Przyrządy i układy mocy studia niestacjonarne, sem. 4 lato 2018/19. dr inż. Łukasz Starzak
|
|
- Wacław Sokołowski
- 5 lat temu
- Przeglądów:
Transkrypt
1 Przyrządy i układy mocy studia niestacjonarne, sem. 4 lato 2018/19 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik Informatycznych http,:// ul. Wólczańska 221/223 bud. B18 pok. 51 http,://neo.dmcs.p.lodz.pl/~starzak http,://neo.dmcs.p.lodz.pl/pium
2 Program zajęć Wykład (4½ 2h, zjazdy 1-5) 1. Przekształcanie energii elektrycznej za pomocą układów elektronicznych 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych 3. Przegląd przyrządów półprzewodnikowych mocy 4. Sterowanie i bezpieczna praca przyrządów półprzewodnikowych mocy 5. Przegląd przekształtników elektronicznych Zaliczenie: kolokwium 1h na ostatnich zajęciach (zjazd 5) Laboratorium (4½ 4h, zjazdy 6-10) 8 ćwiczeń po 2h (zjazdy 6-9) Zaliczenie: kolokwium 1h na ostatnich zajęciach (zjazd 10) Odróbki ćwiczeń, poprawianie, uzupełnianie pomiarów: zjazd 10 Karta przedmiotu: dostępna na http,://programy.p.lodz.pl/ Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 2
3 Literatura Podstawowa Napieralski A., Napieralska M.: Polowe półprzewodnikowe przyrządy dużej mocy. Warszawa: Wydawnictwa Naukowo-Techniczne, Starzak Ł.: Laboratorium przyrządów i układów mocy. Instrukcja 0. Wprowadzenie do elektroniki mocy. Politechnika Łódzka, Laboratorium przyrządów i układów mocy. Ćwiczenie 1, 3A, 4A, 5A, 6. Politechnika Łódzka, Przekształtniki elektroniczne. Ćwiczenie B1p. Politechnika Łódzka, Uzupełniająca Nowak M., Barlik R.: Poradnik inżyniera energoelektronika. Warszawa: Wydawnictwa Naukowo-Techniczne, Marciniak W.: Przyrządy półprzewodnikowe i układy scalone. Warszawa: Wydawnictwa Naukowo-Techniczne, Benda V., Gowar J., Grant D.A.: Power Semiconductor Devices: Theory and Applications. Chichester: Wiley, Sze S.M., Kwok K. Ng: Physics of Semiconductor Devices. Chichester: Wiley, Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 3
4 Część 1 Przekształcanie energii elektrycznej za pomocą układów elektronicznych Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 4
5 Elektronika mocy Elektronika mocy (energoelektronika; power electronics) jest gałęzią elektroniki zajmującą się przekształcaniem energii elektrycznej za pomocą przyrządów elektronicznych w odróżnieniu od elektroniki sygnałowej, która zajmuje się przetwarzaniem sygnałów elektrycznych niosących informację pewna część wspólna z automatyką i elektrotechniką Elektronika przemysłowa (industrial electronics) ogół zagadnień związanych ze sterowaniem procesami przemysłowymi za pomocą układów elektronicznych elektronika mocy sterowniki programowalne (PLC) i komputery przemysłowe sieci transmisji danych robotyka i sztuczna inteligencja akwizycja i przetwarzanie danych niezawodność i testowanie znacząca część wspólna z automatyką, informatyką i telekomunikacją Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 5
6 Elementy i aplikacje elektroniki mocy 10 kluczowych zagadnień wg Institute of Electrical and Electronic Engineers (IEEE) przyrządy półprzewodnikowe mocy układy scalone chłodzenie elementy bierne przekształtniki impulsowe sterowanie silnikami elektrycznymi nowe źródła światła alternatywne źródła energii sterowanie modelowanie Współczesne zastosowania zasilanie sprzętu komputerowego i telekomunikacyjnego instalacje samochodowe trakcja elektryczna zasilanie i sterowanie sprzętu domowego użytku sterowanie silnikami elektrycznymi w instalacjach przemysłowych sterowanie oświetleniem elektryczne systemy zasilania, w tym wykorzystujące alternatywne źródła energii Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 6
7 Energia elektryczna Energia elektryczna to energia związana z wielkościami elektrycznymi ładunek: związana z nim jest siła Coulomba; siła może wykonać pracę, czyli dokonać przekazu energii z ładunkiem elektrycznym związana jest energia napięcie: spoczywające ładunki wytwarzają pole elektryczne, a więc napięcie związana jest z nim energia potencjalna przykład: rozwarty naładowany kondensator prąd: z definicji stanowi uporządkowany ruch ładunków związana jest z nim energia kinetyczna przykład: obwód po przyłączeniu opornika do końcówek naładowanego kondensatora Przekaz energii elektrycznej wymaga: przemieszczenia ładunków, a więc przepływu prądu pola elektrycznego, które wywoła ten ruch ładunków, a więc występowania napięcia W analizie układów mocy należy zawsze uwzględniać obie te wielkości w przeciwieństwie do układów sygnałowych gdzie sygnały są przenoszone przez jedną wielkość, więc drugą często pomija się w analizie Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 7
