Część 1. Przekształtniki elektroniczne
|
|
- Amelia Filipiak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Część 1 Przekształtniki elektroniczne
2 Elektronika mocy Elektronika mocy (energoelektronika; power electronics) jest gałęzią elektroniki zajmującą się przekształcaniem energii elektrycznej za pomocą przyrządów elektronicznych w odróżnieniu od elektroniki sygnałowej, która zajmuje się przetwarzaniem sygnałów elektrycznych niosących informację Elektronika przemysłowa (industrial electronics) ogół zagadnień związanych ze sterowaniem procesami przemysłowymi za pomocą układów elektronicznych pewna część wspólna z automatyką i elektrotechniką elektronika mocy sterowniki programowalne (PLC) i komputery przemysłowe sieci transmisji danych robotyka i sztuczna inteligencja akwizycja i przetwarzanie danych niezawodność i testowanie znacząca część wspólna z automatyką, informatyką i telekomunikacją 2
3 Elementy i aplikacje elektroniki mocy 10 kluczowych zagadnień wg Institute of Electrical and Electronic Engineers (IEEE) przyrządy półprzewodnikowe mocy układy scalone chłodzenie elementy bierne przekształtniki impulsowe sterowanie silnikami elektrycznymi nowe źródła światła alternatywne źródła energii sterowanie modelowanie Współczesne zastosowania zasilanie sprzętu komputerowego i telekomunikacyjnego instalacje samochodowe trakcja elektryczna zasilanie i sterowanie sprzętu domowego użytku sterowanie silnikami elektrycznymi w instalacjach przemysłowych sterowanie oświetleniem elektryczne systemy zasilania, w tym wykorzystujące alternatywne źródła energii 3
4 Energia elektryczna Energia elektryczna to energia związana z wielkościami elektrycznymi ładunek: związana z nim jest siła Coulomba; siła może wykonać pracę, czyli dokonać przekazu energii z ładunkiem elektrycznym związana jest energia napięcie: spoczywające ładunki wytwarzają pole elektryczne, a więc napięcie związana jest z nim energia potencjalna przykład: rozwarty naładowany kondensator prąd: z definicji stanowi uporządkowany ruch ładunków związana jest z nim energia kinetyczna przykład: obwód po przyłączeniu opornika do końcówek naładowanego kondensatora Przekaz energii elektrycznej wymaga: przemieszczenia ładunków, a więc przepływu prądu pola elektrycznego, które wywoła ten ruch ładunków, a więc występowania napięcia 4
5 Przekształcanie energii elektrycznej Przekształtnik (zasadniczy rodzaj układu energoelektronicznego) pobiera ze źródła zasilania energię elektryczną, co oznacza przepływ pewnego prądu przy pewnym napięciu, a następnie oddaje do odbiornika energię elektryczną przekształconą, co oznacza przepływ innego prądu przy innym napięciu Przemiana napięcia/prądu może obejmować: występowanie/brak składowej stałej/przemiennej wartość (amplituda, wartość średnia, skuteczna itd.) częstotliwość (składowej przemiennej) kształt (np. prostokątny lub sinusoidalny, stopień odkształcenia) 5
6 Moc czynna Moc czynna to wartość średnia mocy chwilowej za jej okres Moc chwilowa może zmieniać wartość i znak konwencja strzałkowania: jeżeli źródło wydaje energię, to jego p > 0; jeżeli odbiornik pobiera energię, to jego p > 0 zmiana kierunku przepływu energii (magazynowanie, zwrot do źródła) Moc czynna odzwierciedla wypadkowy efekt energetyczny w każdym okresie składowej przemiennej 6
7 Zastosowania mocy czynnej Skoro przebiegi są okresowe, to : Energii elektrycznej przetworzonej na inną postać energii (mechaniczną, świetlną, cieplną w tym straty) odpowiada moc czynna Sprawność przekształtnika Pc Wartość skuteczna odzwierciedla wypadkową (efektywną) energię, którą może przenieść dany przebieg zmienny w czasie pozwala stosować prawa Ohma i Joule a (oczywiście dla rezystancji) 7
