Analityka danych publicznych dla diagnoz i prognoz dotyczących osób niepełnosprawnych
|
|
- Barbara Szewczyk
- 6 lat temu
- Przeglądów:
Transkrypt
1 XI Konferencja Naukowa Bezpieczeostwo w Internecie. Analityka danych Analityka danych publicznych dla diagnoz i prognoz dotyczących osób niepełnosprawnych Ewa Marzec UKSW
2 Uwagi historyczne Rosnące rozmiary danych Massive Data mining, Very Large Databases inne spojrzenia + wcześniejsze Big Data jako termin na amerykańskich konferencjach pojawia się pod koniec lat dziewięćdziesiątych Doświadczenia wielkich projektów badawczych NASA
3 Charakterystyka Big Data połączenie niejednorodnych i złożonych źródeł 3 V High volume, velocity and variety *Doug Laney Kolejne V s stopniowo dodawane (Veracity, Value, ) Big Data to dane, których skala, zróżnicowanie i złożonośd wymaga nowych technologii i algorytmów w celu odkrycia wartościowej wiedzy [J.Gama 2015] HACE Theorem: Big Data starts with large-volume, heterogeneous, autonomous data sources with distributed and decentralized control, and seeks to explore complex and evolving relationships among data [Xindong Wu et al. 2013]
4 Źródło: N.Japkowicz and J.Stefanowski (Eds), Big Data Analysis: New Algorithms for a New Society, (2016).
5 Zagadnienie Tradycyjne Data Mining Analiza Big Data Dostęp do pamięci Architektura oblicz. Dane Jakośd danych Bezpieczeostwo i prywatnośd Przetwarzanie danych Analiza rezultatów Centralna pamięd operacyjna, łatwiejsze wielokrotne operacje odczyt / zapis Centralna pojedyncza jednostka (skalowalna) Dobra strukturalizacja (rel. DB), jednorodne, statyczne / integracja DW Dobrze przygotowane, wiele technik korekcji Udokumentowane pochodzenie Wiarygodne próbkowanie Wyselekcjonowane dobre dane Nie są wymagane Proste metody anonimizacji Klasyczne (batch); może byd off-line Brak konieczności próbkowania Prędkośd nie tak krytyczna Rozwinięte metody oceny wyników oraz wizualizacji Dane często rozproszone Minimalizowanie zapamiętanych elementów i dostępu do nich Rozproszone przetwarzanie Grona (clusters) słabszych komputerów Zróżnicowane źródła; brak struktury; Zmienne / dynamika i czas Słaba jakośd danych, niepewnośd i niedokładnośd; Słabo dokument. pochodzenie i preprocessing; Użyteczne dane mogą byd połączone z wieloma bezużytecznymi Krytyczny problem Współdzielenie danych; łączenie danych Możliwośd wymagania on-line; szybkośd; Wydajnośd alg. ma znaczenie Dane nie mieszczą się w pamięci Kompresja i próbkowanie danych Niebezpieczeostwa odkrycia nieznaczących rezultatów Trudności wizualizacji Źródło N.Japkowicz, J.Stefanowski: A Machine Learning Perspective on Big Data Analysis (2016)
6 Big Data znane metody w innym kontekście Standard metod Data Mining Klasyfikacja nadzorowana Regresja / ANN Analiza skupieo Asocjacje (zbiory częste, reguły asocjacyjne) Wzorce sekwencji Szeregi czasowe Wykrywanie anomalii i obserwacji nietypowych Statystyka opisowa Statystyka wielowymiarowa Dekompozycja macierzy (PCA, MDS, ).. Klasyfikacja i predykcja Drzewa decyzyjne Reguły Naive Bayes K-NN Regresja logistyczna Sztuczne sieci neuronowe Analiza dyskryminacyjna Metoda wektorów wspierających SVM Zespoły klasyfikatorów
7 Drzewo decyzyjne
8 Nowe problemy badawcze z punktu widzenia analizy danych Analiza grafów Social networks Integracja lub przetwarzanie online różnorodnych reprezentacji danych Eksploracja danych strumieniowych Analiza danych czasoworozproszonych Obliczenia mobilne (IoT) Wizualizacja danych Privacy data mining Data trust + provenance.. Inne problemy Interakcja z ekspertem Ocena wiedzy Etyka analizy Big Data Wpływ na społeczeostwo
9 Narzędzia do analizy Big Data R - pakiety do wizualizacji danych, pakiety do łączenia R z innymi językami, np. z Javą i hurtowniami danych Python język programowania SAS oprogramowanie do analizy danych SPSS, Statistica, Stata programy przeznaczone do analizy statystycznej Matlab język do analizy danych, statystyki i wizualizacji danych; Apache Mahout - biblioteka Java do uczenia maszynowego
10 Zjawisko niepełnosprawności Według danych z ostatniego NSP 2011 liczba osób niepełnosprawnych w Polsce wynosiła około 4,7 mln. Narodowy Spis Powszechny Ludności i Mieszkań. Raport z wyników, GUS, Warszawa 2012
11 Niepełnosprawni według formy niepełnosprawności i miejsca zamieszkania Narodowy Spis Powszechny Ludności i Mieszkań. Raport z wyników, GUS, Warszawa 2012