8 Przekształcanie energii elektrycznej Przekształtnik (zasadniczy rodzaj układu energoelektronicznego) pobiera ze źródła zasilania energię elektryczną, co oznacza przepływ pewnego prądu przy pewnym napięciu, a następnie oddaje do odbiornika energię elektryczną przekształconą, co oznacza przepływ innego prądu przy innym napięciu Przemiana napięcia/prądu może obejmować: występowanie/brak składowej stałej/przemiennej wartość (amplituda, wartość średnia, skuteczna itd.) częstotliwość (składowej przemiennej) kształt (np. prostokątny lub sinusoidalny, stopień odkształcenia) Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 8
9 Moc czynna Moc czynna to wartość średnia mocy chwilowej za jej okres konwencja strzałkowania: jeżeli źródło wydaje energię, to jego p > 0; jeżeli odbiornik pobiera energię, to jego p > 0 Moc chwilowa może zmieniać wartość i znak zmiana kierunku przepływu energii (magazynowanie, zwrot do źródła) Moc czynna odzwierciedla wypadkowy efekt energetyczny w każdym okresie składowej przemiennej Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 9
10 Moc czynna a sprawność przekształtnika Skoro przebiegi są okresowe, to Moc czynna odpowiada energii elektrycznej przetworzonej na inną postać energii (mechaniczną, świetlną, cieplną w tym straty) Sprawność przekształtnika : P c Wartość skuteczna odzwierciedla wypadkową (efektywną) energię, którą może przenieść dany przebieg zmienny w czasie pozwala stosować prawa Ohma i Joule a (oczywiście dla rezystancji) Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 10
11 Moc odbiorników impedancyjnych przy przebiegach przemiennych sinusoidalnych Wartość skuteczna przebiegu przemiennego sinusoidalnego Odbiornik rezystancyjny Odbiornik impedancyjny Moc chwilowa Moc czynna Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 11
12 Współczynnik mocy Jeżeli odbiornik jest zasilany ze źródła napięcia sinusoidalnego U, to aby wydzielić w nim moc P, w obwodzie musi popłynąć prąd o natężeniu: dla odbiornika rezystancyjnego dla odbiornika impedancyjnego I > I, gdyż cos φ < 1 dla φ 0 Różnicę tę opisuje współczynnik mocy Współczynnik mocy mniejszy od 1 jest niekorzystny dla przebiegów sinusoidalnych konieczna większa wydajność prądowa źródeł (generatorów, akumulatorów) konieczna większa obciążalność prądowa elementów obwodu przekazywania i przetwarzania energii (szczególnie magnetycznych, np. transformatorów) większe spadki napięć i moc strat w przewodach (P = I 2 R ; U = I R) większa moc strat i ryzyko nasycenia elementów magnetycznych trzeba je dobierać na moc pozorną, a nie czynną Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 12
13 Moc pozorna i bierna Moc pozorna odzwierciedla moc, jaka mogłaby być wydzielona w odbiorniku, gdyby był on czysto dyssypatywny (rezystancyjny) Jest to całkowita moc, która krąży w obwodzie (jest przekazywana między źródłem a odbiornikiem moc chwilowa p = u i), ale niekoniecznie służy do wykonania pracy, tj. do przemiany energii elektrycznej na inną postać energii (np. mechaniczną, świetlną, cieplną) Moc bierna to moc, która krąży w obwodzie nie będąc przetwarzaną na pracę (niezależnie czy użyteczną, czy straty ciepła) na przykład (ale nie tylko) jest ona na przemian magazynowana i oddawana przez elementy reaktancyjne przy przebiegach sinusoidalnych Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 13
14 Przebiegi niesinusoidalne Rozwinięcie w szereg Fouriera składowa stała z twierdzenia Fouriera składowa przemienna x 1 składowa podstawowa; f = ω/(2π) częstotliwość podstawowa x 2, x 3, składowe harmoniczne również sinusoidalne Wzór Parsevala dla wartości skutecznej dla mocy czynnej Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 14
15 Układy o działaniu ciągłym (linear-mode) Sygnały sterujące zmieniają się w sposób ciągły mogą przyjmować dowolne wartości punkt pracy w centralnej części charakterystyki stanu przewodzenia Współczesne zastosowania Zalety Wady niektóre wzmacniacze (np. klasy A) niektóre stabilizatory (liniowe) bezpośrednio wytwarzają przebiegi stałe i n.cz. nie generują zaburzeń proste sterowanie duże straty mocy p c,max : p c,min =0: Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 15
