Turbulent Instability of Anti-de Sitter Space

Podobne dokumenty
A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Relaxation of the Cosmological Constant

Aerodynamics I Compressible flow past an airfoil

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Hard-Margin Support Vector Machines

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

Model standardowy i stabilność próżni

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

Stability of Tikhonov Regularization Class 07, March 2003 Alex Rakhlin

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

RESONANCE OF TORSIONAL VIBRATION OF SHAFTS COUPLED BY MECHANISMS

Convolution semigroups with linear Jacobi parameters

Revenue Maximization. Sept. 25, 2018

The Lorenz System and Chaos in Nonlinear DEs

Steeple #3: Gödel s Silver Blaze Theorem. Selmer Bringsjord Are Humans Rational? Dec RPI Troy NY USA

Modern methods of statistical physics

Primal Formulation. Find u h V h such that. A h (u h, v h )= fv h dx v h V h, where. u h v h dx. A h (u h, v h ) = DGFEM Primal Formulation.

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Rachunek lambda, zima

Vacuum decay rate in the standard model and beyond

Gradient Coding using the Stochastic Block Model

OpenPoland.net API Documentation

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Counting quadrant walks via Tutte s invariant method

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Lecture 20. Fraunhofer Diffraction - Transforms

Unitary representations of SL(2, R)

Tychy, plan miasta: Skala 1: (Polish Edition)

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

deep learning for NLP (5 lectures)

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Inverse problems - Introduction - Probabilistic approach

Symmetry and Geometry of Generalized Higgs Sectors

New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Eksperymenty reaktorowe drugiej generacji wyznaczenie ϑ 13

Knovel Math: Jakość produktu

Few-fermion thermometry

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Strings on Celestial Sphere. Stephan Stieberger, MPP München

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

Patients price acceptance SELECTED FINDINGS

Camspot 4.4 Camspot 4.5

DOI: / /32/37

Einstein s Theory of Gravity. Kostas Kokkotas December 11, 2018

harmonic functions and the chromatic polynomial

Lecture 18 Review for Exam 1

New method for the conformal bootstrap with OPE truncations

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

SzeregFouriera-Legendre a

tum.de/fall2018/ in2357

HOW MASSIVE ARE PROTOPLANETARY/ PLANET HOSTING/PLANET FORMING DISCS?

Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)

Previously on CSCI 4622

Zwyczajne równania różniczkowe (ZRR) Metody Runge go-ku/y


HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Has the heat wave frequency or intensity changed in Poland since 1950?

THE RATE OF GW CAPTURE OF STELLAR-MASS BHS IN NUCLEAR STAR CLUSTERS. Alexander Rasskazov & Bence Kocsis Eotvos University

Nespojitá Galerkinova metoda pro řešení

Sargent Opens Sonairte Farmers' Market

DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

NONLINEAR BOUNDARY CONDITION FOR ELECTROMAGNETIC FIELD PROBLEMS NIELINIOWE ELEKTROMAGNETYCZNE ZAGADNIENIE I SFORMUŁOWANIE JEGO WARUNKÓW BRZEGOWYCH

Electromagnetism Q =) E I =) B E B. ! Q! I B t =) E E t =) B. 05/06/2018 Physics 0

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

R E P R E S E N T A T I O N S

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

Prices and Volumes on the Stock Market

Dupin cyclides osculating surfaces

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Algorytm FIREFLY. Michał Romanowicz Piotr Wasilewski

Wyk lad z Algebry Liniowej dla studentów WNE UW. Rok akademicki 2017/2018. Przyk lady zadań na ćwiczenia. 1. Które z cia

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy

Matematyka 3. Suma szeregu. Promień zbieżności szeregu. Przykład 1: Przykład 2: GenerateConditions

Arrays -II. Arrays. Outline ECE Cal Poly Pomona Electrical & Computer Engineering. Introduction

OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Bergman Kernel and Kobayashi Pseudodistance in Convex Domains

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS

ITIL 4 Certification

Dominika Janik-Hornik (Uniwersytet Ekonomiczny w Katowicach) Kornelia Kamińska (ESN Akademia Górniczo-Hutnicza) Dorota Rytwińska (FRSE)

Stargard Szczecinski i okolice (Polish Edition)

Installation of EuroCert software for qualified electronic signature

2017 R. Robert Gajewski: Mathcad Prime 4. Solution of examples Rozwiązania przykładów

Algorytm k-średnich. Źródło: LaroseD.T., Okrywanie wiedzy w danych.wprowadzenie do eksploracji danych, PWN, Warszawa 2005.