12 Liczba niepełnosprawnych w podziale na płeć (w tys. osób) Narodowy Spis Powszechny Ludności i Mieszkań. Raport z wyników, GUS, Warszawa 2012
13 Liczba niepełnosprawnych według miejsc zamieszkania (w tys. osób) Narodowy Spis Powszechny Ludności i Mieszkań. Raport z wyników, GUS, Warszawa 2012
14 Zjawisko niepełnosprawności z perspektywy metod analizy danych Zjawisko niepełnosprawności stanowi poważny problem wymagający odpowiednich rozwiązao: Zastosowania wybranych metod wielowymiarowej analizy danych do analizy zjawiska niepełnosprawności Stworzenia tzw. profilu osoby niepełnosprawnej na podstawie danych Projektowania usług publicznych zorientowanych na potrzeby użytkownika niepełnosprawnego [zwiększania dostępności+
15 Znaczenie danych o dostępności dla władz publicznych - Uchwalona została ustawa z dnia 4 kwietnia 2019 r. o dostępności cyfrowej stron internetowych i aplikacji mobilnych podmiotów publicznych, wdrażająca dyrektywę Parlamentu Europejskiego i Rady (UE) 2016/2102 z dnia 26 października 2016 r. w sprawie dostępności stron internetowych i mobilnych aplikacji organów sektora publicznego - Trwają prace nad projektem szerszej zakresowo ustawy o dostępności, stanowiącej, że: dostępnośd właściwośd środowiska fizycznego, środków transportu, technologii i systemów informacyjno-komunikacyjnych oraz towarów i usług, pozwalająca osobom z niepełnosprawnościami na korzystanie z nich w sposób możliwie samodzielny i na zasadzie równości z innymi osobami bariera przeszkoda lub ograniczenie architektoniczne, urbanistyczne, transportowe, cyfrowe, techniczne, w komunikowaniu się, w dostępie do informacji oraz inne, które uniemożliwia lub utrudnia osobom z niepełnosprawnościami udział w życiu społecznym na zasadzie równości z innymi osobami
16 Dziękuję za uwagę
w ekonomii, finansach i towaroznawstwie
w ekonomii, finansach i towaroznawstwie spotykane określenia: zgłębianie danych, eksploracyjna analiza danych, przekopywanie danych, męczenie danych proces wykrywania zależności w zbiorach danych poprzez
Od Expert Data Scientist do Citizen Data Scientist, czyli jak w praktyce korzystać z zaawansowanej analizy danych
Od Expert Data Scientist do Citizen Data Scientist, czyli jak w praktyce korzystać z zaawansowanej analizy danych Tomasz Demski StatSoft Polska www.statsoft.pl Analiza danych Zaawansowana analityka, data
1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie
Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty
4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15
data mining machine learning data science
data mining machine learning data science deep learning, AI, statistics, IoT, operations research, applied mathematics KISIM, WIMiIP, AGH 1 Machine Learning / Data mining / Data science Uczenie maszynowe
Big Data i ich eksploracja: spojrzenia z perspektywy statystyki i uczenia maszynowego
Big Data i ich eksploracja: spojrzenia z perspektywy statystyki i uczenia maszynowego Jacek Koronacki Instytut Podstaw Informatyki, PAN Jerzy Stefanowski Instytut Informatyki, Politechnika Poznańska Poznań,
Hadoop i Spark. Mariusz Rafało
Hadoop i Spark Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl WPROWADZENIE DO EKOSYSTEMU APACHE HADOOP Czym jest Hadoop Platforma służąca przetwarzaniu rozproszonemu dużych zbiorów danych. Jest
WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU
WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim: Eksploracja Danych Nazwa w języku angielskim: Data Mining Kierunek studiów (jeśli dotyczy): MATEMATYKA I STATYSTYKA Stopień studiów i forma:
Widzenie komputerowe (computer vision)
Widzenie komputerowe (computer vision) dr inż. Marcin Wilczewski 2018/2019 Organizacja zajęć Tematyka wykładu Cele Python jako narzędzie uczenia maszynowego i widzenia komputerowego. Binaryzacja i segmentacja
Plan prezentacji 0 Wprowadzenie 0 Zastosowania 0 Przykładowe metody 0 Zagadnienia poboczne 0 Przyszłość 0 Podsumowanie 7 Jak powstaje wiedza? Dane Informacje Wiedza Zrozumienie 8 Przykład Teleskop Hubble
Mail: Pokój 214, II piętro
Wykład 2 Mail: agnieszka.nowak@us.edu.pl Pokój 214, II piętro http://zsi.tech.us.edu.pl/~nowak Predykcja zdolność do wykorzystania wiedzy zgromadzonej w systemie do przewidywania wartości dla nowych danych,
PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE
UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561
Analiza danych i data mining.