16 Układy o działaniu przełączającym (switched-mode) Sygnał sterujący zmienia się cyklicznie i skokowo, przyjmując na przemian skrajne wartości t cond Zalety na przemian pełne wyłączenie i załączenie przełączanie zmiana drogi przepływu, tj. przełączanie prądu do innej gałęzi, czy też przełączanie efektywnej topologii układu t on t off t b Wady bardzo małe straty mocy (nawet rzędu 0,1%) konieczność filtracji przebiegu użytecznego (przepustowej) i zaburzeń (zaporowej) cond b cond b cond t on + t off b b b Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 16
17 Przyrząd półprzewodnikowy jako łącznik idealny i rzeczywisty Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 17
18 Wymuszenie a odpowiedź łącznika W stanie załączenia układ zewnętrzny narzuca prąd łącznika spadek potencjału na łączniku wynika z jego niezerowej rezystancji W stanie wyłączenia układ zewnętrzny narzuca napięcie na łączniku prąd płynący przez łącznik wynika z jego skończonej rezystancji Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 18
19 Przykład układ obniżający napięcie Przekształtnik elektromechaniczny Założenia U i = 20 V U o = 10 V I o = 1 A R L = U o / I o = 10 Ω η = 0,5 Przekształtnik elektroniczny o działaniu ciągłym Przekształtnik elektroniczny o działaniu przełączającym η = 0,5 Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 19
20 Parametry przebiegów impulsowych okres powtarzania T p (period) częstotliwość powtarzania f p (frequency) f p = 1 / T p czas trwania impulsu t p (pulse width) współczynnik wypełnienia D (duty cycle) D = t p / T p poziom niski X L (low level) poziom wysoki X H (high level) amplituda X m (amplitude) czas narastania t r (rise time) czas opadania t f (fall time) Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 20
21 Przykład cd. t on = 0,5 µs t off = 0,5 µs 9,5 W t cond = 4,5 µs t b = 4,5 µs Założenia dodatkowe f s = f p = 100 khz T s = 10 µs D = 0,5 t p = 0,5 T p = 5 µs Parametry tranzystora jako łącznika U on = 1 V I off = 0 A t on = t off = 0,5 µs t cond = t b = 4,5 µs η = 0,92 Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 21
22 Energia strat dynamicznych w tranzystorze (obciążenie rezystancyjne) 0 t r Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 22
Przyrządy i układy mocy studia niestacjonarne, sem. 4 lato 2016/17. dr inż. Łukasz Starzak
Przyrządy i układy mocy studia niestacjonarne, sem. 4 lato 2016/17 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik
Bardziej szczegółowoPrzyrządy i układy mocy studia niestacjonarne, sem. 4 lato 2017/18. dr inż. Łukasz Starzak
Przyrządy i układy mocy studia niestacjonarne, sem. 4 lato 2017/18 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik
Bardziej szczegółowodr inż. Łukasz Starzak
Przyrządy półprzewodnikowe mocy Mechatronika, studia niestacjonarne, sem. 5 zima 2015/16 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra
Bardziej szczegółowoCzęść 1. Przekształtniki elektroniczne
Część 1 Przekształtniki elektroniczne Elektronika mocy Elektronika mocy (energoelektronika; power electronics) jest gałęzią elektroniki zajmującą się przekształcaniem energii elektrycznej za pomocą przyrządów
Bardziej szczegółowoPodzespoły i układy scalone mocy część II
Podzespoły i układy scalone mocy część II dr inż. Łukasz Starzak Katedra Mikroelektroniki Technik Informatycznych ul. Wólczańska 221/223 bud. B18 pok. 51 http://neo.dmcs.p.lodz.pl/~starzak http://neo.dmcs.p.lodz.pl/uep
Bardziej szczegółowoANALOGOWE I MIESZANE STEROWNIKI PRZETWORNIC. Ćwiczenie 3. Przetwornica podwyższająca napięcie Symulacje analogowego układu sterowania
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
Bardziej szczegółowoPrzetwarzanie energii elektrycznej w fotowoltaice lato 2015/16. dr inż. Łukasz Starzak
Przetwarzanie energii elektrycznej w fotowoltaice lato 2015/16 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik
Bardziej szczegółowoElektroniczne Systemy Przetwarzania Energii
Elektroniczne Systemy Przetwarzania Energii Zagadnienia ogólne Przedmiot dotyczy zagadnień Energoelektroniki - dyscypliny na pograniczu Elektrotechniki i Elektroniki. Elektrotechnika zajmuje się: przetwarzaniem
Bardziej szczegółowoLekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego.
Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. 1. Moc odbiorników prądu stałego Prąd płynący przez odbiornik powoduje wydzielanie się określonej
Bardziej szczegółowoPrzerywacz napięcia stałego
Przerywacz napięcia stałego Efektywna topologia układu zmienia się w zależności od stanu łącznika Łukasz Starzak, Przyrządy i układy mocy, lato 2018/19 1 Napięcie wyjściowe przerywacza prądu stałego Przełączanie
Bardziej szczegółowoDobór współczynnika modulacji częstotliwości
Dobór współczynnika modulacji częstotliwości Im większe mf, tym wyżej położone harmoniczne wyższe częstotliwości mniejsze elementy bierne filtru większy odstęp od f1 łatwiejsza realizacja filtru dp. o
Bardziej szczegółowoĆwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
Bardziej szczegółowoElektrotechnika Electrical Engineering
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Bardziej szczegółowoTeoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści
Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, 2013 Spis treści Słowo wstępne 8 Wymagania egzaminacyjne 9 Wykaz symboli graficznych 10 Lekcja 1. Podstawowe prawa
Bardziej szczegółowoWłaściwości tranzystora MOSFET jako przyrządu (klucza) mocy
Właściwości tranzystora MOSFET jako przyrządu (klucza) mocy Zalety sterowanie polowe niska moc sterowania wyłącznie nośniki większościowe krótki czas przełączania wysoka maksymalna częstotliwość pracy
Bardziej szczegółowo12. Zasilacze. standardy sieci niskiego napięcia tj. sieci dostarczającej energię do odbiorców indywidualnych
. Zasilacze Wojciech Wawrzyński Wykład z przedmiotu Podstawy Elektroniki - wykład Zasilacz jest to urządzenie, którego zadaniem jest przekształcanie napięcia zmiennego na napięcie stałe o odpowiednich
Bardziej szczegółowoWydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki
Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Na podstawie instrukcji Wtórniki Napięcia,, Laboratorium układów Elektronicznych Opis badanych układów Spis Treści 1. CEL ĆWICZENIA... 2 2.
Bardziej szczegółowoCzęść 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51
Część 3 Przegląd przyrządów półprzewodnikowych mocy Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51 Budowa przyrządów półprzewodnikowych Struktura składa się z warstw Warstwa
Bardziej szczegółowoOdbiór energii z modułu fotowoltaicznego
Odbiór energii z modułu fotowoltaicznego Charakterystyki pracy typowych odbiorników biernych są w większości nieoptymalne dla poboru energii z ogniw fotowoltaicznych Dopasowanie obciążenia: przełączanie
Bardziej szczegółowoPodstawy Elektroniki dla Informatyki. Tranzystory unipolarne MOS
AGH Katedra Elektroniki Podstawy Elektroniki dla Informatyki Tranzystory unipolarne MOS Ćwiczenie 3 2014 r. 1 1. Wstęp. Celem ćwiczenia jest zapoznanie się z działaniem i zastosowaniami tranzystora unipolarnego
Bardziej szczegółowo12.7 Sprawdzenie wiadomości 225
Od autora 8 1. Prąd elektryczny 9 1.1 Budowa materii 9 1.2 Przewodnictwo elektryczne materii 12 1.3 Prąd elektryczny i jego parametry 13 1.3.1 Pojęcie prądu elektrycznego 13 1.3.2 Parametry prądu 15 1.4
Bardziej szczegółowoELEKTRONICZNE UKŁADY STEROWANIA NASTAWNIKÓW. Ćwiczenie 1 (C11c) Przetwornica prądu stałego o działaniu ciągłym (liniowy stabilizator napięcia)
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
Bardziej szczegółowoStabilizatory impulsowe
POITECHNIKA BIAŁOSTOCKA Temat i plan wykładu WYDZIAŁ EEKTRYCZNY Jakub Dawidziuk Stabilizatory impulsowe 1. Wprowadzenie 2. Podstawowe parametry i układy pracy 3. Przekształtnik obniżający 4. Przekształtnik
Bardziej szczegółowoIMPULSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM
Instrukcja do ćwiczenia laboratoryjnego. IMPSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM Przekształtnik impulsowy z tranzystorem szeregowym słuŝy do przetwarzania energii prądu jednokierunkowego
Bardziej szczegółowoPrąd przemienny - wprowadzenie
Prąd przemienny - wprowadzenie Prądem zmiennym nazywa się wszelkie prądy elektryczne, dla których zależność natężenia prądu od czasu nie jest funkcją stałą. Zmienność ta może związana również ze zmianą
Bardziej szczegółowo11. Wzmacniacze mocy. Klasy pracy tranzystora we wzmacniaczach mocy. - kąt przepływu
11. Wzmacniacze mocy 1 Wzmacniacze mocy są układami elektronicznymi, których zadaniem jest dostarczenie do obciążenia wymaganej (na ogół dużej) mocy wyjściowej przy możliwie dużej sprawności i małych zniekształceniach
Bardziej szczegółowoGdy wzmacniacz dostarcz do obciążenia znaczącą moc, mówimy o wzmacniaczu mocy. Takim obciążeniem mogą być na przykład...
Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Gdy wzmacniacz dostarcz do obciążenia znaczącą moc, mówimy
Bardziej szczegółowoElementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści
Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, 2015 Spis treści Przedmowa 7 Wstęp 9 1. PODSTAWY ELEKTROTECHNIKI 11 1.1. Prąd stały 11 1.1.1. Podstawowe
Bardziej szczegółowoRys. 1. Przebieg napięcia u D na diodzie D
Zadanie 7. Zaprojektować przekształtnik DC-DC obniżający napięcie tak, aby mógł on zasilić odbiornik o charakterze rezystancyjnym R =,5 i mocy P = 10 W. Napięcie zasilające = 10 V. Częstotliwość przełączania
Bardziej szczegółowoPrzetwarzanie energii elektrycznej w fotowoltaice. Ćwiczenie 12 Metody sterowania falowników
Przetwarzanie energii elektrycznej w fotowoltaice Ćwiczenie 12 Metody sterowania falowników wer. 1.1.2, 2016 opracowanie: Łukasz Starzak Politechnika Łódzka, Katedra Mikroelektroniki i Technik Informatycznych
Bardziej szczegółowoPolitechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki
Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Temat ćwiczenia: Przetwornica impulsowa DC-DC typu boost
Bardziej szczegółowoRok akademicki: 2013/2014 Kod: EEL s Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Elektronika przemysłowa Rok akademicki: 2013/2014 Kod: EEL-1-513-s Punkty ECTS: 4 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika Specjalność:
Bardziej szczegółowoPodstawy Elektroniki dla Tele-Informatyki. Tranzystory unipolarne MOS
AGH Katedra Elektroniki Podstawy Elektroniki dla Tele-Informatyki Tranzystory unipolarne MOS Ćwiczenie 4 2014 r. 1. Wstęp. Celem ćwiczenia jest zapoznanie się z działaniem i zastosowaniami tranzystora
Bardziej szczegółowoPrzekształtniki napięcia stałego na stałe
Przekształtniki napięcia stałego na stałe Buck converter S 1 łącznik w pełni sterowalny, przewodzi prąd ze źródła zasilania do odbiornika S 2 łącznik diodowy zwiera prąd odbiornika przy otwartym S 1 U
Bardziej szczegółowoĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI
1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności
Bardziej szczegółowoWzornictwo Przemysłowe I stopień ogólnoakademicki studia stacjonarne wszystkie specjalności Katedra Automatyki i Robotyki Dr inż.
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Podstawy Elektrotechniki i Elektroniki Nazwa modułu w języku angielskim Fundamentals
Bardziej szczegółowoMiernictwo I INF Wykład 13 dr Adam Polak
Miernictwo I INF Wykład 13 dr Adam Polak ~ 1 ~ I. Właściwości elementów biernych A. Charakterystyki elementów biernych 1. Rezystor idealny (brak przesunięcia fazowego między napięciem a prądem) brak części
Bardziej szczegółowoBadanie układów prostowniczych
Instrukcja do ćwiczenia: Badanie układów prostowniczych (wersja robocza) Laboratorium Elektroenergetyki 1 1. Cel ćwiczenia Poznanie budowy, zasady działania i właściwości podstawowych układów elektronicznych,
Bardziej szczegółowoKARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne I. 1 Nazwa modułu kształcenia Podstawy elektrotechniki i elektroniki I 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej
Bardziej szczegółowoPAKIET INFORMACYJNY - informacje uzupełniające
Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski PAKIET INFORMACYJNY - informacje uzupełniające Kierunek: ELEKTROTECHNIKA studia inŝynierskie I stopnia Rok akademicki 2011/2012
Bardziej szczegółowoPolitechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 TRANZYSTORY JAKO ELEMENTY DWUSTANOWE BIAŁYSTOK
Bardziej szczegółowoPrzetwornica mostkowa (full-bridge)
Przetwornica mostkowa (full-bridge) Należy do grupy pochodnych od obniżającej identyczny (częściowo podwojony) podobwód wyjściowy Transformator można rozpatrywać jako 3-uzwojeniowy (1:n:n) oba uzwojenia
Bardziej szczegółowoWykaz symboli, oznaczeń i skrótów
Wykaz symboli, oznaczeń i skrótów Symbole a a 1 operator obrotu podstawowej zmiennych stanu a 1 podstawowej uśrednionych zmiennych stanu b 1 podstawowej zmiennych stanu b 1 A A i A A i, j B B i cosφ 1
Bardziej szczegółowoŹródła zasilania i parametry przebiegu zmiennego
POLIECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGEYKI INSYU MASZYN I URZĄDZEŃ ENERGEYCZNYCH LABORAORIUM ELEKRYCZNE Źródła zasilania i parametry przebiegu zmiennego (E 1) Opracował: Dr inż. Włodzimierz
Bardziej szczegółowoPytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych
Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 1 Podstawy metrologii 1. Model matematyczny pomiaru. 2. Wzorce jednostek miar. 3. Błąd pomiaru.
Bardziej szczegółowoR 1 = 20 V J = 4,0 A R 1 = 5,0 Ω R 2 = 3,0 Ω X L = 6,0 Ω X C = 2,5 Ω. Rys. 1.
