Unitary representations of SL(2, R)

Podobne dokumenty
Helena Boguta, klasa 8W, rok szkolny 2018/2019

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Convolution semigroups with linear Jacobi parameters

A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations

Chapter 1: Review Exercises

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Roland HINNION. Introduction

Revenue Maximization. Sept. 25, 2018

Dupin cyclides osculating surfaces

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Few-fermion thermometry

Hard-Margin Support Vector Machines

Aerodynamics I Compressible flow past an airfoil

Counting quadrant walks via Tutte s invariant method

Rachunek lambda, zima

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Stargard Szczecinski i okolice (Polish Edition)

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Stability of Tikhonov Regularization Class 07, March 2003 Alex Rakhlin

Steeple #3: Gödel s Silver Blaze Theorem. Selmer Bringsjord Are Humans Rational? Dec RPI Troy NY USA

Mixed-integer Convex Representability

Zarządzanie sieciami telekomunikacyjnymi

. α p S n 1u p (x) = up F (u(x), λ), gdzie (1) F C 2 (R p R, R), (2) u F (u, λ) = λu + u g(u, λ), gdzie g C 2 (R p R, R) i dla każdego λ R zachodzi

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

[assumption]theorem [assumption]corollary [assumption]lemma [assumption]definition. Andrzej Sitarz

Tychy, plan miasta: Skala 1: (Polish Edition)

SG-MICRO... SPRĘŻYNY GAZOWE P.103

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

Camspot 4.4 Camspot 4.5

2017 R. Robert Gajewski: Mathcad Prime 4. Solution of examples Rozwiązania przykładów

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX

Modern methods of statistical physics

Complex Analysis Theorems

Polska Szkoła Weekendowa, Arklow, Co. Wicklow KWESTIONRIUSZ OSOBOWY DZIECKA CHILD RECORD FORM

R E P R E S E N T A T I O N S

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

DC UPS. User Manual. Page 1

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07

Title: On the curl of singular completely continous vector fields in Banach spaces

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08

R Z N C. p11. a!b! = b (a b)!b! d n dx n [xn sin x] = x n(n k) (sin x) (n) = n(n 1) (n k + 1) sin(x + kπ. n(n 1) (n k + 1) sin(x + lπ 2 )

Previously on CSCI 4622

Czech Technical University in Prague Faculty of Nuclear Sciences and Physical Engineering

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Rev Źródło:

SPECTRAL AND TOPOLOGICAL METHODS IN THE STUDY OF SOLVABILITY OF SEMILINEAR EQUATIONS IN HILBERT SPACES

deep learning for NLP (5 lectures)

Has the heat wave frequency or intensity changed in Poland since 1950?

Matematyka 3. Suma szeregu. Promień zbieżności szeregu. Przykład 1: Przykład 2: GenerateConditions

GRY EDUKACYJNE I ICH MOŻLIWOŚCI DZIĘKI INTERNETOWI DZIŚ I JUTRO. Internet Rzeczy w wyobraźni gracza komputerowego

Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)

Instrukcja obsługi User s manual

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL


TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Extraclass. Football Men. Season 2009/10 - Autumn round

POLITYKA PRYWATNOŚCI / PRIVACY POLICY

Permutability Class of a Semigroup

Opis Przedmiotu Zamówienia oraz kryteria oceny ofert. Części nr 10

Mathematics A Brief Guide for Engineers and Technologists. Chapter 2. Second. Properties. S is a vector space. Note

O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Wyk lad 8: Leniwe metody klasyfikacji

harmonic functions and the chromatic polynomial

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Uczenie ze wzmocnieniem

Gaussian Elimination. Introduction. more sophisticated. Ui j = 0 for i > j, and. (iii) A = LU. Therefore the factorization takes the form

Formularz dla osób planujących ubiegać się o przyjęcie na studia undergraduate (I stopnia) w USA na rok akademicki

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

17-18 września 2016 Spółka Limited w UK. Jako Wehikuł Inwestycyjny. Marek Niedźwiedź. InvestCamp 2016 PL

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

tum.de/fall2018/ in2357

DOI: / /32/37

ANKIETA ŚWIAT BAJEK MOJEGO DZIECKA

Baptist Church Records

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

PSB dla masazystow. Praca Zbiorowa. Click here if your download doesn"t start automatically

CS 6170: Computational Topology, Spring 2019 Lecture 09

v = v i e i v 1 ] T v =

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

7.1. Lecture 8 & 9. f(x)dx =lim f(x)dx (7.1) I = f(x)dx (7.3) f(z), z (0 argz π), zf(z) 0. f(z)dz = I R := f(z)dz = f(re iθ )ire iθ dθ (7.

