Wydział Fizyki. Laboratorium Technik Jądrowych

Podobne dokumenty
Wydział Fizyki. Laboratorium Technik Jądrowych

Wydział Fizyki. Laboratorium Technik Jądrowych

Wydział Fizyki. Laboratorium Technik Jądrowych

Nazwa wg. Dz. U. z 2013 r., poz lub Dz. U. z 2015 r., poz. 2040

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1314

Osoba przeprowadzająca kontrolę Numer upoważnienia Ministra Zdrowia. Przedstawiciel/przedstawiciele świadczeniodawcy uczestniczący w kontroli

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1465

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1457

Testy podstawowe monitorów stosowanych do prezentacji obrazów medycznych. Zalecenia Polskiego Towarzystwa Fizyki Medycznej

Laboratorium RADIOTERAPII

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1456

Protokół z kontroli jakości badań mammograficznych wykonywanych w ramach Populacyjnego programu wczesnego wykrywania raka piersi

Protokół z kontroli jakości badań mammograficznych wykonywanych w ramach Populacyjnego programu wczesnego wykrywania raka piersi

LABORATORIUM BADAŃ RADIACYJNYCH. Wykaz metod akredytowanych Aktualizacja:

ODDZIAŁ LABORATORYJNY BADAŃ ŚRODOWISKA PRACY I BADAŃ RADIACYJNYCH. Oferta badań laboratoryjnych na rok 2016

Użytkownik (nazwa i adres) Mammograf. Producent. Model lub typ. Rok produkcji. Rok rozpoczęcia eksploatacji. Nr seryjny aparatu.

DZIEŃ POWSZEDNI PRACOWNIKÓW WYKONUJĄCYCH TESTY SPECJALISTYCZNE APARATÓW RENTGENOWSKICH

Testy kontroli fizycznych parametrów aparatury rentgenowskiej. Waldemar Kot Zachodniopomorskie Centrum Onkologii Szczecin r.

I. Rentgenodiagnostyka i radiologia zabiegowa

Ocena realizacji testów 1kontroli. jakości (testów eksploatacyjnych) 1. Testy specjalistyczne. Użytkownik (nazwa i adres) Mammograf.

Załącznik Nr 10 Tabela 1. Ocena ośrodków mammograficznych na terenie województwa skontrolowanych w 2008 r.

I. Rentgenodiagnostyka i radiologia zabiegowa

Protokół z kontroli jakości badań mammograficznych wykonywanych w ramach Populacyjnego programu wczesnego wykrywania raka piersi

Użytkownik (nazwa i adres) Mammograf. Producent. Model lub typ. Rok produkcji. Rok rozpoczęcia eksploatacji. Nr seryjny aparatu.

Paulina Majczak-Ziarno, Paulina Janowska, Maciej Budzanowski, Renata Kopeć, Izabela Milcewicz- Mika, Tomasz Nowak

Program zarządzania jakością w pracowni fluoroskopii / angiografii

Instrukcja obsługi stomatologicznego fantomu testowego

Szczegółowy zakres szkolenia wymagany dla osób ubiegających się o nadanie uprawnień inspektora ochrony radiologicznej

METODY OBLICZANIA DAWEK I WYMAGANYCH GRUBOŚCI OSŁON. Magdalena Łukowiak

ODDZIAŁ LABORATORYJNY BADAŃ ŚRODOWISKA PRACY I BADAŃ RADIACYJNYCH. Oferta badań laboratoryjnych na rok 2015

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 286

( S ) I. Zagadnienia. II. Zadania

Wstępne obliczenia dla Projektu Osłon Stałych

Symulator terapeutyczny

Program zarządzania jakością w cyfrowej pracowni radiografii

Kaseta testowa kaseta uŝywana tylko do wykonywania testów podstawowych w danej pracowni rentgenowskiej.

Testy specjalistyczne w mammografii z detektorem filmowym. Zalecenia Polskiego Towarzystwa Fizyki Medycznej

Testy specjalistyczne monitorów stosowanych do prezentacji obrazów medycznych. Zalecenia Polskiego Towarzystwa Fizyki Medycznej

( L ) I. Zagadnienia. II. Zadania

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 286

Znak sprawy: RSS/ZPFSiZ/P-84/./2012 Radom, dnia r. OGŁOSZENIE O ZMIANIE OGŁOSZENIA O ZAMÓWIENIU Przetarg nieograniczony

POLSKIE CENTRUM AKREDYTACJI

ZLECENIE. ZLECENIODAWCA... ( nazwisko i imię, adres/ Nazwa podmiotu, siedziba,adres - pieczątka zakładu)

SZCZEGÓŁOWY ZAKRES ORAZ DOPUSZCZALNE ODCHYLENIA BADANYCH FIZYCZNYCH PARAMETRÓW I CZĘSTOŚĆ WYKONYWANIA TESTÓW EKSPLOATACYJNYCH

Radomskiego Szpitala Specjalistycznego.