Analiza danych i data mining. mgr Katarzyna Racka Wykładowca WNEI PWSZ w Płocku Przedsiębiorczy student 2016 15 XI 2016 r. Cel warsztatu Przekazanie wiedzy na temat: analizy i zarządzania danymi (data
dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2016/2017
dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2016/2017 KONTAKT Z PROWADZĄCYM dr inż. Paweł Morawski e-mail: pmorawski@spoleczna.pl www: http://pmorawski.spoleczna.pl
Organizacyjnie. Prowadzący: dr Mariusz Rafało (hasło: BIG)
Big Data Organizacyjnie Prowadzący: dr Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło: BIG) Zaliczenie: Praca na zajęciach Egzamin Projekt/esej zaliczeniowy Plan zajęć # TEMATYKA ZAJĘĆ
Szkolenia SAS Cennik i kalendarz 2017
Szkolenia SAS Spis treści NARZĘDZIA SAS FOUNDATION 2 ZAAWANSOWANA ANALITYKA 2 PROGNOZOWANIE I EKONOMETRIA 3 ANALIZA TREŚCI 3 OPTYMALIZACJA I SYMULACJA 3 3 ROZWIĄZANIA DLA HADOOP 3 HIGH-PERFORMANCE ANALYTICS
dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2018/2019
dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2018/2019 KONTAKT Z PROWADZĄCYM dr inż. Paweł Morawski e-mail: pmorawski@spoleczna.pl www: http://pmorawski.spoleczna.pl
Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa, Inżynieria oprogramowania, Technologie internetowe
:Informatyka- - inż., rok I specjalność: Grafika komputerowa, Inżynieria oprogramowania, Technologie internetowe Metody uczenia się i studiowania 1 Podstawy prawa i ergonomii pracy 1 25 2 Podstawy ekonomii
SZKOLENIA SAS. ONKO.SYS Kompleksowa infrastruktura inforamtyczna dla badań nad nowotworami CENTRUM ONKOLOGII INSTYTUT im. Marii Skłodowskiej Curie
SZKOLENIA SAS ONKO.SYS Kompleksowa infrastruktura inforamtyczna dla badań nad nowotworami CENTRUM ONKOLOGII INSTYTUT im. Marii Skłodowskiej Curie DANIEL KUBIK ŁUKASZ LESZEWSKI ROLE ROLE UŻYTKOWNIKÓW MODUŁU
Szczegółowy opis przedmiotu zamówienia
ZP/ITS/19/2013 SIWZ Załącznik nr 1.1 do Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych dla studentów
I rok. semestr 1 semestr 2 15 tyg. 15 tyg. Razem ECTS. laborat. semin. ECTS. konwer. wykł. I rok. w tym. Razem ECTS. laborat. semin. ECTS. konwer.
Wydział Informatyki i Nauki o Materiałach Kierunek Informatyka studia I stopnia inżynierskie studia stacjonarne 08- IO1S-13 od roku akademickiego 2015/2016 A Lp GRUPA TREŚCI PODSTAWOWYCH kod Nazwa modułu
Organizacyjnie. Prowadzący: dr Mariusz Rafało (hasło: BIG)
Big Data Organizacyjnie Prowadzący: dr Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło: BIG) DANE W CZASIE RZECZYWISTYM 3 Tryb analizowania danych 4 Okno analizowania 5 Real-time: Checkpointing
Rok akademicki: 2030/2031 Kod: ZZP MK-n Punkty ECTS: 3. Poziom studiów: Studia II stopnia Forma i tryb studiów: Niestacjonarne
Nazwa modułu: Komputerowe wspomaganie decyzji Rok akademicki: 2030/2031 Kod: ZZP-2-403-MK-n Punkty ECTS: 3 Wydział: Zarządzania Kierunek: Zarządzanie Specjalność: Marketing Poziom studiów: Studia II stopnia
Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop Spis treści
Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop. 2017 Spis treści O autorach 9 0 recenzencie 10 Wprowadzenie 11 Rozdział 1. Pierwsze kroki 15 Wprowadzenie do nauki o danych
Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych
Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych PRZEDMIOT (liczba godzin konwersatoriów/ćwiczeń) Statystyka opisowa z elementami analizy regresji (4/19) Wnioskowanie
PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
Razem godzin w semestrze: Plan obowiązuje od roku akademickiego 2014/15 - zatwierdzono na Radzie Wydziału w dniu r.