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

Dynamics of the Warsaw Stock Exchange index as analysed by the Mittag-Leffler function

4. P : P SO P Spin, π : P M: 6. F = P Spin Spin(n) S, F ± = P Spin Spin(n) S ± 7. ω: Levi-Civita, R:, K:

Jak zasada Pareto może pomóc Ci w nauce języków obcych?

Transkrypt:

Turbulent Instability of Anti-de Sitter Space Andrzej Rostworowski Uniwersytet Jagielloński joint work with Piotr Bizoń Phys.Rev.Lett.107 031102 (2011) (arxiv:1104.3702) now a part of joint project with Joanna Ja lmużna, Patryk Mach and Maciej Maliborski Leiden, 11th October 2012 Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October 2012 1 / 22

Maximally symmetric solutions of vacuum Einstein s equations and their stability R αβ 1 2 R g αβ + Λ g αβ = 0. Λ = 0: Minkowski (trivial, yet most important) asymptotically stable (Christodoulou&Klainerman 1993), Λ > 0: de Sitter (important in cosmology - Nobel Prize 2011) asymptotically stable (Friedrich 1986), Λ < 0: anti- de Sitter (most popular on arxiv due to AdS/CFT) Stability of AdS seems unexplored Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October 2012 2 / 22

Anti-de Sitter spacetime in d + 1 dimensions Geometrically, AdS d+1 is wrapped around hiperboloid ( X 0) 2 d ( + X k ) 2 ( X d+1 ) 2 = l 2 k=1 embedded in flat, SO(d, 2) invaraiant space Parametrization X 0 = l ds 2 = ( dx 0) 2 d ( + dx k ) 2 ( dx d+1 ) 2 k=1 1 + (tan x) 2 cos(t), X d+1 = l 1 + (tan x) 2 sin(t) induces X k = l tan x n k, ds 2 = 0 x < π/2, d ( n k ) 2 = 1, k=1 l 2 [ ] (cos x) 2 dt 2 + dx 2 + (sin x) 2 dω 2 S d 1 Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October 2012 3 / 22

Anti-de Sitter spacetime in d + 1 dimensions Induced metric ds 2 = l 2 [ ] (cos x) 2 dt 2 + dx 2 + (sin x) 2 dω 2 S, d 1 < t < +, 0 x < π/2. is the maximally symmetric solution of the vacuum Einstein equations R αβ 1 2 g αβr + Λg αβ = 0 with negative cosmological constant Λ < 0: Λ = d(d 1)/(2l 2 ) Conformal infinity x = π/2 is the timelike hypersurface I = R S d 1 with the boundary metric ds 2 I = dt2 + dω 2 S d 1 Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October 2012 4 / 22

Is AdS stable? A solution (of a dynamical system) is said to be stable if small perturbations of it at t = 0 remain small for all later times Minkowski (Λ = 0) and de Sitter spacetimes (Λ > 0) are known to be stable (actually asymptotically stable) (Christodoulou&Klainerman 1993 and Friedrich 1986). The key difference between these solutions and AdS: the main mechanism of stability - dissipation of energy (dispersion in Minkowski, expansion in de Sitter) - is absent in AdS because AdS is effectively bounded (for no flux boundary conditions at I it acts as a perfect cavity) Note that by positive energy theorems both Minkowski and AdS are the unique ground states among asymptotically flat/ads spacetimes Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October 2012 5 / 22

Model To deal with the problem of the stability of AdS we start with spherical symmetry (effectually 1 + 1 dimensional problem) Spherically symmetric vacuum solutions are static (Birkhoff s theorem) we need matter to generate dynamics Simple matter model: massless scalar field φ in d+1 dimensions ( G αβ + Λ g αβ = 8πG α φ β φ 1 ) 2 g αβ µ φ µ φ, Λ = d(d 1)/(2l 2 ), g αβ α β φ = 0 In the corresponding asymptotically flat (Λ = 0) model Christodoulou proved dispersion for small data and collapse to a black hole for large data and Choptuik discovered critical phenomena at the threshold for black hole formation Remark: For even d 4 there is a way to bypass Birkhoff s theorem (cohomogeneity-two Bianchi IX ansatz, Bizoń, Chmaj, Schmidt 2005) Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October 2012 6 / 22