ZLECENIE. ZLECENIODAWCA... (nazwisko i imię, adres/ Nazwa podmiotu, siedziba,adres - pieczątka zakładu)

Wymagany zakres szkolenia dla osób ubiegających się o nadanie uprawnień

Program szkolenia dla osób ubiegających się o nadanie uprawnień Inspektora Ochrony Radiologicznej

Nowe, nowoczesne ramię C

ĆWICZENIE 2. BADANIE CHARAKTERYSTYK SOND PROMIENIOWANIA γ

CZASOCHŁONNOŚĆ ANALIZ WYKONYWANYCH W DZIALE LABORATORYJNYM WSSE W KRAKOWIE

ZESTAWIENIE PARAMETRÓW GRANICZNYCH I OCENIANYCH

1. Cel opracowania 2. Podstawa prawna. 3. Opis warunków i wymagań wynikających z przepisów prawnych. 3.1 Lokalizacja

PROMIENIOWANIE RENTGENOWSKIE

DOZYMETRIA I BADANIE WPŁYWU PROMIENIOWANIA X NA MEDIA BIOLOGICZNE

LABORATORIUM PROMIENIOWANIE W MEDYCYNIE

LABORATORIUM Pomiar charakterystyki kątowej

Ochrona przed promieniowaniem jonizującym. Źródła promieniowania jonizującego. Naturalne promieniowanie tła. dr n. med.

Oświetlenie oraz pole elektryczne i magnetyczne na stanowisku do pracy z komputerem.

Podstawy niepewności pomiarowych Ćwiczenia

Centrum Medyczne w Łańcucie Spółka z ograniczoną odpowiedzialnością

PROJEKT OSŁON STAŁYCH

Znak sprawy: RSS/ZPFSiZ/P-84/./2012 Radom, dnia OGŁOSZENIE O ZMIANIE OGŁOSZENIA O ZAMÓWIENIU Przetarg nieograniczony

Załącznik nr 1 WYMAGANIA DOTYCZĄCE OPISU I PRZEGLĄDU OBRAZÓW REJESTROWANYCH W POSTACI CYFROWEJ I. Wymagania ogólne

W polskim prawodawstwie i obowiązujących normach nie istnieją jasno sprecyzowane wymagania dotyczące pomiarów źródeł oświetlenia typu LED.

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

DAWKI OTRZYMYWANE PRZEZ PACJENTA W EFEKCIE STOSOWANIA WŁAŚCIWYCH DLA DANEJ DZIEDZINY PROCEDUR RADIOLOGICZNYCH. ZASADY OPTYMALIZACJI.

JOSEF BETSCHART Twój partner w radiografii cyfrowej

Pytania i wnioski Wykonawców oraz Odpowiedzi Zamawiającego. dotyczące

ODDZIAŁ LABORATORYJNY BADAŃ ŚRODOWISKA PRACY I BADAŃ RADIACYJNYCH. Oferta badań laboratoryjnych na rok 2018

DZIAŁ LABORATORYJNY WSSE W ŁODZI

LABORATORIUM PROMIENIOWANIE w MEDYCYNIE

ODDZIAŁ LABORATORYJNY BADAŃ ŚRODOWISKA PRACY I BADAŃ RADIACYJNYCH. Oferta badań laboratoryjnych na rok 2019

Obrazowanie MRI Skopia rtg Scyntygrafia PET

Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów.

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU.

1. POMIAR SIŁY HAMOWANIA NA STANOWISKU ROLKOWYM

Hydrologia i oceanografia Ćw. nr 11. Temat: Metody obliczania obszarowej wysokości opadów.

WYZNACZANIE OGNISKOWYCH SOCZEWEK

Strona 1 z 5 Wersja z dnia 9 grudnia 2010 roku

Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna

Samodzielna Sekcja Zamówień Publicznych i Zaopatrzenia tel. 052/ fax 052/

dotyczy: postępowania o zamówienie publiczne w trybie przetargu nieograniczonego na dostawę sprzętu i aparatury medycznej.