EROELEKR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 9/ Rozwiązania zadań dla grupy elektrycznej na zawody stopnia adanie nr (autor dr inŝ. Eugeniusz RoŜnowski) Stosując twierdzenie
Bardziej szczegółowoOBSZARY BADAŃ NAUKOWYCH
OBSZARY BADAŃ NAUKOWYCH WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI OKRĘTOWEJ SYSTEMY MODUŁOWYCH PRZEKSZTAŁTNIKÓW DUŻEJ MOCY INTEGROWANYCH MAGNETYCZNIE Opracowanie i weryfikacja nowej koncepcji przekształtników
Bardziej szczegółowoTechnik mechatronik modułowy
M1. Wprowadzenie do mechatroniki Technik mechatronik modułowy Klasa 1 5 godz./tyg. 5 x 30 tyg. = 150 godz. Rozkład zajęć lekcyjnych M1. J1 Przestrzeganie przepisów bezpieczeństwa i higieny pracy w mechatronice
Bardziej szczegółowoSterowane źródło mocy
Sterowane źródło mocy Iloczyn prądu i napięcia jest zawsze proporcjonalny (równy) do pewnej mocy p Źródła tego typu nie mogą być zwarte ani rozwarte Moc ujemna pochłanianie mocy W rozważanym podobwodzie
Bardziej szczegółowoAiR_E_1/1 Elektrotechnika Electrical Engineering
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Bardziej szczegółowoElektrotechnika teoretyczna
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie RYSZARD SIKORA TOMASZ CHADY PRZEMYSŁAW ŁOPATO GRZEGORZ PSUJ Elektrotechnika teoretyczna Szczecin 2016 Spis treści Spis najważniejszych oznaczeń...
Bardziej szczegółowoĆwiczenie 2b. Pomiar napięcia i prądu z izolacją galwaniczną Symulacje układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
Bardziej szczegółowoAnaliza ustalonego punktu pracy dla układu zamkniętego
Analiza ustalonego punktu pracy dla układu zamkniętego W tym przypadku oznacza stałą odchyłkę od ustalonego punktu pracy element SUM element DIFF napięcie odniesienia V ref napięcie uchybu V e V ref HV
Bardziej szczegółowoPytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych
Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 0 Podstawy metrologii 1. Model matematyczny pomiaru. 2. Wzorce jednostek miar. 3. Błąd pomiaru.
Bardziej szczegółowoElektrotechnika I stopień ogólnoakademicki. stacjonarne. przedmiot wspólny Katedra Energoelektroniki Dr inż. Jerzy Morawski. przedmiot kierunkowy
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Podstawy Energoelektroniki 1 Basics of Power Electronics Nazwa modułu w języku
Bardziej szczegółowoIndukcja wzajemna. Transformator. dr inż. Romuald Kędzierski
Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala
Bardziej szczegółowoOśrodek Egzaminowania Technik mechatronik
Ośrodek Egzaminowania Technik mechatronik Wykaz ćwiczeń realizowanych w Pracowni Urządzeń Mechatronicznych Nr ćwiczenia 1. Temat Badanie odpowiedzi skokowej członów elektrycznych 2. Badanie pneumatycznej
Bardziej szczegółowoELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH
Politechnika Warszawska Wydział Elektryczny ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH Piotr Grzejszczak Mieczysław Nowak P W Instytut Sterowania i Elektroniki Przemysłowej 2015 Wiadomości ogólne Tranzystor
Bardziej szczegółowoĆ w i c z e n i e 1 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH
Ć w i c z e n i e 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH. Wiadomości ogólne Prostowniki są to urządzenia przetwarzające prąd przemienny na jednokierunkowy. Prostowniki stosowane są m.in. do ładowania akumulatorów,
Bardziej szczegółowoCzęść 2. Sterowanie fazowe
Część 2 Sterowanie fazowe Sterownik fazowy prądu przemiennego (AC phase controller) Prąd w obwodzie triak wyłączony: i = 0 triak załączony: i = ui / RL Zmiana kąta opóźnienia załączania θz powoduje zmianę
Bardziej szczegółowoBADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO
Ćwiczenie 11 BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO 11.1 Cel ćwiczenia Celem ćwiczenia jest poznanie rodzajów, budowy i właściwości przerzutników astabilnych, monostabilnych oraz
Bardziej szczegółowoEnergoelektronika Cyfrowa
Energoelektronika Cyfrowa dr inż. Maciej Piotrowicz Katedra Mikroelektroniki i Technik Informatycznych PŁ piotrowi@dmcs.p.lodz.pl http://fiona.dmcs.pl/~piotrowi -> Energoelektr... Energoelektronika Dziedzina
Bardziej szczegółowoSterowanie przekształtników elektronicznych zima 2011/12
Sterowanie przekształtników elektronicznych zima 2011/12 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik Informatycznych
Bardziej szczegółowo7 Dodatek II Ogólna teoria prądu przemiennego
