vertical net stress, σ v u a [kpa] RYSUNEK 6. Zmienność współczynnika konsolidacji (c v ) w funkcji napręŝenia konsolidacyjnego i ciśnienia ssania FIGURE 6. Changes of the coefficient of consolidation (c v ) as a function of consolidation pressure for different values of suction translacji osi ciśnienie ssania, chcąc zmniejszyć stopień nasycenia, współczynnik konsolidacji równieŝ maleje (patrz rys. 6). Na przykład dla obciąŝenia wynoszącego 400 kpa współczynnik konsolidacji (c v ) zmieniał się w zakresie od 1,13 10 4 cm 2 /s dla ciśnienia ssania równego 50 kpa do 1,1 10 5 cm 2 /s, kiedy ciśnienia ssania wynosiło 400 kpa. Planowane dalsze badania będą miały na celu określenie, na ile zmiany współczynnika konsolidacji wynikają ze zmniejszania się współczynnika przepuszczalności, a na ile zaleŝy to od zmian sztywności wynikającej ze wzrostu ciśnienia ssania. 48 M. Ledo, Z. Skutnik

Literatura ALONSO E.E., GENS A. 1991: A framework for the behavior of unsaturated expansive clays. Canadian Geotechnical Journal 29: 1013 1032. ALONSO E.E., GENS A., JOSA A. 1990: A constitutive model for partially saturated soils. Geotechnique 40, 3: 405 429. BISHOP A.W., DONALD I.B. 1955: The experimental study of partly saturated soil in the triaxial apparatus, V ICSMFE, Paris. BISHOP A.W., BLIGHT G.E. 1963: Some aspects of effective stress in saturated and partly saturated soils. Geotechnique 13, 3: 177 197. CHEN F.H. 1988: Foundations on expansive soils. Developments in Geotechnical Engineering. 54. FREDLUND D.G. MORGENSTERN N.R. 1977: Stress state variables for unsaturated soils. Canadian Geotechnical Journal 15, 3: 313 321. FREDLUND D.G., WILSON G.W., BARBOUR S.L. 1993: Unsaturated soil mechanics and property assessment. 107 113. HEAD K.H. 1982: Manual of Soil Laboratory Testing. Vol. 3. JENNINGS J.E., BURLAND J.B. 1962: Limitations to the use of effective stresses in partly saturated soils. Geotechnique 12, 2: 125 144. LENDO M. 2004: Analiza zachowania się iłów plioceńskich w świetle badań edometrycznych z kontrolowanym ciśnieniem ssania Praca magisterska, Wydział InŜynierii i Kształtowania Środowiska, SGGW, Warszawa. SKUTNIK Z. 2002: Weryfikacja parametrów geotechnicznych rdzenia zapory nasypowej na podstawie badań prowadzonych podczas budowy. Praca doktorska. SGGW, Warszawa. Summary Tests of the coefficient of consolidation (c v ) of unsaturated pliocen clays. In the paper the tests results of the consolidation coefficient (c v ) of unsaturated pliocen clays are presented. The consolidation tests of pliocen clay samples were performed for different values of loading and degree of saturation induced by applied suction. These tests were carried out in the suction controlled consolidometer (called UPC- consolidometer), which uses the axis-translation technique to apply the required suction. The value of coefficient of consolidation (c v ) estimated for different values of suction degree of saturation, decreases if loading increases. But for the same level of loading the coefficient of consolidation (c v ) decreases if applied suction increases (degree of saturation decreases). Authors address: Zdzisław Skutnik, Marzena Lendo Szkoła Główna Gospodarstwa Wiejskiego Katedra GeoinŜynierii ul. Nowoursynowska 159, 02-776 Warszawa Poland Badanie współczynnika konsolidacji... 49