Zastosowania markerów w technikach zdjęć RTG dla:

Zakres testów eksploatacyjnych urządzeń radiologicznych radioterapia, propozycja zmian

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza

Kalendarium obowiązki przedsiębiorców prowadzących praktyki zawodowe KTO? OBOWIĄZEK TERMIN EWIDENCJA ODPADÓW INFORMACJE O KORZYSTANIU ZE ŚRODOWISKA

Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych

Niskie dawki poza obszarem napromieniania: symulacje Monte Carlo, pomiar i odpowiedź radiobiologiczna in vitro komórek

LABORATORIUM METROLOGII

STRESZCZENIE ZAKRES I METODY KONTROLI

C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Sprostowanie do udzielonych odpowiedzi we wcześniejszych turach

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie B-2 POMIAR PROSTOLINIOWOŚCI PROWADNIC ŁOŻA OBRABIARKI

Jolly 30 plus DR. Rentgenowskie aparaty przyłóżkowe. Jolly 4 plus Jolly 15 plus Jolly 30 plus. Radiologia

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań

str. 1 Procedury wzorcowe i audyty kliniczne zewnętrzne w zakresie radiologii diagnostyki obrazowej i radiologii zabiegowej

POLSKIE CENTRUM AKREDYTACJI

INSTRUKCJA NR 05 POMIARY NATĘŻENIA OŚWIETLENIA ELEKTRYCZNEGO POMIESZCZEŃ I STANOWISK PRACY

Transkrypt:

Wydział Fizyki Laboratorium Technik Jądrowych rok akademicki 2018/19 ćwiczenie RTG3 strona 1 z 11

Urządzenia stosowane w radiografii ogólnej cyfrowej. Testy specjalistyczne: Nazwa testu: 1. Wysokie napięcie 2. Czas ekspozycji 4. Wydajność lampy rentgenowskiej Monitory stosowane w stacjach przeglądowych i opisowych. Testy podstawowe: Nazwa testu: 1. Warunki oglądania obrazów 2. Jakość obrazu 3. Progowy kontrast wyświetlonego obrazu Monitory stosowane w stacjach przeglądowych i opisowych. Testy specjalistyczne: Nazwa testu: 1. Jednorodność 2. Luminancja strona 2 z 11

UWAGA: Należy pamiętać, że wykonanie serii ekspozycji w krótkim czasie stwarza niebezpieczeństwo przeciążenia lampy RTG. Zaleca się, żeby minimalny odstęp pomiędzy kolejnymi ekspozycjami wynosił 30 sekund. Przed wykonaniem testów należy wygrzać lampę RTG zgodnie z zaleceniami producenta. Na zajęciach laboratoryjnych należy bezwzględnie przestrzegać: zasad ochrony radiologicznej regulaminu zajęć laboratorium KJUD regulaminu pracy z aparatem rentgenowskim Flexavision HB firmy Shimadzu życzymy przyjemnych zajęć :) strona 3 z 11

Wykaz aparatury: - Unfors Xi - stojak do detektora - liniał - poziomica 1. Wysokie napięcie 1.1 Dokładność ustawienia wysokiego napięcia 1. Ustawić detektor na stole aparatu w osi wiązki w odległości minimum 15 cm od powierzchni stołu i minimum 50 cm od ścian i przedmiotów rozpraszających tak, aby oznaczone na powierzchni detektora pole znajdowało się w środku obszaru objętego wiązką promieniowania X. Oś długa detektora powinna się pokrywać z osią lampy RTG, a powierzchnią detektora powinna być równoległa do powierzchni stołu aparatu RTG. obciążenie czasowo-prądowe: np. 50 kv 4 mas wykonać ekspozycję zapisując wskazania detektora. 5. Powtórzyć pomiary dla co najmniej 3 innych nominalnych wartości wysokiego napięcia np. ze skokiem 20 kv przy stałych nastawach wartości obciążenia prądowo-czasowego, zapisując wskazania detektora. 6. Dla każdej nominalnej wartości wysokiego napięcia obliczyć odchylenie zmierzonej wartości wysokiego napięcia od wartości nominalnej. Kryterium oceny wyników: Dla klinicznie stosowanego zakresu wysokiego napięcia, odchylenie zmierzonej wartości wysokiego napięcia od wartości nominalnej wynosi maksymalnie ±10 %. 1.2. Powtarzalność wartości wysokiego napięcia 1. Ustawić detektor na stole aparatu w osi wiązki w odległości minimum 15 cm od powierzchni stołu i minimum 50 cm od ścian i przedmiotów rozpraszających tak, aby oznaczone na powierzchni detektora pole znajdowało się w środku obszaru objętego wiązką promieniowania X. Oś długa detektora powinna się pokrywać z osią lampy RTG, a powierzchnią detektora powinna być równoległa do powierzchni stołu aparatu RTG. strona 4 z 11

