Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 9
Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Najlepsze: AO, LS. Największe błędy: za duże skoki, nie ma sformułowanej cechy podzielności przez 9. W niektórych kartach to uczeń ma sformułować tę cechę, ale nie jest zbyt dobrze na nią naprowadzany. Dwie prace były tak podobne, że punkty podzieliłem przez 2. 1:9 = - dziwne i niepotrzebne. 247851 jako pierwszy przykład do sprawdzenia? przy dzieleniu przez 9 daje resztę 0 wtedy i tylko wtedy, gdy, gdy, jeśli
Karta pracy: podzielność przez 9 Zadanie 1 Wykonaj dzielenie z resztą: a) 10:9 = reszta d) 20:9 = reszta g) 40:9 = reszta b) 100:9 = reszta e) 200:9 = reszta h) 400:9 = reszta c) 1000:9 = reszta Jaka będzie reszta z dzielenia liczby 10000 przez 9? A liczby 2000? A liczby 4000? Czy coś można zauważyć? Zapamiętaj to i wykorzystaj w zadaniu 2. Zadanie 2 Podaj resztę z dzielenia przez 9 następujących liczb: a) 30 c) 70 e) 80 b) 500 d) 600 f) 800
Karta pracy: podzielność przez 9 Zadanie 3 Przedstaw liczby w postaci sumy według następującego schematu: 233 = 200 +30 + 4, a następnie podaj reszty z dzielenia każdego składnika przez 9 i oblicz sumę tych reszt. a) 235 = 200 + 30 + 5 reszta z dzielenia 200 przez 9 reszta z dzielenia 30 przez 9 reszta z dzielenia 5 przez 9 suma reszt Czy liczba 233 jest podzielna przez 9? Wpisz TAK lub NIE. Czy suma reszt jest podzielna przez 9? Wpisz TAK lub NIE. b) 135 = + + reszta z dzielenia pierwszego składnika przez 9 reszta z dzielenia drugiego składnika przez 9 reszta z dzielenia trzeciego składnika przez 9 suma reszt Czy liczba 135 jest podzielna przez 9? Wpisz TAK lub NIE. Czy suma reszt jest podzielna przez 9? Wpisz TAK lub NIE.
Karta pracy: podzielność przez 9 Zadanie 3 c) 2429 = + + + reszta z dzielenia pierwszego składnika przez 9 reszta z dzielenia drugiego składnika przez 9 reszta z dzielenia trzeciego składnika przez 9 reszta z dzielenia czwartego składnika przez 9 suma reszt Czy liczba 2429 jest podzielna przez 9? Wpisz TAK lub NIE. Czy suma reszt jest podzielna przez 9? Wpisz TAK lub NIE.
Karta pracy: podzielność przez 9 Zadanie 4 Spójrz na przykłady z zadania 3. Co można zauważyć? Uzupełnij: Liczby naturalna jest podzielna przez 9, gdy suma cyfr tej liczby jest. przez 9. Zadanie 5 Podkreśl te liczby, które są podzielne przez 9. 305, 513, 463, 3564, 4445, 12345
Zadanie domowe Przeczytaj rozdział Liczby dodatnie i ujemne : D. Zaremba, Sztuka nauczania matematyki w szkole podstawowej i gimnazjum, GWO, 2004, str. 76-83. (dla chętnych) Znajdź w starych, nowszych podręcznikach do matematyki metody wprowadzania liczb ujemnych i działań na nich. Zadania
Zadanie domowe
Zadanie domowe 12/(-3) = (-4); podaj uzasadnienie, nie korzystaj z mnożenia.
Geometria w PPM proste i odcinki Uczeń powinien: rozpoznawać i nazywać figury: punkt, prosta, półprosta, odcinek; rozpoznawać proste i odcinki prostopadłe i równoległe; umieć narysować pary odcinków prostopadłych i równoległych; mierzyć odcinek z dokładnością do 1 mm; wiedzieć, że aby znaleźć odległość punktu od prostej, należy znaleźć długość odpowiedniego odcinka prostopadłego do prostej. Przykładowe zadania Zaznacz dwa różne punkty A i B. Poprowadź przez nie prostą i zaznacz na niej punkt C, leżący między punktami A i B. Zaznacz dwa różne punkty E i F i narysuj prostą EF. Zaznacz na niej punkt H w taki sposób, aby odcinek EH była dwa razy dłuższy od odcinka FH. Narysuj prostą p. Zaznacz na niej 3 różne punkty A, B i C. Odczytaj i zapisz wszystkie powstałe w ten sposób półproste i odcinki. Odcinki AB i CD są prostopadłe, odcinki CD i EF są równoległe oraz odcinki EF i DF są prostopadłe. Określ wzajemne położenie odcinków DF oraz AB. Wykonaj odpowiedni rysunek.