Convenient parametrization of asymptotically AdS spacetimes ds 2 = l 2 [ ] (cos x) 2 Ae 2δ dt 2 + A 1 dx 2 + (sin x) 2 dω 2 S, d 1 where A and δ are functions of (t, x). Auxiliary variables Φ = φ and Π = A 1 e δ φ ( = x, = t ) Field equations (using units where 8πG = d 1) A d 2 + 2 (sin x)2 = (1 A) (cos x) (sin x) A ( Φ 2 + Π 2), (cos x) (sin x) δ = (cos x) (sin x) ( Φ 2 + Π 2), ( Φ = Ae Π) δ 1 [, Π = (tan x) d 1 (tan x) d 1 Ae Φ] δ. AdS space: φ 0, A 1, δ 0; now we want to perturb AdS solving the initial-boundary value problem for this system starting with some small, smooth initial data (φ, φ) t=0 Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October 2012 7 / 22

Boundary conditions We assume that initial data (φ, φ) t=0 are smooth Smoothness at the center implies that near x = 0 (Λ irrelevant) φ(t, x) = f 0 (t) + O(x 2 ), δ(t, x) = O(x 2 ), A(t, x) = 1 + O(x 2 ) Smoothness at spatial infinity and conservation of the total mass M imply that near x = π/2 (using z = π/2 x) ( φ(t, x) = f (t) z d + O z d+2) (, δ(t, x) = δ (t) + O z 2d), A(t, x) = 1 (M/l d 2 )z d + O (z d+2) Remark: There is no freedom in prescribing boundary data Local well-posedness (Friedrich 1995, Holzegel&Smulevici 2011) mass function and asymptotic mass: m(t, x) = (1 A(t, ρ)) (l tan x) d 2 ( 1 + tan 2 x ) π/2 ( AΦ 2 + AΠ 2) (tan x) d 1 dx M = lim m(t, x) = ld 2 x π/2 Andrzej Rostworowski (UJ) Turbulent Instability of0anti-de Sitter Space Leiden, 11th October 2012 8 / 22

Reminder: asymptotically flat (Λ = 0) self-gravitating scalar field Christodoulou (1986-1993): dispersion for small data and collapse to a black hole for large data (proof of the weak cosmic censorship) Consider a family of initial data Φ(p) which interpolates between dispersion and collapse (Choptuik 1993) There exists a critical value of the parameter p such that p < p dispersion p > p black hole Universal behavior in the near-critical region p p 1 m BH (p p) γ with universal exponent γ discretely self-similar attractor with universal period Critical solution (p = p ) is a non-generic naked singularity Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October 2012 9 / 22

Movie from now d = 3 qualitatively the same behaviour in any d 3 d = 2 case is very special (Pretorius&Choptuik 2000) Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October 2012 10 / 22

Critical behavior [ Initial data: Φ(0, x) = 0, Π(0, x) = ε exp ( tan x ) ] 2 σ We fix σ = 1/16 and vary ε. There is a decreasing sequence 0.025 of critical amplitudes ε n for which the evolution, after 0.02 making n reflections from the 0.015 AdS boundary, locally asymptotes Choptuik s 0.01 solution. In each small right neighborhood of ε n x H 0.005 0 20 25 30 35 40 45 ε m BH (ε) (ε ε n ) γ with γ 0.37. It seems that BH size vs. amplitude lim n ε n = 0 Remark: The generic endstate of evolution is the Schwarzschild-AdS BH of mass M (in accord with Holzegel&Smulevici 2011) Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October 2012 11 / 22

Key evidence for instability 10 12 10 10 10 8 (a) ε = 6/π * 2 3/2 ε = 6/π * 2 ε = 6/π * 2 1/2 ε = 6/π Π 2 (t,0) 10 6 10 4 10 2 10 0 0 200 400 600 800 1000 1200 1400 1600 Ricci scalar R = 2 ( Φ 2 Π 2) /l 2 12/l 2 t Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October 2012 12 / 22

Key evidence for instability ε -2 Π 2 (ε 2 t,0) 10 12 10 10 10 8 10 6 10 4 (b) ε = 6/π * 2 3/2 ε = 6/π * 2 ε = 6/π * 2 1/2 ε = 6/π 10 2 10 0 0 1000 2000 3000 4000 5000 ε 2 t Onset of instability at time t = O(ε 2 ) Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October 2012 12 / 22