obciążenie czasowo-prądowe: np. 50 kv 4 mas wykonać 5 ekspozycji zapisując wskazania detektora. 5. Obliczyć wartość średnią z wartości zmierzonych. 6. Dla każdej zmierzonej wartości wysokiego napięcia obliczyć odchylenie zmierzonych wartości wysokiego napięcia od wartości średniej. Kryterium oceny wyników:: Dla pięciu kolejnych pomiarów wartości wysokiego napięcia wybranej z zakresu stosowanego klinicznie, odchylenie zmierzonych wartości wysokiego napięcia od wartości średniej wynosi maksymalnie ±5 % 1.3. Wartość wysokiego napięcia przy zmianie natężenia prądu 1. Ustawić detektor na stole aparatu w osi wiązki w odległości minimum 15 cm od powierzchni stołu i minimum 50 cm od ścian i przedmiotów rozpraszających tak, aby oznaczone na powierzchni detektora pole znajdowało się w środku obszaru objętego wiązką promieniowania X. Oś długa detektora powinna się pokrywać z osią lampy RTG, a powierzchnią detektora powinna być równoległa do powierzchni stołu aparatu RTG. natężenie prądu: czas ekspozycji: np. 50 kv najmniejsza możliwa wartość 10 ms wykonać ekspozycję zapisując wskazania detektora. 5. Powtórzyć pomiary dla 4 innych ustawień natężenia prądu przy stałych nastawach wartości wysokiego napięcia i czasu ekspozycji, wykonując ekspozycję dla danej wartości prądu, zapisując wskazania detektora. 6. Dla każdej wartości wysokiego napięcia zmierzonej przy zmianie natężenia prądu obliczyć odchylenie od wartości średniej. Kryterium oceny wyników:: Dla klinicznie stosowanej wartości wysokiego napięcia i różnych wartości natężenia prądu z zakresu stosowanego klinicznie odchylenie zmierzonych wartości wysokiego napięcia od wartości średniej wynosi maksymalnie ±10%. strona 5 z 11

2. Czas ekspozycji 1. Ustawić detektor na stole aparatu w osi wiązki w odległości minimum 15 cm od powierzchni stołu i minimum 50 cm od ścian i przedmiotów rozpraszających tak, aby oznaczone na powierzchni detektora pole znajdowało się w środku obszaru objętego wiązką promieniowania X. Oś długa detektora powinna się pokrywać z osią lampy RTG, a powierzchnią detektora powinna być równoległa do powierzchni stołu aparatu RTG. natężenie prądu: czas ekspozycji: np. 50 kv najmniejsza możliwa wartość np. 10 ms 5. Powtórzyć pomiary dla 5 innych ustawień czasu ekspozycji (z zakresu poniżej i powyżej 100 ms) przy stałych nastawach wartości napięcia i oraz zapisując wskazania detektora. 7. Dla każdej nominalnej wartości czasu ekspozycji obliczyć odchylenie zmierzonej wartości czasu ekspozycji od wartości nominalnej. Kryterium oceny wyników:: Dla nominalnych wartości czasu ekspozycji wybranych z zakresu stosowanego klinicznie odchylenie zmierzonej wartości czasu ekspozycji od wartości nominalnej wynosi maksymalnie ±20 % dla czasów nie krótszych niż 100 ms oraz ±30 % dla czasów krótszych niż 100 ms. Dodatkowo: wykreślić zależność dawki pochłoniętej od napięcia na lampie RTG; od czasu ekspozycji, od prądu lampy RTG. Zinterpretować uzyskane wyniki. strona 6 z 11