OMITTING TYPES, BOUNDED WIDTH AND THE ABILITY TO COUNT

ON THE COMPLEXITY OF SOME MALTSEV CONDITIONS

Leba, Rowy, Ustka, Slowinski Park Narodowy, plany miast, mapa turystyczna =: Tourist map = Touristenkarte (Polish Edition)

Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)

Egzamin maturalny z języka angielskiego na poziomie dwujęzycznym Rozmowa wstępna (wyłącznie dla egzaminującego)

ITIL 4 Certification

January 1st, Canvas Prints including Stretching. What We Use

CPX Cisco Partner Excellence CSPP program partnerski

First-order logic. Usage. Tautologies, using rst-order logic, relations to natural language

Edycja tekstu w programie LATEX wstawianie grafiki. 13 listopada 2017

Transkrypt:

Unitary representations of SL(, R) Katarzyna Budzik 8 czerwca 018 1/6

Plan 1 Schroedinger operators with inverse square potential Universal cover of SL(, R) x + (m 1 4) 1 x 3 Integrating sl(, R) representations to SL(, R) representations 4 Lowest and highest weight representations of SL(, R) on L [0, [ 5 Principal and complementary representations of SL(, R) on L [0, [ L [0, [. /6

Schroedinger operator with 1/x potential Consider a formal differential expression: L m = (m x + 1 ) 1 4 x. When does it define a self-adjoint operator? a closed operator? We have corresponding minimal and maximal operators on domains: Dom(L max m ) = { f L [0, [ : L m f L [0, [ } Properties Dom(L min m ) = (C c ]0, [) cl. homogeneous of degree - L min m L max m ( L min m ) = L max m = L min m is Hermitian for m R. 3/6

Schroedinger operator with 1/x potential Notice that formally L m x 1 +m = 0 Suppose: then Re m > 1: x 1 +m x 1 +m 1+ Re m = x ξ - smooth cutoff function with compact support x 1 +m ξ Dom(L max m ). Definition For Re m > 1, define operator H m as a restriction of L max m to domain: sp H m = [0, [ Dom(L min m ) Cx 1 +m ξ. Hm = H m = H m is self-adjoint for m R m H m is a 1-parameter holomorphic family of closed operators. 4/6

Schroedinger operator with 1/x potential 1 1 < Re m: 1 < Re m < 1: H m = L min m L min m = Lmax m Hm Lmaxm and the codimension of the domain is 1. 5/6

Schroedinger operator with 1/x potential H m generates a holomorphic 1-parameter semigroup: ( e t xy Hm (x, y) = )e πt Im x +y t, Re t > 0 t ( e ±i t Hm (x, y) = e ±i π (m+1) xy )e πt Im i x +y t, ± Im t 0 t Kernel of the resolvent: 1 (H m + k ) (x, y) = 1 k { Im(kx)K m(ky) 0 < x < y I m(ky)k m(kx) 0 < y < x, Re k > 0 6/6

Universal cover of SL(, R) 7/6 SL(, R) has subgroups: { [ ] } cos φ sin φ SO() = u φ := : φ ] π, π] sin φ cos φ { [ ] } a 0 AN(, R) = t := : n R, a > 0 n KAN decomposition: Lets define a group: and maps: 1 a SL(, R) = SO() AN(, R). SL(, R) := R AN(, R) τ : SL(, R) (φ, t) uφ t SL(, R) φ : SL(, R) (φ, t) φ R SL(, R) is the universal cover of SL(, R): τ : SL(, R) SL(, R) is a surjective homomorphism SL(, R) is a simply connected Lie group.

Universal cover of SL(, R) Center of SL(, R): 1 n cover 1 and 1: 1 n := (πn, ( 1) n 1) R AN(, R) SL(, R) 1 n τ ( 1) n 1 SL(, R). 8/6

Integrating representations of Lie algebra G - Lie group with Lie algebra g G - universal cover of G Exponential maps: exp : g X e X G ẽxp : g X ẽxpx G Theorem Let π : g gl(v ) be a representation of the Lie algebra g. If G is compact, there exists exactly one representation of G π : G GL(V ) such that π(ẽxpx ) = e π(x ). 9/6