7 Dodatek II Ogólna teoria prądu przemiennego AC (ang. Alternating Current) oznacza naprzemienne zmiany natężenia prądu i jest symbolizowane przez znak ~. Te zmiany dotyczą zarówno amplitudy jak i kierunku
Bardziej szczegółowoProstowniki. Prostownik jednopołówkowy
Prostowniki Prostownik jednopołówkowy Prostownikiem jednopołówkowym nazywamy taki prostownik, w którym po procesie prostowania pozostają tylko te części przebiegu, które są jednego znaku a części przeciwnego
Bardziej szczegółowoLaboratorium Podstaw Elektroniki. Badanie przekształtnika podwyższającego napięcie. Opracował: dr inż. Rafał Korupczyński
Laboratorium Podstaw Elektroniki Badanie przekształtnika podwyższającego napięcie Opracował: dr inż. Rafał Korupczyński Zakład Gospodarki Energetycznej, Katedra Podstaw Inżynierii.Cel ćwiczenia Celem ćwiczenia
Bardziej szczegółowoCzęść 4. Zmiana wartości napięcia stałego. Stabilizatory liniowe Przetwornice transformatorowe
Część 4 Zmiana wartości napięcia stałego Stabilizatory liniowe Przetwornice transformatorowe Bloki wyjściowe systemów fotowoltaicznych Systemy nie wymagające znaczącego podwyższania napięcia wyjście DC
Bardziej szczegółowoPolitechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES
Bardziej szczegółowoMiBM_E_1/1 Elektrotechnika Electrical Engineering
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Bardziej szczegółowoPodstawy fizyki sezon 2 7. Układy elektryczne RLC
Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC
Bardziej szczegółowoEUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015
EROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 014/015 Zadania z elektrotechniki na zawody II stopnia (grupa elektryczna) Zadanie 1 W układzie jak na rysunku 1 dane są:,
Bardziej szczegółowoĆwiczenie 1b. Silnik prądu stałego jako element wykonawczy Modelowanie i symulacja napędu CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
Bardziej szczegółowoCzęść 2. Odbiór energii z modułów fotowoltaicznych. Przetwornice prądu stałego Śledzenie punktu mocy maksymalnej
Część 2 Odbiór energii z modułów fotowoltaicznych Przetwornice prądu stałego Śledzenie punktu mocy maksymalnej Zmiana charakterystyk U-I pod wpływem nasłonecznienia i temperatury 2 Dobowa dynamika zmian
Bardziej szczegółowoPrzegląd półprzewodnikowych przyrządów mocy
Przegląd półprzewodnikowych przyrządów mocy Rozwój przyrządów siłą napędową energoelektroniki Najważniejsze: zdolność do przetwarzania wielkich mocy (napięcia i prądy znamionowe), szybkość przełączeń,
Bardziej szczegółowoI. Cel ćwiczenia: Poznanie własności obwodu szeregowego zawierającego elementy R, L, C.
espół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYNA EEKTONNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE SEEGOWEGO OBWOD rok szkolny klasa grupa data wykonania. el ćwiczenia:
Bardziej szczegółowoImpulsowe przekształtniki napięcia stałego. Włodzimierz Janke Katedra Elektroniki, Zespół Energoelektroniki
Impulsowe przekształtniki napięcia stałego Włodzimierz Janke Katedra Elektroniki, Zespół Energoelektroniki 1 1. Wstęp 2. Urządzenia do przetwarzanie energii elektrycznej 3. Problemy symulacji i projektowania
Bardziej szczegółowoPRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
Bardziej szczegółowoWykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE
Bardziej szczegółowoPorównanie uzysku energetycznego z użyciem falownika centralnego i mikrofalowników
Porównanie uzysku energetycznego z użyciem falownika centralnego i mikrofalowników mikrofalowniki falownik centralny wzorzec National Renewable Energy Laboratory (USA) 40 Główne grupy rozwiązań falowników
Bardziej szczegółowoWielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny
prąd stały (DC) prąd elektryczny zmienny okresowo prąd zmienny (AC) zmienny bezokresowo Wielkości opisujące sygnały okresowe Wartość chwilowa wartość, jaką sygnał przyjmuje w danej chwili: x x(t) Wartość
Bardziej szczegółowoCzęść 5. Mieszane analogowo-cyfrowe układy sterowania
Część 5 Mieszane analogowo-cyfrowe układy sterowania Korzyści z cyfrowego sterowania przekształtników Zmniejszenie liczby elementów i wymiarów układu obwody sterowania, zabezpieczeń, pomiaru, kompensacji
Bardziej szczegółowoII prawo Kirchhoffa Obwód RC Obwód RC Obwód RC
II prawo Kirchhoffa algebraiczna suma zmian potencjału napotykanych przy pełnym obejściu dowolnego oczka jest równa zeru klucz zwarty w punkcie a - ładowanie kondensatora równanie ładowania Fizyka ogólna