4. Wydajność lampy rentgenowskiej 4.1. Wydajność lampy rentgenowskiej 1. Ustawić detektor na stole aparatu w osi wiązki w odległości minimum 15 cm od powierzchni stołu i minimum 50 cm od ścian i przedmiotów rozpraszających tak, aby oznaczone na powierzchni detektora pole znajdowało się w środku obszaru objętego wiązką promieniowania X. Oś długa detektora powinna się pokrywać z osią lampy RTG, a powierzchnią detektora powinna być równoległa do powierzchni stołu aparatu RTG. obciążenie czasowo-prądowe: 80 kv np. 4 mas wykonać ekspozycję zapisując wskazania detektora. 5. Wyznaczyć wydajność lampy RTG uwzględniając odległość ognisko lampy RTG detektor. 6. Obliczyć wartość średnią wydajności lampy RTG. Kryterium oceny wyników:: Dla ekspozycji wykonanych przy całkowitej filtracji lampy 2,5 mm Al. i zmierzonej wartości wysokiego napięcia najbliższej wartości 80 kv wydajność lampy rentgenowskiej w odległości ognisko - detektor promieniowania rentgenowskiego równej 1 m wynosi minimalnie 25µGy/mAs. 4.2. Powtarzalność wydajności lampy rentgenowskiej 1. Ustawić detektor dawki na stole aparatu w osi wiązki w odległości minimum 15 cm od powierzchni stołu i minimum 50 cm od ścian i przedmiotów rozpraszających tak, aby oznaczone na powierzchni detektora pole znajdowało się w środku obszaru objętego wiązką promieniowania X. Oś długa detektora powinna się pokrywać z osią lampy RTG, a powierzchnią detektora powinna być równoległa do powierzchni stołu aparatu RTG. obciążenie czasowo-prądowe: np. 80 kv np. 4 mas wykonać 5 ekspozycji zapisując wskazania detektora. 5. Dla każdej z wykonanych ekspozycji wyznaczyć wydajność lampy RTG uwzględniając odległość ognisko lampy RTG detektor. 6. Obliczyć wartość średnią wydajności lampy RTG. 7. Dla każdej wyznaczonej wartości wydajności lampy obliczyć odchylenie zmierzonych wartości odchylenia lampy od wartości średniej. strona 7 z 11

Kryterium oceny wyników:: Dla pięciu kolejnych ekspozycji wykonanych przy nominalnej wartości wysokiego napięcia wybranej z zakresu stosowanego klinicznie oraz wybranej filtracji stosowanej w warunkach klinicznych odchylenie wyznaczonych wydajności lampy od wartości średniej wynosi maksymalnie ±20 %. 4.3. Wydajność lampy rentgenowskiej przy zmianie natężenia prądu 1. Ustawić detektor dawki na stole aparatu w osi wiązki w odległości minimum 15 cm od powierzchni stołu i minimum 50 cm od ścian i przedmiotów rozpraszających, tak aby oznaczone na powierzchni detektora pole znajdowało się w środku obszaru objętego wiązką promieniowania X. Oś długa detektora powinna się pokrywać z osią lampy RTG, a powierzchnią detektora powinna być równoległa do powierzchni stołu aparatu RTG. natężenie prądu: np. 50 kv najniższa możliwa wartość czas ekspozycji: * * wartość tak dobrana, żeby spełniać kryterium testu test powinien być wykonany dla 5 różnych wartości natężenia prądu, przy zachowaniu stałego obciążenia prądowo-czasowego, z uwzględnieniem możliwości technicznych testowanego aparatu RTG wykonać ekspozycję zapisując wskazania detektora. 5. Powtórzyć pomiary dla 4 różnych wartości natężenia prądu, przy zachowaniu warunku stałego obciążenia czasowo-prądowego, zapisując wskazania detektora. 5. Dla każdej z wykonanych ekspozycji wyznaczyć wydajność lampy RTG uwzględniając odległość ognisko lampy RTG detektor. 6. Dla każdej wykonanej ekspozycji obliczyć odchylenie wyznaczonych wydajności lampy od wartości średniej. Kryterium oceny wyników:: Dla ekspozycji wykonanych przy nominalnej wartości wysokiego napięcia wybranej z zakresu stosowanego klinicznie i różnych wartości natężenia prądu oraz stałym obciążeniu prądowo-czasowym odchylenie wyznaczonych wydajności lampy od wartości średniej wynosi maksymalnie ±20 %. 4.4. Wartość wydajności lampy rentgenowskiej przy zmianie obciążenia prądowo czasowego 1. Ustawić detektor dawki na stole aparatu w osi wiązki w odległości minimum 15 cm od powierzchni stołu i minimum 50 cm od ścian i przedmiotów rozpraszających tak, aby oznaczone na powierzchni detektora pole znajdowało się w środku obszaru objętego wiązką promieniowania X. Oś długa detektora powinna się pokrywać z osią lampy RTG, a powierzchnią detektora powinna być równoległa do powierzchni stołu aparatu RTG. strona 8 z 11