8 Moc odbiorników impedancyjnych przy przebiegach przemiennych sinusoidalnych Wartość skuteczna przebiegu przemiennego sinusoidalnego Odbiornik rezystancyjny Odbiornik impedancyjny Moc chwilowa Moc czynna 8
9 Współczynnik mocy Jeżeli odbiornik jest zasilany ze źródła napięcia sinusoidalnego U, to aby wydzielić w nim moc P, w obwodzie musi popłynąć prąd o natężeniu: dla odbiornika rezystancyjnego I > I, gdyż cos φ < 1 dla φ 0 dla odbiornika impedancyjnego Różnicę tę opisuje współczynnik mocy dla przebiegów sinusoidalnych Współczynnik mocy mniejszy od 1 jest niekorzystny konieczna większa wydajność prądowa źródeł (generatorów, akumulatorów) konieczna większa obciążalność prądowa elementów obwodu przekazywania i przetwarzania energii (szczególnie magnetycznych, np. transformatorów) większe spadki napięć i moc strat w przewodach (P = I 2 R ; U = I R) większa moc strat i ryzyko nasycenia elementów magnetycznych trzeba je dobierać na moc pozorną, a nie czynną 9
10 Moc pozorna i bierna Moc pozorna odzwierciedla moc, jaka mogłaby być wydzielona w odbiorniku, gdyby był on czysto dyssypatywny (rezystancyjny) Jest to całkowita moc, która krąży w obwodzie (jest przekazywana między źródłem a odbiornikiem moc chwilowa p = u i), ale niekoniecznie służy do wykonania pracy, tj. do przemiany energii elektrycznej na inną postać energii (np. mechaniczną, świetlną, cieplną) Moc bierna to moc, która krąży w obwodzie nie będąc przetwarzaną na pracę (niezależnie czy użyteczną, czy straty ciepła) na przykład (ale nie tylko) jest ona na przemian magazynowana i oddawana przez elementy reaktancyjne przy przebiegach sinusoidalnych 10
11 Przebiegi niesinusoidalne Rozwinięcie w szereg Fouriera składowa stała z twierdzenia Fouriera składowa przemienna x1 składowa podstawowa; f = ω/(2π) częstotliwość podstawowa x2, x3, składowe harmoniczne również sinusoidalne Wzór Parsevala dla wartości skutecznej dla mocy czynnej 11
12 Układy o działaniu ciągłym (linear mode) Sygnały sterujące zmieniają się w sposób ciągły mogą przyjmować dowolne wartości Współczesne zastosowania niektóre wzmacniacze (np. klasy A) niektóre stabilizatory (liniowe) Zalety punkt pracy w centralnej części charakterystyki stanu przewodzenia bezpośrednio wytwarzają przebiegi stałe i n.cz. nie generują zaburzeń proste sterowanie Wady duże straty mocy pc,max: pc,min=0: 12
13 Układy o działaniu przełączającym (switched-mode) Sygnał sterujący zmienia się cyklicznie i skokowo, przyjmując na przemian skrajne wartości na przemian pełne wyłączenie i załączenie przełączanie zmiana drogi przepływu, tj. przełączanie prądu do innej gałęzi, czy też przełączanie efektywnej topologii układu ton toff tb Zalety tcond bardzo małe straty mocy (nawet rzędu <1%) cond Wady konieczność filtracji przebiegu użytecznego (przepustowej) i zaburzeń (zaporowej) b cond ton+ toff b b b cond b 13
14 Przyrząd półprzewodnikowy jako łącznik idealny i rzeczywisty 14
15 Wymuszenie a odpowiedź łącznika W stanie załączenia układ zewnętrzny narzuca prąd łącznika spadek potencjału na łączniku wynika z jego niezerowej rezystancji W stanie wyłączenia układ zewnętrzny narzuca napięcie na łączniku prąd płynący przez łącznik wynika z jego skończonej rezystancji 15
16 Przykład układ obniżający napięcie Przekształtnik elektromechaniczny Założenia Ui = 20 V Uo = 10 V Io = 1 A RL = Uo / Io = 10 Ω η = 0,5 Przekształtnik elektroniczny o działaniu ciągłym Przekształtnik elektroniczny o działaniu przełączającym η = 0,5 16