Weakly nonlinear perturbations We seek an approximate solution starting from small initial data (φ, φ) t=0 = (εf (x), εg(x)) Perturbation series φ = εφ 1 + ε 3 φ 3 +... δ = ε 2 δ 2 + ε 4 δ 4 +... 1 A = ε 2 A 2 + ε 4 A 4 +... where (φ 1, φ 1 ) t=0 = (f (x), g(x)) and (φ j, φ j ) t=0 = (0, 0) for j > 1. Inserting this expansion into the field equations and collecting terms of the same order in ε, we obtain a hierarchy of linear equations which can be solved order-by-order. Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October 2012 13 / 22

First order Linearized equation (Ishibashi&Wald 2004) φ 1 + Lφ 1 = 0, L = 1 tan 2 x ( x tan 2 ) x x The operator L is essentially self-adjoint on L 2 ([0, π/2), tan 2 x dx). Eigenvalues and eigenvectors of L are (j = 0, 1,... ) ( ) ωj 2 = (3 + 2j) 2, e j (x) = N j (cos x) 3 j, 3 + j F 3/2 (sin x)2 AdS is linearly stable Linearized solution φ 1 (t, x) = a j cos(ω j t + β j ) e j (x) j=0 where amplitudes a j and phases β j are determined by the initial data. Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October 2012 14 / 22

Second order (back-reaction on the metric) so It follows that M = ε2 2 A 2 + 1 + 2 sin2 x ( sin x cos x A 2 = sin x cos x φ 2 1 + φ 2) 1 ( δ 2 = sin x cos x φ 2 1 + φ 2) 1 A 2 (t, x) = cos3 x sin x x δ 2 (t, x) = 0 x 0 quadratic in φ 1! π/2 0 ( φ1 (t, y) 2 + φ 1(t, y) 2) tan 2 y dy ( φ 1 (t, y) 2 + φ 1(t, y) 2) sin y cos y dy ( φ 1 (t, y) 2 + φ 1(t, y) 2) tan 2 y dy + O(ε 4 ) Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October 2012 15 / 22 (1)

Third order φ 3 + Lφ 3 = S(φ 1, A 2, δ 2 ), where S := 2(A 2 + δ 2 ) φ 1 + (Ȧ 2 + δ 2 ) φ 1 + (A 2 + δ 2 )φ 1. ( ) Let φ 3 (t, x) = j c j(t) e j (x). Projecting Eq.( ) on the basis {e j } we obtain an infinite set of decoupled forced harmonic oscillators for the generalized Fourier coefficients c j (t) := (e j, φ 3 ) c j + ω 2 j c j = S j := (e j, S) and (c j, ċ j ) t=0 = 0 If S j has a part oscilating with a resonant frequency ω j it will give rise to a secular term in c j, that is c j t sin ω j t or c j t cos ω j t. S cubic in φ 1 contains all frequencies ± ω 1 ± ω 2 ± ω 3, where ω k Ω 1 and φ 1 (t, x) = k [ω k Ω 1 ] a k cos(ω k t + β k ) e k (x), ω k - odd integers all frequencies in S potentially resonant! Not all resonances survive the projection (e j, S). Some of those, which do survive can be compensated with frequency shifts in φ 1 and are harmless for stability, but the others put stability in question! Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October 2012 16 / 22

Example 1: single-mode data φ(0, x) = ε e 0 (x) First order φ 1 (t, x) = cos(ω 0 t)e 0 (x), ω 0 = 3 (ω j = 3 + 2j) Third order φ 3 (t, x) = j=0 c j(t)e j (x), (c j, ċ j ) t=0 = 0 and c j + ω 2 j c j = b j,0 cos(ω 0 t) + b j,3 cos(ω 3 t). But b 3,3 = 0 (!) and only j = 0 is resonant. log[π 2 (t,0)] 1 0.5 0-0.5-1 -1.5 ε=0.25 ε=0.1768 ε=0.125-2 0 200 400 600 800 1000 1200 t The j = 0 resonance can be easily removed by the two-scale method (slow-time phase modulation) which gives φ 1 = cos((ω 0 + 153 4π ε2 ) t) e 0 (x). This suggests that there are non-generic initial data which may stay close to AdS solution Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October 2012 17 / 22

