NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę

Podobne dokumenty
EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2018 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2018 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 7 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. UZUPEŁNIA UCZEŃ miejsce KOD UCZNIA PESEL na naklejkę z kodem UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

EGZAMIN MATURALNY Z MATEMATYKI 2 CZERWCA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 4 CZERWCA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2018 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 25 SIERPNIA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 7 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2018 UZUPEŁNIA ZDAJ CY. miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2018 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI. dla osób niesłyszących CZERWIEC 2013 POZIOM PODSTAWOWY. Czas pracy: do 200 minut. Liczba punktów do uzyskania: 50

LUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp)

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

MAJ Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby.

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 3 CZERWCA Godzina rozpoczęcia: 14:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 4 CZERWCA Godzina rozpoczęcia: 14:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

MAJ Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony LO

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2015 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Nazwisko i imię.. PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

UZUPEŁNIA ZDAJĄCY PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI POZIOM ROZSZERZONY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony

LUBELSKA PRÓBA PRZED MATURĄ poziom rozszerzony MATEMATYKA 14 MARCA Instrukcja dla zdającego Czas pracy: 180 minut

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2014 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. (dla klas trzecich liceum i klas czwartych technikum)

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony klasa I

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

Transkrypt:

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2019 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9 maja 2019 r. GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 180 minut LICZBA PUNKTÓW DO UZYSKANIA: 50 Instrukcja dla zdającego UZUPEŁNIA ZESPÓŁ NADZORUJĄCY Uprawnienia zdającego do: dostosowania kryteriów oceniania nieprzenoszenia zaznaczeń na kartę 1. Sprawdź, czy arkusz egzaminacyjny zawiera 22 strony (zadania 1 15). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin. 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym. 3. Odpowiedzi do zadań zamkniętych (1 4) zaznacz na karcie odpowiedzi w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe. 4. W zadaniu 5. wpisz odpowiednie cyfry w kratki pod treścią zadania. 5. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (6 15) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów. 6. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem. 7. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl. 8. Pamiętaj, że zapisy w brudnopisie nie będą oceniane. 9. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego. 10. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem. 11. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora. NOWA FORMUŁA MMA-R1_1P-192 Układ graficzny CKE 2015 MMA 2019

W każdym z zadań od 1. do 4. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (0 1) Dla dowolnych liczb x > 0, x 1, y > 0, 1 równa A. x y B. 1 x y Zadanie 2. (0 1) 2 2 Liczba cos 105 sin 105 jest równa y wartość wyrażenia ( log 1 ) ( log 1 x y ) x y C. 1 D. 1 jest A. 3 B. 2 1 C. 2 1 2 D. 3 2 Zadanie 3. (0 1) Na rysunku przedstawiono fragment wykresu funkcji y = f (x), który jest złożony z dwóch półprostych AD i CE oraz dwóch odcinków AB i BC, gdzie ( 1, 0) C = ( 3, 0 ), D = ( 4, 3), E = ( 6, 3). 5 y A =, ( 1, 2) B =, D 4 3 2 B E 1 A 0-5 -4-3 -2-1 1 2 3 4 5 6 7-1 C x Wzór funkcji f to A. f ( x) = x+ 1 + x 1 B. f ( x) = x 1 2 C. f ( x) = x 1+ 2 D. f ( x) = x 1 + 2 Zadanie 4. (0 1) Zdarzenia losowe A i B zawarte w Ω są takie, że prawdopodobieństwo P( B ) zdarzenia B, przeciwnego do zdarzenia B, jest równe 1. Ponadto prawdopodobieństwo 4 warunkowe ( ) P A B = 1 20 1 5. Wynika stąd, że 4 15 A. P( A B) = B. P( A B) = C. P( A B) = D. P( A B) 3 20 = 4 5 Strona 2 z 22

BRUDNOPIS Strona 3 z 22

Zadanie 5. (0 2) Oblicz granicę 3 2 2 9n + 11n n lim n 7 3 5 2 3 1 3 2 n + n + n+ n + 1 Wpisz w poniższe kratki od lewej do prawej trzy kolejne cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku. Strona 4 z 22

Zadanie 6. (0 3) Rozważamy wszystkie liczby naturalne pięciocyfrowe zapisane przy użyciu cyfr 1, 3, 5, 7, 9, bez powtarzania jakiejkolwiek cyfry. Oblicz sumę wszystkich takich liczb. Odpowiedź:.... Wypełnia egzaminator Nr zadania 5. 6. Maks. liczba pkt 2 3 Uzyskana liczba pkt Strona 5 z 22