Część wspólna dla kierunku 1 IMS1.01 Obiektowe projektowanie SI 2 2 E 3 60 3 2 IMS1.02 Teleinformatyka 2 2 E 4 60 4 3 IMS2.01 Modelowanie i analiza systemów dyskretnych 2 2 E 3 60 3 4 IMS2.02 Wielowymiarowa
Efekt kształcenia. Wiedza
Efekty dla studiów drugiego stopnia profil ogólnoakademicki na kierunku Informatyka na specjalności Przetwarzanie i analiza danych, na Wydziale Matematyki i Nauk Informacyjnych, gdzie: * Odniesienie oznacza
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Eksploracja danych Rok akademicki: 2030/2031 Kod: MIS-2-105-MT-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Informatyka Stosowana Specjalność: Modelowanie
Dostawa oprogramowania. Nr sprawy: ZP /15
........ (pieczątka adresowa Oferenta) Zamawiający: Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu, ul. Staszica,33-300 Nowy Sącz. Strona: z 5 Arkusz kalkulacyjny określający minimalne parametry techniczne
mgr inż. Magdalena Deckert Poznań, r. Uczenie się klasyfikatorów przy zmieniającej się definicji klas.
mgr inż. Magdalena Deckert Poznań, 01.06.2010r. Uczenie się klasyfikatorów przy zmieniającej się definicji klas. Plan prezentacji Wstęp Concept drift Typy zmian Podział algorytmów stosowanych w uczeniu
Systemy Informatyki Przemysłowej
Systemy Informatyki Przemysłowej Profil absolwenta Profil absolwenta Realizowany cel dydaktyczny związany jest z: tworzeniem, wdrażaniem oraz integracją systemów informatycznych algorytmami rozpoznawania
Poz. 15 UCHWAŁA NR 15 RADY WYDZIAŁU NAUK EKONOMICZNYCH UW. z dnia 1 marca 2017 roku. w sprawie
Poz. 15 UCHWAŁA NR 15 RADY WYDZIAŁU NAUK EKONOMICZNYCH UW z dnia 1 marca 2017 roku w sprawie utworzenia studiów stacjonarnych II stopnia w języku angielskim pn. Data Science Rada Wydziału Nauk Ekonomicznych
UCZENIE MASZYNOWE I SZTUCZNA INTELIGENCJA Jako narzędzia wspomagania decyzji w zarządzaniu kapitałem ludzkim organizacji
UCZENIE MASZYNOWE I SZTUCZNA INTELIGENCJA Jako narzędzia wspomagania decyzji w zarządzaniu kapitałem ludzkim organizacji Filip Wójcik Wydział Zarządzania, Informatyki i Finansów Instytut Informatyki Ekonomicznej
Systemy uczące się Lab 4
Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego
Grafika i Systemy Multimedialne (IGM)
Nowa Specjalność na Kierunku Informatyka Informatyka Techniczna (ITN) Grafika i Systemy Multimedialne (IGM) dr inż. Jacek Mazurkiewicz (K-9) Motywacja 2 narastająca potrzeba aktualizacji, modernizacji
Organizacyjnie. Prowadzący: dr Mariusz Rafało (hasło: BIG)
Big Data Organizacyjnie Prowadzący: dr Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło: BIG) Data Camp Architektura Data Lake Repozytorium służące składowaniu i przetwarzaniu danych o
Wprowadzenie do Hurtowni Danych
Wprowadzenie do Hurtowni Danych BIG DATA Definicja Big Data Big Data definiowane jest jako składowanie zbiorów danych o tak dużej złożoności i ilości danych, że jest to niemożliwe przy zastosowaniu podejścia
SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006
SAS wybrane elementy DATA MINING Część III Seweryn Kowalski 2006 Algorytmy eksploracji danych Algorytm eksploracji danych jest dobrze zdefiniowaną procedurą, która na wejściu otrzymuje dane, a na wyjściu
Prof. Stanisław Jankowski
Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny
II. MODUŁY KSZTAŁCENIA
PROGRAM STUDIÓW I. INFORMACJE OGÓLNE 1. Nazwa jednostki prowadzącej kierunek: W y d z i a ł M a t e m a t y k i i I n f o r m a t y k i 2. Nazwa kierunku: I n f o r m a t y k a 3. Poziom kształcenia: s
Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa
:Informatyka- - inż., rok I specjalność: Grafika komputerowa Metody uczenia się i studiowania. 1 Podstawy prawne. 1 Podstawy ekonomii. 1 Matematyka dyskretna. 1 Wprowadzenie do informatyki. 1 Podstawy