Bardziej szczegółowoWstęp. Doświadczenia. 1 Pomiar oporności z użyciem omomierza multimetru
Wstęp Celem ćwiczenia jest zaznajomienie się z podstawowymi przyrządami takimi jak: multimetr, oscyloskop, zasilacz i generator. Poznane zostaną również podstawowe prawa fizyczne a także metody opracowywania
Bardziej szczegółowoCyfrowe sterowanie przekształtników impulsowych lato 2012/13
Cyfrowe sterowanie przekształtników impulsowych lato 2012/13 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik
Bardziej szczegółowoZastosowania nieliniowe wzmacniaczy operacyjnych
UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Zastosowania nieliniowe wzmacniaczy operacyjnych Laboratorium Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest
Bardziej szczegółowoPRZEŁĄCZANIE DIOD I TRANZYSTORÓW
L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE PRZEŁĄCZANIE DIOD I TRANZYSTORÓW REV. 1.1 1. CEL ĆWICZENIA - obserwacja pracy diod i tranzystorów podczas przełączania, - pomiary charakterystycznych czasów
Bardziej szczegółowoWZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO
Mirosław KAŹMIERSKI Okręgowy Urząd Miar w Łodzi 90-132 Łódź, ul. Narutowicza 75 oum.lodz.w3@gum.gov.pl WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1. Wstęp Konieczność
Bardziej szczegółowoZasilacze: Prostowniki niesterowane, prostowniki sterowane
Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych Ciężkich Politechnika Warszawska Laboratorium Elektrotechniki i Elektroniki Ćwiczenie E1 - instrukcja Zasilacze: Prostowniki niesterowane, prostowniki
Bardziej szczegółowoMotywacje stosowania impulsowych przetwornic transformatorowych wysokiej częstotliwości
Motywacje stosowania impulsowych przetwornic transformatorowych wysokiej częstotliwości Podwyższenie napięcia w dużym stosunku (> 2 5) przy wysokiej η dzięki transformatorowi Zmniejszenie obciążeń prądowych
Bardziej szczegółowoLABORATORIUM PODSTAWY ELEKTROTECHNIKI
LABORATORIUM PODSTAWY ELEKTROTECHNIKI CHARAKTERYSTYKI TRANSFORMATORA JEDNOFAZOWEGO Badanie właściwości transformatora jednofazowego. Celem ćwiczenia jest poznanie budowy oraz wyznaczenie charakterystyk
Bardziej szczegółowoImpedancje i moce odbiorników prądu zmiennego
POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Impedancje i moce odbiorników prądu zmiennego (E 6) Opracował: Dr inż.
Bardziej szczegółowoPracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości
Bardziej szczegółowoWykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu
Wykład 7 7. Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu M d x kx Rozwiązania x = Acost v = dx/ =-Asint a = d x/ = A cost przy warunku = (k/m) 1/. Obwód
Bardziej szczegółowo42 Przekształtniki napięcia stałego na napięcie przemienne topologia falownika napięcia, sterowanie PWM
42 Przekształtniki napięcia stałego na napięcie przemienne topologia falownika napięcia, sterowanie PWM Falownikami nazywamy urządzenia energoelektroniczne, których zadaniem jest przetwarzanie prądów i
Bardziej szczegółowoCzęść 4. Zagadnienia szczególne
Część 4 Zagadnienia szczególne a. Tryb nieciągłego prądu dławika Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 2011/12 1 Model przetwornicy w trybie nieciągłego prądu DC DC+AC Napięcie
Bardziej szczegółowoPodstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 1 Podstawowe prawa obwodów elektrycznych Prąd elektryczny definicja fizyczna Prąd elektryczny powstaje jako uporządkowany ruch
Bardziej szczegółowoXXXIV OOwEE - Kraków 2011 Grupa Elektryczna
1. Przed zamknięciem wyłącznika prąd I = 9A. Po zamknięciu wyłącznika będzie a) I = 27A b) I = 18A c) I = 13,5A d) I = 6A 2. Prąd I jest równy a) 0,5A b) 0 c) 1A d) 1A 3. Woltomierz wskazuje 10V. W takim
Bardziej szczegółowoPytania egzaminacyjne dla Kierunku Elektrotechnika. studia II stopnia stacjonarne i niestacjonarne
A. Pytania wspólne dla Kierunku Pytania egzaminacyjne dla Kierunku Elektrotechnika studia II stopnia stacjonarne i niestacjonarne 1. Metody analizy nieliniowych obwodów elektrycznych. 2. Obwód elektryczny
Bardziej szczegółowoDANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika.
Zadanie 4. Prostownik mostkowy 6-pulsowy z tyrystorami idealnymi o komutacji natychmiastowej zasilany z sieci 3 400 V, 50 Hz pracuje z kątem opóźnienia załączenia tyrystorów α = 60º. Obciążenie prostownika
Bardziej szczegółowoPolitechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 (EZ1C500 055) BADANIE DIOD I TRANZYSTORÓW Białystok 2006
Bardziej szczegółowo