obciążenie czasowo-prądowe: np. 80 kv np. 4 mas wykonać ekspozycję zapisując wskazania detektora. 5. Powtórzyć pomiary dla 4 innych nominalnych wartości obciążenia czasowo-prądowego przy stałych nastawach wartości wysokiego napięcia, zapisując wskazania detektora. 6. Dla każdej z wykonanych ekspozycji wyznaczyć wydajność lampy RTG uwzględniając odległość ognisko lampy RTG detektor. 7. Obliczyć wartość średnią wydajności lampy RTG. 8. Dla każdej wykonanej ekspozycji obliczyć odchylenie wyznaczonych wydajności lampy od wartości średniej. Kryterium oceny wyników: Dla pięciu kolejnych ekspozycji wykonanych przy nominalnej wartości wysokiego napięcia wybranej z zakresu stosowanego klinicznie i różnych wartościach obciążenia prądowo-czasowego w zakresie stosowanym klinicznie odchylenie wyznaczonych wydajności lampy od wartości średniej wynosi maksymalnie ±20 %. strona 9 z 11

Monitory stosowane w stacjach przeglądowych i opisowych. Testy podstawowe: 1. Warunki oglądania obrazów 1.1. Powierzchnia monitora nie jest zabrudzona ani porysowana. Uwaga: Przed przystąpieniem do wykonania poniższych testów, każdy testowany monitor powinien być włączony na czas zgodny z zaleceniami producenta lub, w przypadku braku takiej informacji, przez co najmniej 30 min. 2. Jakość obrazu. 2.1. Na wyświetlonym standardowym obrazie testowym nie są widoczne artefakty, uszkodzone piksele, migotania, drżenia ani przebarwienia. 2.2. Na wyświetlonym standardowym obrazie testowym we wszystkich wzorach do oceny rozdzielczości są wyraźnie rozróżnialne linie. 2.3. Wyświetlony standardowy obraz testowy jest widoczny w całości. 2.4. Na wyświetlonym standardowym obrazie testowym linie są proste, równej długości i rozmieszczone w równych odstępach. 2.5. Na wyświetlonym standardowym obrazie testowym wszystkie pola skali szarości są rozróżnialne. 3. Progowy kontrast wyświetlonego obrazu 3.1. Na wyświetlonym standardowym obrazie testowym na każdym polu do oceny progowego kontrastu obrazu z napisem widoczna liczba liter jest nie mniejsza niż wartość odniesienia. 3.2. Na wyświetlonym standardowym obrazie testowym na każdym polu do oceny progowego kontrastu obrazu, kwadraty są rozróżnialne. Wymienione wyżej testy należy wykonać korzystając z: Zaleceń Polskiego Towarzystwa Fizyki Medycznej: Witold Skrzyński, Wioletta Ślusarczyk-Kacprzyk: Testy podstawowe monitorów stosowanych do prezentacji obrazów medycznych. Pol J Med Phys Eng 2013;19(1):1-14. PL ISSN 1425-4689 doi: 10.2478/pjmpe-2013-0001. dostępnych na https://content.sciendo.com/view/journals/pjmpe/19/1/pjmpe.19.issue-1.xml Testy należy wykonywać zgodnie z obowiązującymi przepisami. strona 10 z 11