Zadanie 7. (0 2) 2 Punkt P = (10, 2429) leży na paraboli o równaniu y= 2x + x+ 2219. Prosta o równaniu kierunkowym y = ax+ b jest styczna do tej paraboli w punkcie P. Oblicz współczynnik b. Odpowiedź:.... Strona 6 z 22

Zadanie 8. (0 3) Udowodnij, że dla dowolnych dodatnich liczb rzeczywistych x i y, takich że x < y, i dowolnej x+ a y dodatniej liczby rzeczywistej a, prawdziwa jest nierówność + > 2. y+ a x Wypełnia egzaminator Nr zadania 7. 8. Maks. liczba pkt 2 3 Uzyskana liczba pkt Strona 7 z 22

Zadanie 9. (0 3) Dany jest trójkąt równoramienny ABC, w którym AC = BC. Na ramieniu AC tego trójkąta wybrano punkt M (M A i M C ), a na ramieniu BC wybrano punkt N, w taki sposób, że AM = CN. Przez punkty M i N poprowadzono proste prostopadłe do podstawy AB tego trójkąta, które wyznaczają na niej punkty S i T. Udowodnij, że ST = 1 2 AB. Strona 8 z 22

Wypełnia egzaminator Nr zadania 9. Maks. liczba pkt 3 Uzyskana liczba pkt Strona 9 z 22

Zadanie 10. (0 4) Punkt D leży na boku AB trójkąta ABC oraz AC = 16, AD = 6, CD = 14 i BC = BD. Oblicz obwód trójkąta ABC. Strona 10 z 22

Odpowiedź:.... Wypełnia egzaminator Nr zadania 10. Maks. liczba pkt 4 Uzyskana liczba pkt Strona 11 z 22

Zadanie 11. (0 6) Dane są okręgi o równaniach x 2 + y 2 12x 8y+ 43 = 0 i x 2 + y 2 2ax+ 4y+ a 2 77= 0. Wyznacz wszystkie wartości parametru a, dla których te okręgi mają dokładnie jeden punkt wspólny. Rozważ wszystkie przypadki. Strona 12 z 22

Odpowiedź:.... Wypełnia egzaminator Nr zadania 11. Maks. liczba pkt 6 Uzyskana liczba pkt Strona 13 z 22

Zadanie 12. (0 6) Trzywyrazowy ciąg (,, ) a b c o wyrazach dodatnich jest arytmetyczny, natomiast ciąg 1 2 1,, jest geometryczny. Oblicz iloraz ciągu geometrycznego. a 3b 2a+ 2b+ c Strona 14 z 22

Odpowiedź:.... Wypełnia egzaminator Nr zadania 12. Maks. liczba pkt 6 Uzyskana liczba pkt Strona 15 z 22

Zadanie 13. (0 6) Wielomian określony wzorem W( x) 2x 3 ( m 3 2) x 2 11x 2( 2m 1) = + + + jest podzielny przez dwumian ( x 2) oraz przy dzieleniu przez dwumian ( 1) i dla wyznaczonej wartości m rozwiąż nierówność W( x) 0. x + daje resztę 6. Oblicz m Strona 16 z 22

Odpowiedź:.... Wypełnia egzaminator Nr zadania 13. Maks. liczba pkt 6 Uzyskana liczba pkt Strona 17 z 22

Zadanie 14. (0 4) Rozwiąż równanie ( ) π π 1 cos x sin x + sin x+ = sin x 3 3. 2 Strona 18 z 22

Odpowiedź:.... Wypełnia egzaminator Nr zadania 14. Maks. liczba pkt 4 Uzyskana liczba pkt Strona 19 z 22

Zadanie 15. (0 7) Rozważmy wszystkie graniastosłupy prawidłowe trójkątne o objętości V = 2. Wyznacz długości krawędzi tego z rozważanych graniastosłupów, którego pole powierzchni całkowitej jest najmniejsze. Oblicz to najmniejsze pole. Strona 20 z 22

Odpowiedź:.... Wypełnia egzaminator Nr zadania 15. Maks. liczba pkt 7 Uzyskana liczba pkt Strona 21 z 22

BRUDNOPIS (nie podlega ocenie) Strona 22 z 22