POLITECHNIKA LUBELSKA Wydział Elektrotechniki Kierunek: INFORMATYKA II stopień niestacjonarne i Informatyki. Część wspólna dla kierunku
Część wspólna dla kierunku 1 IMN1.01 Obiektowe projektowanie SI 15 15 E 3 3 2 IMN1.02 Teleinformatyka 15 15 E 4 4 3 IMN2.01 Modelowanie i analiza systemów dyskretnych 15 15 E 3 3 4 IMN2.02 Wielowymiarowa
Informatyka studia stacjonarne pierwszego stopnia
#382 #379 Internetowy system obsługi usterek w sieciach handlowych (The internet systems of detection of defects in trade networks) Celem pracy jest napisanie aplikacji w języku Java EE. Główne zadania
Wykaz tematów prac magisterskich w roku akademickim 2018/2019 kierunek: informatyka
Wykaz tematów prac magisterskich w roku akademickim 2018/2019 kierunek: informatyka L.p. Nazwisko i imię studenta Promotor Temat pracy magisterskiej 1. Wojciech Kłopocki dr Bartosz Ziemkiewicz Automatyczne
Analiza danych tekstowych i języka naturalnego
Kod szkolenia: Tytuł szkolenia: ANA/TXT Analiza danych tekstowych i języka naturalnego Dni: 3 Opis: Adresaci szkolenia Dane tekstowe stanowią co najmniej 70% wszystkich danych generowanych w systemach
ALGORYTM RANDOM FOREST
SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM
Wprowadzenie do technologii informacyjnej.
Wprowadzenie do technologii informacyjnej. Data mining i jego biznesowe zastosowania dr Tomasz Jach Definicje Eksploracja danych polega na torturowaniu danych tak długo, aż zaczną zeznawać. Eksploracja
Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia
:Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia Podstawy prawne. 1 15 1 Podstawy ekonomii. 1 15 15 2 Metody uczenia się i studiowania. 1 15 1 Środowisko programisty. 1 30 3 Komputerowy
Plan studiów niestacjonarnych pierwszego stopnia Kierunek: ANALITYKA I BADANIA EKONOMICZNE A. Moduły międzykierunkowe obligatoryjne
Plan studiów niestacjonarnych pierwszego stopnia A Moduły międzykierunkowe obligatoryjne Moduł ogólny I Zz 1 5 20 20 1 BHP Zz 1 5 5 2 Ochrona własności intelektualnej Zz 1 5 5 3 Wstęp do studiowania Zz
Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel
według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology
SYLABUS. Dotyczy cyklu kształcenia Realizacja w roku akademickim 2016/2017. Wydział Matematyczno - Przyrodniczy
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS Dotyczy cyklu kształcenia 2014-2018 Realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania
Plan studiów stacjonarnych pierwszego stopnia Kierunek: ANALITYKA I BADANIA EKONOMICZNE A. Moduły międzykierunkowe obligatoryjne
A. Moduły międzykierunkowe obligatoryjne Moduł ogólny I Zz 1 5 20 20 1 BHP Zz 1 5 5 2 Ochrona własności intelektualnej Zz 1 5 5 3 Wstęp do studiowania Zz 1 5 5 4 Szkolenie biblioteczne Zz 1 5 5 Moduł Wychowanie
Analiza i wizualizacja danych Data analysis and visualization
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
L.p Nazwa przedmiotu Kod przedmiotu Osoba(y) prowadząca(e) WDP PDP WIR DAW BDZ
L.p Nazwa przedmiotu Kod przedmiotu Osoba(y) prowadząca(e) 1 2 3 4 5 Wykorzystanie systemu analizy statystycznej SAS w działalności przedsiębiorstwa Przetwarzanie danych w pakiecie SAS (makroprogramowanie,
OBSERWATRIUM POLITYKI SPOŁECZNEJ
Diagnozowanie lokalnych potrzeb i problemów bazy danych MAŁOPOLSKIEGO OBSERWATRIUM POLITYKI SPOŁECZNEJ Regionalna Platforma Współpracy Kraków, 28.06.2012 r. 3 REGIONALNE BAZY DANYCH Internetowa Biblioteka
Indeksy w bazach danych. Motywacje. Techniki indeksowania w eksploracji danych. Plan prezentacji. Dotychczasowe prace badawcze skupiały się na