Representations of SL(, R) We will define a representation of sl(, R): sl(, R) X π π(x ) unbounded operator on a Hilbert space V which integrates to a representation of SL(, R): i.e. π : SL(, R) h π( h) B(V ) exp sl(, R) X ẽxpx SL(, R) π π(x ) e π(x ) = π ( ẽxpx ) exp π Problems: π(x ) are unbounded operators SL(, R) is not compact = π doesn t have to integrate to a representations of SL(, R). 10/6

sl(, R) standard triplet Matrices are called a standard triplet if A +, A, N sl(, R) [A +, A ] = N, [N, A ±] = ±A ±. Introduce standard triplet in sl(, R): [ ] [ ] [ 0 1 0 0 1 ] 0 A + =, A 0 0 =, N = 1 0 0 1. Then, e s+a+ = [ ] 1 s+, e s A = 0 1 [ ] [ 1 0, e tn e t/ = s 1 ] 0 0 e t/. 11/6 Any h SL(, R) can be written using e s+a+, e s A, e tn, 1 n. Therefore, representation π( h) for h SL(, R) can be written using e s+π(a+), e s π(a ), e tπ(n), π(1 n).

SL(, R) representation on L [0, [ 1 Define operators on L [0, [: A := i (x x + xx) dilation operator K := x H m := x + ( m 1 4) 1 x Schroedinger operator Define representation π of sl(, R) on L [0, [ π i A + Hm A i K N i A formally satisfy the commutation relations of sl(, R) the Casimir operator C = 1 (A+A + A A+) + N π(c) = 1 4 m 1 4 π(g) are antihermitian = e π(g) are unitary and bounded. 1/6

SL(, R) representation on L [0, [ Kernels of the three operators: 1 π(a +) = i Hm e απ(a+) (x, y) = e i π(m+1) π α Im ( xy α π(a ) = i K 3 π(n) = i A ) e i βk f (x) = e i βx f (x) e βπ(a ) (x, y) = e i βx δ(x y) e ita f (x) = e t/ f (e t x) e γπ(n) (x, y) = e γ 4 δ ( e γ x y ). e i x +y α, Im α 0 13/6

SL(, R) representation on L [0, [ SL(, R) = SO() AN(, R) =] π, π] AN(, R) We have a map φ : SL(, R) ] π, π]. Using φ we can partition SL(, R) into sectors: Y := {h : φ(h) ] π, 0[ } = {h : h 1 < 0} Z 0 := {h : φ(h) = 0} = {h : h 1 = 0, h 11 > 0} = AN(, R) Y + := {h : φ(h) ]0, π[ } = {h : h 1 > 0} = Y Z 1 := {h : φ(h) = π} = {h : h 1 = 0, h 11 < 0} = AN(, R) SL(, R) is a disjoint sum of sectors: SL(, R) = Y Z 0 Y + Z 1. 14/6

SL(, R) representation on L [0, [ SL(, R) = R AN(, R) We have a map φ : SL(, R) R. Using φ we can partition SL(, R) into sectors: } Ỹ n+ 1 := { h SL(, R) : φ( h) ]nπ, (n + 1)π[ } Z n := { h SL(, R) : φ( h) = nπ 1 n Z n SL(, R) is a disjoint sum of sectors: SL(, R) = we can identify n Z Ỹ n+ 1 Z n. SL(, R) Y Z 0 Y + = Ỹ 1 Z 0 Ỹ 1 SL(, R). 15/6

SL(, R) representation on L [0, [ For h Z 0 = AN(, R) so the representation is For h Y + Y (h 1 0) So the representation is given by [ ] a 0 h = = e n a A e log(a)n n 1 a π(h) = e n a ( i K) e log(a)( i A). h = e h 1 A h 1 e h 1A + e h 11 1 A h 1. π(h) = e h 1 h ( i K) 1 e h 1( i Hm) e h 11 1 h ( i K) 1. Kernel of this operator equals ( ) π(h)(x, y) = e i π (m+1)sgn(h 1) xy π h 1 Im h 1 e h i (h 11 x +h y ) 1. 16/6

SL(, R) representation on L [0, [ 1 SL(, R) [ ] 1 ±ɛ 1 = lim ɛ 0 0 1 1 = π(1) = s lim e ± i ɛhm ɛ 0 Therefore, kernels of these operators ( ) e ±i π (m+1) xy πɛ Im e ɛ i (x +y ) ɛ 0 δ(x y) = π(1)(x, y) ɛ 17/6 1 ±1 SL(, R) [ ] 1 ɛ 1 ±1 = lim ɛ 0 0 1 These matrices correspond to operators with kernels: ( ) e i π (m+1) xy πɛ Im e ɛ i (x +y ). ɛ So the operators converge to π(1 ±1) = e ±iπ(m+1) 1.