Example 2: two-mode data φ(0, x) = ε (e 0 (x) + e 1 (x)) First order φ 1 (t, x) = cos(ω 0 t)e 0 (x) + cos(ω 1 t)e 1 (x), ω 0 = 3, ω 1 = 5 Third order φ 3 (t, x) = j=0 c j(t)e j (x), (c j, ċ j ) t=0 = 0 and c j +ω 2 j c j = k [ω k Ω 3 ]b j,k cos(ω k t), where Ω 3 = { ±ω 0,1 ±ω 0,1 ±ω 0,1 Π 2 (t,0) Here Ω 3 = {1, 3, 5, 7, 9, 11, 13, 15}, but the resonance (b j,j 0) only if ω j {3, 5, 7}. ω 0 ω 0 + (87/π)ɛ 2, ε = 1/8 ω 1 ω 1 + (413/π)ɛ 2 shifts ε = 2 1/2 /16 ε = 1/16 remove the resonances ω j = 3, 5, but the resonance ω j = 7 cannot be removed. Thus we get the secular term c 2 (t) t sin(7t). We expect this term to be a progenitor of the onset of exponential instability. 10 3 10 2 10 1 10 0 10-1 0 50 100 150 200 250 300 350 400 t Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October 2012 18 / 22

Conjectures Our numerical and formal perturbative computations lead us to: Conjecture 1 Anti-de Sitter space is unstable against the formation of a black hole under arbitrarily small generic perturbations Proof (and a precise formulation) is left as a challenge. Note that we do not claim that all perturbed solutions end up as black holes. Conjecture 2 There are non-generic initial data which may stay close to AdS solution; Einstein-scalar-AdS equations may admit time-quasiperiodic solutions Proof: KAM theory for PDEs? Analogous conjecture for vacuum Einstein s equations by Dias, Horowitz and Santos (2011) (existence of geons) Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October 2012 19 / 22

Turbulence: transfer of energy from low to high frequencies Let Π j := ( A Π, e j ) and Φ j := ( A Φ, e j ). Then M = l π/2 0 ( AΦ 2 + AΠ 2) (tan x) 2 dx = E j (t), where E j := Π 2 j + ω 2 j Φ 2 j can be interpreted as the j-mode energy. j=0 10-4 10-5 10-6 ε = 3 t=0 t=232*π/2 t=464*π/2 t=696*π/2 t=920*π/2 fit E j = C / j 1.082 10-5 ε = 3 t=0 t=232*π/2 t=464*π/2 t=696*π/2 t=920*π/2 fit E j = C / j 1.082 E j 10-7 E j 10-8 10-6 10-9 10-10 0 50 100 150 200 250 j 10-7 10 100 j Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October 2012 20 / 22

Power-law scaling E j 10-5 10-6 3+1 ingoing t=0 ingoing t=t H /2 ingoing t=t H centered t=0 centered t=t H /2 centered t=t H fit E j = C / j 1.066 E j 10-6 10-7 10-8 4+1 ingoing t=0 ingoing t=t H /2 ingoing t=t H centered t=0 centered t=t H /2 centered t=t H fit E j = C / j 1.998 10-7 10 100 j 10-9 10 100 j E j 10-7 10-8 10-9 5+1 ingoing t=0 ingoing t=t H /2 ingoing t=t H centered t=0 centered t=t H /2 centered t=t H fit E j = C / j 2.844 E j 10-6 10-7 BCS 4+1 ingoing t=0 ingoing t=t H /2 ingoing t=t H centered t=0 centered t=t H /2 centered t=t H fit E j = C / j 1.720 10-10 10-8 10-11 10-9 10 100 10 100 Andrzej Rostworowski (UJ) j Turbulent Instability of Anti-de Sitter Space Leiden, 11th October j 2012 21 / 22

Final remarks Weakly turbulent behavior seems to be common for (non-integrable) nonlinear wave equations on bounded domains (e.g. NLS on torus, Colliander,Keel, Staffilani,Takaoka,Tao 2008, Carles,Faou 2010) and our work shows that Einstein s equations are not an exception. For Einstein s equations the transfer of energy to high frequencies cannot proceed forever because concentration of energy on smaller and smaller scales inevitably leads to the formation of a black hole. The role of negative cosmological constant is purely kinematical, that is the only role of Λ is to confine the evolution in an effectively bounded domain. Similar turbulent dynamics has been observed for small perturbations of Minkowski in a box (Maliborski 2012) Generalizations: different matter models (Buchel,Lehner&Liebling 2012), relaxing symmetry (Dias,Horowitz&Santos 2011), multi-scale analysis, (in)stability of AdS black holes (Holzegel&Smulevici 2011, Horowitz 2012), instability of AdS 2+1 (work in progress by Ja lmużna) Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October 2012 22 / 22