Techniki indeksowania w eksploracji danych Maciej Zakrzewicz Instytut Informatyki Politechnika Poznańska Plan prezentacji Zastosowania indeksów w systemach baz danych Wprowadzenie do metod eksploracji
WIZUALNA EKSPLORACJA DANYCH I RAPORTOWANIE W SAS VISUAL ANALYTICS ORAZ WSTĘP DO SAS VISUAL STATISTICS
WIZUALNA EKSPLORACJA DANYCH I RAPORTOWANIE W SAS VISUAL ANALYTICS ORAZ WSTĘP DO SAS VISUAL STATISTICS WEBINARIUM, 2016.03.08 Dr Sławomir Strzykowski, Senior Business Solution Manager SAS VISUAL ANALYTICS
Informatyka- studia I-go stopnia
SPECJALNOŚĆ: Informatyka w Zarządzaniu Obowiązuje od roku akademickiego: 2007 / 2008 1 Modelowanie procesów biznesowych 30 30 60 6 2 2 6 2 Eksploracja danych 30 3 1 1 3 3 Wspomaganie decyzji w warunkach
Odniesienie symbol II/III [1] [2] [3] [4] [5] Efekt kształcenia. Wiedza
Efekty dla studiów drugiego stopnia profil ogólnoakademicki na kierunku Inżynieria i Analiza Danych prowadzonym przez Wydział Matematyki i Nauk Informacyjnych Użyte w poniższej tabeli: 1) w kolumnie 4
Modelowanie Data Mining na wielką skalę z SAS Factory Miner. Paweł Plewka, SAS
Modelowanie Data Mining na wielką skalę z SAS Factory Miner Paweł Plewka, SAS Wstęp SAS Factory Miner Nowe narzędzie do data mining - dostępne od połowy 2015 r. Aktualna wersja - 14.1 Interfejs webowy
Technologie IoT - Analityka Big Data IoT Big Data& Analytics
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018
Kierunek: INFORMATYKA. Studia stacjonarne. Studia drugiego stopnia. Profil: ogólnoakademicki
Studia drugiego stopnia Kierunek: INFORMATYKA Profil: ogólnoakademicki Studenci rozpoczynający studia w roku akademickim 2015/2016 (od semestru zimowego) Formy studiów: Stacjonarne (ścieżka 4-semestralna)
KLASYFIKACJA. Słownik języka polskiego
KLASYFIKACJA KLASYFIKACJA Słownik języka polskiego Klasyfikacja systematyczny podział przedmiotów lub zjawisk na klasy, działy, poddziały, wykonywany według określonej zasady Klasyfikacja polega na przyporządkowaniu
Data Mining Kopalnie Wiedzy
Data Mining Kopalnie Wiedzy Janusz z Będzina Instytut Informatyki i Nauki o Materiałach Sosnowiec, 30 listopada 2006 Kopalnie złota XIX Wiek. Odkrycie pokładów złota spowodowało napływ poszukiwaczy. Przeczesywali
Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa
:Informatyka- - inż., rok I specjalność: Grafika komputerowa Rok akademicki 018/019 Metody uczenia się i studiowania. 1 Podstawy prawne. 1 Podstawy ekonomii. 1 Matematyka dyskretna. 1 30 Wprowadzenie do
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
!!!!!!!!!!! PORTFOLIO: Analiza zachowań użytkowników serwisów internetowych. Autorzy: Marek Zachara
PORTFOLIO: Analiza zachowań użytkowników serwisów internetowych Autorzy: Marek Zachara Opis merytoryczny Cel naukowy (jaki problem wnioskodawca podejmuje się rozwiązać, co jest jego istotą, co uzasadnia
HURTOWNIE DANYCH I BUSINESS INTELLIGENCE
BAZY DANYCH HURTOWNIE DANYCH I BUSINESS INTELLIGENCE Akademia Górniczo-Hutnicza w Krakowie Adrian Horzyk horzyk@agh.edu.pl Google: Horzyk HURTOWNIE DANYCH Hurtownia danych (Data Warehouse) to najczęściej
Statystyka publiczna źródłem wiedzy w programowaniu krajowym i regionalnym
GŁÓWNY URZĄD STATYSTYCZNY Statystyka publiczna źródłem wiedzy w programowaniu krajowym i regionalnym Janusz Witkowski OPOLSKA KONFERENCJA MONITOROWANIA I EWALUACJI POLITYKI PUBLICZNEJ doświadczenia przeszłości
Jan Paradysz Nowe źródła danych w klasycznym paradygmacie informacji statystycznej
Jan Paradysz Nowe źródła danych w klasycznym paradygmacie informacji statystycznej STATYSTYKA WIEDZA ROZWÓJ KONFERENCJA Z OKAZJI MIĘDZYNARODOWEGO ROKU STATYSTYKI ŁÓDŹ 17-18 X 2013 roku Plan prezentacji
Podstawy analizy danych numerycznych w języku Python