Geometria w PPM kąty Uczeń powinien: umieć wskazać w dowolnym kącie ramiona i wierzchołek; mierzyć z dokładnością do 1 o kąty mniejsze niż 180 o ; rysować kąty mniejsze od 180 o ; rozpoznawać kąt prosty, ostry i rozwarty; umieć porównać kąty; rozpoznawać kąty wierzchołkowe i przyległe oraz korzystać z ich własności. Przykładowe zadania Narysuj kąty: 35 o, 95 o, 175 o. Ustal, czy są to kąty ostre czy rozwarte. Jakim kątem będzie kąt przyległy do kąta: I. prostego, II. ostrego, III. rozwartego? Oblicz miarę drugiego kąta przyległego, jeżeli miara pierwszego wynosi: 75 o, 105 o, 147 o. Różnica dwóch kątów przyległych jest równa 50 o. Oblicz te kąty. Ustal, czy są to kąty ostre czy rozwarte.
Łamigłówki przed Wielkanocą
Geometria w PPM wielokąty, koła i okręgi Uczeń powinien: rozpoznawać i nazywać trójkąty ostrokątne, prostokątne, rozwartokątne, równoboczne i równoramienne; konstruować trójkąt o danych trzech bokach i ustalać możliwość zbudowania trójkąta na podstawie nierówności trójkąta; stosować twierdzenie o sumie kątów trójkąta; rozpoznawać i nazywać: kwadrat, prostokąt, romb, równoległobok i trapez; znać najważniejsze własności kwadratu, prostokąta, rombu, równoległoboku i trapezu; wskazać na rysunku cięciwę, średnicę oraz promień koła i okręgu; rysować cięciwę koła i okręgu, a także, jeśli dany jest środek okręgu, rysować promień i średnicę. Przykładowe zadania Znajdź po 2 sposoby sprawdzenia czy dany trójkąt I. ma każdy bok innej długości, II. jest równoboczny, III. jest równoramienny. O pewnym trójkącie równoramiennym wiadomo, że jeden z jego kątów ma miarę 60 o. Czy ten trójkąt jest równoboczny? Uzasadnij swoją odpowiedź. Obwód trójkąta równoramiennego jest równy 45 cm. Długość ramienia tego trójkąta to 15 cm. Oblicz długość pozostałych boków tego trójkąta. Dobierz długość trzeciego odcinka tak, aby można było zbudować trójkąt: 2 dm, 25 cm,?; 0,07 m, 45 mm,?; 12 cm, 0,12 cm,? Wymień wszystkie rodzaje czworokątów, w których przeciwległe kąty są równe. Narysuj okrąg o środku w punkcie S i promieniu 4 cm. Zaznacz na nim punkty A, B, C w taki sposób, aby spełnione były warunki AS = cm, AB = 2 cm, BC = 8 cm.
Geometria w PPM bryły Uczeń powinien: rozpoznawać graniastosłupy proste, ostrosłupy, walce, stożki i kule w sytuacjach praktycznych i wskazywać te bryły wśród innych modeli brył; wskazywać wśród graniastosłupów prostopadłościany i sześciany i uzasadniać swój wybór; rozpoznawać siatki graniastosłupów prostych i ostrosłupów; rysować siatki prostopadłościanów.
Geometria w PPM bryły, przykładowe zadania Przykładowe zadania Narysuj trzy różne siatki graniastosłupa o podstawie kwadratowej o boku 2 cm i krawędzi bocznej 7cm. Narysuj trzy różne siatki sześcianu o krawędzi 3cm. Suma krawędzi pewnego graniastosłupa jest równa 72 dm, a wszystkie krawędzie podstawy mają równą długość. Oblicz jakie wymiary może mieć ten graniastosłup, jeśli wiadomo, że krawędź boczna jest równa 8 dm.