SL(, R) representation on L [0, [ 1 n SL(, R) 1 n = (πn, ( 1) n 1) R AN(, R), n Z Center of SL(, R): Z( SL(, R)) = {1n : n Z}. Then, from Schur s lemma: π(1 n) = e iπ n (m+1) 1. In particular: m = 1, 3,...: π is also a representation of PSL(, R) and SL(, R) π(1 n) = 1 m = 0,,...: π is also a representation of SL(, R) π(1 n) = ( 1) n 1. We calculated π( h) for all h SL(, R). 18/6

sl(, C) representation Lets take a standard triplet in sl(, C): A +, A, N sl(, C) = Csl(, R). Consider space of monomials: W m := { w k : k Z + m }, m C. Define representation X l,m of sl(, C) on W m : A + A l + := w w + lw A A l := w + lw 1 N N l := w w satisfy the commutation relations of sl(, C) Spectrum of N l : N l w k = kw k = sp(n l ) Z + m. 19/6

sl(, C) representation Theorem Suppose π is an irreducible representation of sl(, C) π(n ) has an eigenvector with eigenvalue m C. Then, there exists l C s.t. the representation π is equivalent to X l,m (or one of its subrepresentations). Example of a standard triplet in sl(, C): [ ] [ ] [ ] A + = 1 1 i, A i 1 = 1 1 i, N = 1 0 i. i 1 i 0 Notice: (in ) = 1. Connection between this sl(, C) standard triplet and previous sl(, R) standard triplet: N = i (A A+). 0/6

Representation of 1 n Fact 1 From Schur s lemma: π(1 n) = e iπ n (m+1) 1. Fact For X sl(, R) such that (X ) = 1: 1 n = ẽxp(πnx ) The representation π is an exponent of representation π: π(1 n) = e πn π(x ). From 1 and X has to satisfy: sp(π(x )) i(m + Z), (X ) = 1 Therefore X = in, N = 1 [ ] 0 i. i 0 1/6

Lowest weight representation of SL(, R) We can write N from sl(, C) standard triplet using A +, A from sl(, R) standard triplet: N = i (A A+) Then, the operator corresponding to N : π(n ) = 1 4 (K + Hm) = 1 4 ( x + ( m 1 ) ) 1 4 x + x, which is a Hamiltonian of a harmonic oscillator + potential 1/x. = π(n ) is an operator with spectrum bounded from below = π is equivalent to X l,lw. /6

Lowest weight representation of SL(, R) on L [0, [ Theorem The representation (m,lw) of SL(, R) can be represented as bounded operators on L [0, [ with kernels: h Ỹn+ 1 : h Z n : Its generators are h m,lw (x, y) = e iπ(m+1)(n+ 1 ) π h 1 Im ( xy h 1 ) e h i (h 11 x +h y ) 1 h m,lw (x, y) = e iπn(m+1) log( h 11 )/4 e i h 1 h 11 x δ ( h 11 1 x y ). π(a +) = i Hm = i π(a ) = i K = i x ( ( x + m 1 ) ) 1 4 x π(n) = i A = 1 (x x + xx). 4 3/6

Lowest and highest weight representations of SL(, R) 4/6 Lowest weight representation generators: A m,lw + = i Hm = i ( x + A m,lw = i K = i x N m,lw = i A N m,lw = i ( A m,lw Am,lw + Highest weight representation generators: N m,hw = i A m,hw + = i Hm A m,hw = i K N m,hw = i A. ( A m,hw A m,hw + = 1 (x x + xx). 4 ( m 1 ) ) 1 4 x ) ( ( 1 = x + m 1 ) ) 1 4 4 x + x ) ( ( 1 = x + m 1 ) ) 1 4 4 x + x.

SL(, R) representation on L [0, [ L [0, [ Define a representation of sl(, R) on L [0, [ L [0, [): A + i Hm ( Hm) A i K ( K) N 1 A A formally satisfy the commutation relations of sl(, R) 5/6

Operator H m ( H m ) For 1 < Re m < 1 we have operators (f +, f ) Dom ( L max m L min m ( Lmin m ) ( L max m ) ) : Lmax m ( Lmax m ). where α + +, α +, α +, α C. f + (x) α + +x 1 +m + α + x 1 m f (x) α + x 1 +m + α x 1 m, Definition Define H ω+,ω m condition: as a restriction of L max m ( L max m ) to functions satisfying α + +ω + = α + α + ω = α, where ω +, ω C { }. 6/6 H ω+,ω m, A A, K ( K) generate principal and complementary series.