Kod szkolenia: Tytuł szkolenia: PYTHON/ANA Podstawy analizy danych numerycznych w języku Python Dni: 2 Partner merytoryczny Opis: Adresaci szkolenia Szkolenie przeznaczone jest dla analityków danych, którzy
Narzędzia geoprzestrzenne Business Intelligence (BI)
Narzędzia geoprzestrzenne Business Intelligence (BI) Paweł Pręcikowski Dyrektor Administracja i Bezpieczeństwo Publiczne Kraków, 17-18 maja 2018 r. Agenda 1. Wprowadzenie do BI 2. Prezentacja rozwiązań:
1.1 Matryca pokrycia efektów kształcenia. Efekty kształcenia w zakresie wiedzy. Efekty kształcenia w zakresie umiejętności
1.1 Matryca pokrycia efektów kształcenia Matryca dla przedmiotów realizowanych na kierunku Informatyka i Ekonometria (z wyłączeniem przedmiotów realizowanych w ramach specjalności oraz przedmiotów swobodnego
StatSoft profesjonalny partner w zakresie analizy danych
Analiza danych Data mining Sterowanie jakością Analityka przez Internet StatSoft profesjonalny partner w zakresie analizy danych StatSoft Polska Sp. z o.o. StatSoft Polska Sp. z o.o. ul. Kraszewskiego
Rozpocznij swój pierwszy projekt IoT i AR z Transition Technologies PSC
Rozpocznij swój pierwszy projekt IoT i AR z Transition Technologies PSC _www.ttpsc.pl _iot@ttpsc.pl Transition Technologies PSC Sp. z o.o. Łódź, Piotrkowska 276, 90-361 tel.: +48 42 664 97 20 fax: +48
PLAN STUDIÓW STACJONARNYCH I NIESTACJONARNYCH WIECZOROWYCH II STOPNIA OD ROKU AKADEMICKIEGO 2017/2018
PLAN STUDIÓW STACJONARNYCH I NIESTACJONARNYCH WIECZOROWYCH II STOPNIA OD ROKU AKADEMICKIEGO 2017/2018 Kierunek: Informatyka i Ekonometria Specjalność: Analityka gospodarcza Lp. Przedmioty Grupa Wymiar
Zagadnienia na egzamin magisterski
Kierunek: Informatyka Zagadnienia na egzamin magisterski Pytania na egzamin magisterski ustalane są przez komisję według następującego schematu: - jedno pytanie z zakresu pracy magisterskiej - co najmniej
Plany mobilności miejskiej dla dzielnic
Plany mobilności miejskiej dla dzielnic II Regionalne Seminarium Mobilny Śląsk Katowice, dnia 2 marca 2015 r. inż. Tobiasz Nykamowicz Problemy układu komunikacyjnego osiedli mieszkaniowych (dzielnic) Problemy
Repetytorium z matematyki 3,0 1,0 3,0 3,0. Analiza matematyczna 1 4,0 2,0 4,0 2,0. Analiza matematyczna 2 6,0 2,0 6,0 2,0
PROGRAM STUDIÓW I INFORMACJE OGÓLNE 1. Nazwa jednostki prowadzącej kierunek: Wydział Matematyki i Informatyki 2. Nazwa kierunku: Informatyka 3. Oferowane specjalności: 4. Poziom kształcenia: studia pierwszego
Eksploracja danych a serwisy internetowe Przemysław KAZIENKO
Eksploracja danych a serwisy internetowe Przemysław KAZIENKO Wydział Informatyki i Zarządzania Politechnika Wrocławska kazienko@pwr.wroc.pl Dlaczego eksploracja danych w serwisach internetowych? Kanały
Nowe przewagi konkurencyjne - technologia, informacja, społeczność
Seminarium Nowe przewagi konkurencyjne - technologia, informacja, społeczność Bogna Zacny Warszawa, 13.11.2015 Zespół Wydział Informatyki i Komunikacji Katedra Inżynierii Wiedzy Agata Berdowska Krzysztof
Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia
:Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia Podstawy prawne. 1 15 1 Podstawy ekonomii. 1 15 15 2 Repetytorium z matematyki. 1 30 3 Środowisko programisty. 1 30 3 Komputerowy
1 Programowanie urządzen mobilnych Sztuczna inteligencja i systemy 2 ekspertowe
SPECJALNOŚĆ: Programowanie Komputerów i Sieci Informatyczne Obowiązuje od roku akademickiego: 2007 / 2008 Przedmioty specjalnościowe oraz profili 1 Programowanie urządzen mobilnych 15 5 20 3 15 5 3 Sztuczna
Prezentacja specjalności studiów II stopnia. Inteligentne Technologie Internetowe