Geometria w PPM obliczenia w geometrii Uczeń powinien: umieć obliczyć obwód wielokąta o danych długościach boków; obliczać pola: kwadratu, prostokąta, rombu, równoległoboku, trójkąta, trapezu przedstawionych na rysunku oraz w sytuacjach praktycznych; stosować jednostki pola: mm 2, cm 2, dm 2, m 2, km 2, ar, hektar (bez zamiany jednostek w trakcie obliczeń); umieć obliczyć objętość i pole powierzchni prostopadłościanu przy danych długościach krawędzi; stosować jednostki objętości i pojemności mililitr, litr, cm 3, dm 3, m 3 ; obliczać miary kątów, stosując przy tym poznane własności kątów i wielokątów.
Geometria w PPM obliczenia w geometrii, przykładowe zadania Narysuj kwadrat, prostokąt, romb, równoległobok o polu 8 cm 2. Zaprojektuj prostopadłościan o objętości 2 dm 3. Narysuj jego siatkę. Oblicz pole prostokąta, którego jeden bok jest trzy razy dłuższy od drugiego, a obwód jest równy 40 cm. Oblicz miary zaznaczonych kątów:
Etapy (część obowiązkowa) Figury geometryczne płaskie: proste, półproste, odcinki, łamane. Wzajemne położenie prostych i odcinków. Mierzenie odcinków. Kąty i ich rodzaje. Mierzenie kątów. Pola figur: prostokąty i kwadraty. Figury geometryczne przestrzenne: sześciany, prostopadłościany. Rodzaje kątów: przyległe, wierzchołkowe, odpowiadające, naprzemianległe. Wielokąty. Rodzaje trójkątów. Mierzenie kątów w trójkątach. Rodzaje czworokątów (prostokąty i kwadraty, równoległoboki i romby, trapezy). Miary kątów w czworokątach. Pola figur: równoległoboki i romby, trójkąty, trapezy. Graniastosłupy proste. Walce, stożki, kule. Pola powierzchni graniastosłupów prostych. Objętość figury przestrzennej: sześcian i prostopadłościan. Konstrukcje geometryczne.
Uwagi ogólne Odejście od uczenia geometrii w sposób formalny. Kształtowanie u uczniów orientacji w związkach między różnymi własnościami. Korzystanie z bagażu doświadczeń, obserwacji ucznia. Mierzenie jako ważny aspekt geometrii w szkole. Nazywanie jest trudne dla uczniów. Symbolika matematyczna powinna być maksymalnie prosta. Kształtowanie wyobraźni geometrycznej. (szalik, klocki)
Klocki
PZ
Mierzenie na lekcjach geometrii Przykład długość Czy w kwadracie o boku 1 cm zmieści się łamana o łącznej długości 1 km?
Literatura [Z] D. Zaremba, Sztuka nauczania matematyki w szkole podstawowej i gimnazjum, GWO, 2004
Zadanie domowe 1. Przeczytaj rozdział Pojęcia geometryczne ze Sztuki nauczania matematyki w szkole podstawowej i gimnazjum D. Zaremby (GWO, 2004, 109-127). (obowiązuje do kolokwium) 2. Zadania:
Zadanie domowe
Zaproszenie Liczby całkowite mają wiele tajemniczych właściwości. Pewną z nich zainteresował się najbliższy nasz prelegent, Pan Wojciech Pachocki. Zamierza nam o tym opowiedzieć we czwartek 25 kwietnia, o godzinie 17, w odczycie pod tytułem: Informatyk w świecie geombinatoryki Oto, jak autor zapowiada treść swojego wystąpienia: Wielokąt kratowy to taki, którego wszystkie wierzchołki mają obie współrzędne całkowite. Niech a(n) oznacza najmniejsze spośród pól n-kątów wypukłych kratowych. Od 2001 r. wiadomo, że lim a(n)/n^3 istnieje. Zaciekawiło mnie, ile ta granica wynosi. Zacząłem konstruować pewne n-kąty wypukłe kratowe i wśród nich doszukiwałem się prawidłowości. O wynikach tych poszukiwań i sposobie dotarcia do nich chcę opowiedzieć. Spotkanie: aula 1, Wydział Fizyki, Matematyki i Informatyki UG.