Monitory stosowane w stacjach przeglądowych i opisowych. Testy specjalistyczne: Uwaga: Przed przystąpieniem do wykonania poniższych testów, każdy testowany monitor powinien być włączony na czas zgodny z zaleceniami producenta lub, w przypadku braku takiej informacji, co najmniej 30 min. 1. Jednorodność Kryterium oceny wyników: Dla luminancji zmierzonych w środku i w czterech rogach jednorodnego wyświetlanego obrazu na monitorze zakres zmierzonych wartości, w odniesieniu do średniej arytmetycznej maksymalnej i minimalnej spośród zmierzonych wartości, wynosi maksymalnie 15 % (dla monitorów opisowych), 25 % (dla monitorów przeglądowych), 30 % (dla wszystkich monitorów kineskopowych. 2. Luminancja 2.2. Kontrast monitora Kryterium oceny wyników: Stosunek największej luminancji monitora do najmniejszej luminancji monitora wynosi nie mniej niż w wymaganiach szczegółowych dla monitorów opisowych i przeglądowych, określonych w załączniku nr 1 do rozporządzenia. 2.3. Krzywa skali szarości Kryterium oceny wyników: Odchylenie względnego kontrastu i wyznaczonego dla poszczególnych obrazów testowych TG18-LN od względnego kontrastu d i wynikającego z funkcji GSDF (Grayscale Standard Display Function) wynosi maksymalnie 10% (dla monitorów opisowych), 20% (dla monitorów przeglądowych). Wymienione wyżej testy należy wykonać korzystając z: Zaleceń Polskiego Towarzystwa Fizyki Medycznej: Witold Skrzyński, Wioletta Ślusarczyk-Kacprzyk: Testy specjalistyczne monitorów stosowanych do prezentacji obrazów medycznych. Pol J Med Phys Eng 2013;19(1):15-33. PL ISSN 1425-4689 doi: 10.2478/pjmpe-2013-0002. dostępnych na https://content.sciendo.com/view/journals/pjmpe/19/1/pjmpe.19.issue-1.xml Testy należy wykonywać zgodnie z obowiązującymi przepisami. strona 11 z 11

Urządzenia stosowane w radiografii ogólnej cyfrowej. Testy specjalistyczne wykonujący: data: aparat RTG: warunki środowiskowe: T [ C] p [hpa] RH [%] 1.1. Dokładność ustawienia wysokiego napięcia obciążenie prądowo-czasowe [mas] 4 wartość zmierzona napięcia Ui [kv] odchylenie Ui od Unom [%] 1.2. Powtarzalność wysokiego napięcia obciążenie prądowo-czasowe [mas] 4 wartość zmierzona napięcia Ui [kv] wartość średnia napięcia Uśr [kv] odchylenie Ui od Uśr [%] 1.3. Wartość wysokiego napięcia przy zmianie natężenia prądu wartość nominalna natężenia prądu Inom [ma] zmierzone wysokie napięcie Ui [kv] wartość średnia napięcia (z pkt. 1.2.) Uśr [kv] odchylenie Ui od Uśr [%]

2. Czas ekspozycji nominalna wartości czasu ekspozycji tnom [ms] wartość zmierzona czasu ekspozycji ti [ms] odchylenie ti od tnom [%]

Urządzenia stosowane w radiografii ogólnej cyfrowej. Testy specjalistyczne wykonujący: data: aparat RTG: warunki środowiskowe: T [ C] p [hpa] RH [%] 4.1. Wydajność lampy rentgenowskiej filtracja lampy [mmal] filtr dodatkowy [mmal] wartość zmierzona napięcia U [kv] wartośc nominalna obciążenia prądowo-czasowego [mas] wartość zmierzona kermy w powietrzu Ki [µgy] wydajność lampy RTG W [µgy/mas] wartość średnia wydajności lampy RTG [µgy/mas] 4.2. Powtarzalność wydajności lampy rentgenowskiej filtracja lampy [mmal] filtr dodatkowy [mmal] wartośc nominalna obciążenia prądowo-czasowego [mas] wartość zmierzona kermy w powietrzu Ki [µgy] wydajność lampy RTG Wi [µgy/mas] wartość średnia wydajności lampy RTG Wśr [µgy/mas] odchylenie Wi od Wśr [%]

4.3. Wydajność lampy rentgenowskiej przy zmianie natężenia prądu wartość nominalna natężenia prądu Inom [ma] wartość nominalna czasu ekspozycji tnom [ms] wartośc nominalna obciążenia prądowo-czasowego [mas] wartość zmierzona kermy w powietrzu Ki [µgy] wydajność lampy RTG W [µgy/mas] wartość średnia wydajności lampy RTG Wśr [µgy/mas] odchylenie Wi od Wśr [%] 4.4. Wartość wydajności lampy rentgenowskiej przy zmianie obciążenia prądowo czasowego wartośc nominalna obciążenia prądowo-czasowego [mas] wartość zmierzona kermy w powietrzu Ki [µgy] wydajność lampy RTG W [µgy/mas] wartość średnia wydajności lampy RTG Wśr [µgy/mas] odchylenie Wi od Wśr [%]