Prezentacja specjalności studiów II stopnia Inteligentne Technologie Internetowe Koordynator specjalności Prof. dr hab. Jarosław Stepaniuk Tematyka studiów Internet jako zbiór informacji Przetwarzanie:
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA REALIZACJA W ROKU AKADEMICKIM 2016/2017
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2014-2018 REALIZACJA W ROKU AKADEMICKIM 2016/2017 1.1. Podstawowe informacje o przedmiocie/module Nazwa przedmiotu/ modułu Metody eksploracji danych Kod przedmiotu/ modułu*
WSTĘP I TAKSONOMIA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING WSTĘP I TAKSONOMIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra
Zagadnienia egzaminacyjne AUTOMATYKA I ROBOTYKA. Stacjonarne I-go stopnia TYP STUDIÓW STOPIEŃ STUDIÓW SPECJALNOŚĆ
(ARK) Komputerowe sieci sterowania 1.Badania symulacyjne modeli obiektów 2.Pomiary i akwizycja danych pomiarowych 3.Protokoły transmisji danych w systemach automatyki 4.Regulator PID struktury, parametry,
DLA SEKTORA INFORMATYCZNEGO W POLSCE
DLA SEKTORA INFORMATYCZNEGO W POLSCE SRK IT obejmuje kompetencje najważniejsze i specyficzne dla samego IT są: programowanie i zarządzanie systemami informatycznymi. Z rozwiązań IT korzysta się w każdej
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia
Standard minimum praktyczne wskazówki
Standard minimum praktyczne wskazówki Marta Rawłuszko Wrocław 18 listopada 2009 r. Elementy projektu Analiza Monitoring i ewaluacja Cele Zarządzanie Działania i rezultaty Standard minimum 1. Czy uzasadnienie
Zespół do spraw Transformacji Przemysłowej Departament Innowacji
Zespół do spraw Transformacji Przemysłowej 26.07.2016 Departament Innowacji Kierunki transformacji polskiej gospodarki 5 Filarów rozwoju gospodarczego Polski Reindustrializacja Rozwój innowacyjnych firm
Jak Big Data rewolucjonizuje naukę oraz współpracę centrów badawczych z biznesem?
Jak Big Data rewolucjonizuje naukę oraz współpracę centrów badawczych z biznesem? dr Łukasz Bolikowski ICM, Uniwersytet Warszawski Big Data Summit, 26 listopada 2014 Czwarty paradygmat Cztery paradygmaty
Mariusz Dzieciątko. E-mail: splmdz@spl.sas.com. Krótko o sobie / Personal Overview/
Mariusz Dzieciątko Krótko o sobie / Personal Overview/ Mariusz pracuje jako Business Solution Manager, Technology & Big Data Competency Center w SAS Institute Polska. Pracę w tej firmie rozpoczął w maju
PORTAL GEOSTATYSTYCZNY - GIS jako źródło informacji o terytorium i społeczeństwie
PORTAL GEOSTATYSTYCZNY - GIS jako źródło informacji o terytorium i społeczeństwie Janusz Dygaszewicz Dyrektor Departamentu Programowania i Koordynacji Badań GUS Statystyka publiczna od zawsze lokalizowała
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Metody eksploracji danych Rok akademicki: 2015/2016 Kod: OWT-1-607-s Punkty ECTS: 4 Wydział: Odlewnictwa Kierunek: Wirtotechnologia Specjalność: - Poziom studiów: Studia I stopnia Forma i
Kierunek: Informatyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia
Wydział: Informatyki, Elektroniki i Telekomunikacji Kierunek: Informatyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 217/218 Język wykładowy: Polski Semestr 1 IIN-1-13-s
Laboratorium przez Internet w modelu studiów inżynierskich
Laboratorium przez Internet w modelu studiów inżynierskich Remigiusz Rak Marcin Godziemba-Maliszewski Andrzej Majkowski Adam Jóśko POLITECHNIKA WARSZAWSKA Ośrodek Kształcenia na Odległość Laboratorium
KATEDRA BIOSENSORÓW I PRZETWARZANIA SYGNAŁÓW BIOMEDYCZNYCH
KATEDRA BIOSENSORÓW I PRZETWARZANIA SYGNAŁÓW BIOMEDYCZNYCH TAM GDZIE SYSTEMY INFORMATYCZNE ROZMAWIAJĄ ZE SPRZĘTEM, KOMPLEKSOWE SYSTEMY INFORMATYCZNO-ELEKTRONICZNE, PROGRAMOWANIE WIELOPOZIOMOWE: MATLAB,