17 Parametry przebiegów impulsowych okres powtarzania Tp (period) częstotliwość powtarzania fp (frequency) f p = 1 / Tp czas trwania impulsu tp (pulse width) współczynnik wypełnienia D (duty cycle) D = tp / Tp poziom niski XL (low level) poziom wysoki XH (high level) amplituda Xm (amplitude) czas narastania tr (rise time) czas opadania tf (fall time) 17
18 Przykład cd. ton = 0,5 µs toff = 0,5 µs tcond = 4,5 µs tb = 4,5 µs 9,5 W Założenia dodatkowe fs = fp = 100 khz Ts = 10 µs D = 0,5 tp = 0,5 Tp = 5 µs Parametry tranzystora jako łącznika Uon = 1 V Ioff = 0 A ton = toff = 0,5 µs tcond = tb = 4,5 µs η = 0,92 18
19 Klasyfikacja przekształtników Podstawowa klasyfikacja oparta jest o stwierdzenie, z którą składową (stałą czy przemienną) związana jest wypadkowa energia na wejściu i na wyjściu przekształtnika tj. która składowa mocy czynnej przeważa Przekształtniki AC-AC Przekształtniki AC-DC falowniki, w tym: rezonansowe, impulsowe Przekształtniki DC-DC prostowniki Przekształtniki DC-AC sterowniki prądu przemiennego, przemienniki częstotliwości przetwornice, w tym: dławikowe, transformatorowe, rezonansowe Przekształtniki mogą być wielostopniowe prostownik z aktywną kompensacją współczynnika mocy: AC-DC DC-DC falownik podwyższający napięcie: DC-DC DC-AC impulsowy przemiennik częstotliwości: AC-DC DC-AC 19
20 Zastosowania sterowania w przekształtnikach impulsowych ze zmianą współczynnika wypełnienia Przetwornice prądu stałego (DC-DC) Falowniki (DC-AC) regulacja (utrzymanie wartości) stałego napięcia wyjściowego sterowanie współczynnikiem wypełnienia d(t) tak, aby napięcie wyjściowe v(t) podążało za (zwykle stałym) sygnałem odniesienia vref(t) regulacja przemiennego napięcia (rzadziej prądu) wyjściowego utrzymanie częstotliwości i wartości skutecznej oraz (z różną dokładnością) kształtu sterowanie współczynnikiem wypełnienia d(t) tak, aby napięcie wyjściowe v(t) podążało za (zawsze przemiennym) sygnałem odniesienia vref(t) Prostowniki (AC-DC) regulacja stałego napięcia wyjściowego regulacja przemiennego prądu wejściowego co do kształtu sterowanie współczynnikiem wypełnienia d(t) tak, aby napięcie wyjściowe v(t) podążało za sygnałem odniesienia vref(t), zaś prąd wejściowy ig(t) podążał za sygnałem odniesienia ic(t) prąd odnosi się (najczęściej) do wartości średniej lub szczytowej 20
21 Niektóre przypadki szczególne Przetwornice sterujące lampami elektroluminescencyjnymi (LED) regulacja (utrzymanie wartości) stałego prądu wyjściowego sterowanie współczynnikiem wypełnienia d(t) tak, aby prąd wyjściowy i(t) podążał za sygnałem odniesienia iref(t) natężenie promieniowania zależy wprost od natężenia prądu Przetwornice pracujące jako aktywne obciążenie (MPPT) modułów słonecznych (PVM) regulacja (dostosowanie) mocy czynnej wejściowej sterowanie współczynnikiem wypełnienia d(t) tak, aby moc wejściowa Pg=Vg Ig była maksymalna w bieżących warunkach nasłonecznienia wartości Vg i Ig łączy funkcja nieliniowa o przebiegu zmiennym w funkcji natężenia oświetlenia Przetwornice sterujące silnikami prądu stałego regulacja składowej stałej prądu wyjściowego od natężenia prądu wyjściowego zależą prędkość i moment obrotowy sterowanie współczynnikiem wypełnienia d(t) tak, aby uzyskać zadaną prędkość lub moment 21
22 Korzyści z cyfrowego sterowania przekształtników Zmniejszenie liczby elementów i wymiarów układu Sterowanie przekształtnikami o dowolnej topologii i metodzie sterowania obwody sterowania, zabezpieczeń, pomiaru, kompensacji pętli sprzężenia zwrotnego, sterowania chłodzeniem itd. zintegrowane w jednym układzie scalonym scalone sterowniki analogowe są przeznaczone do 1 3 topologii i stosują 1 2 metody sterowania produkowane są tylko dla najbardziej popularnych, co z kolei wpływa na ich popularność zmiana metody sterowania nie pociąga za sobą konieczności zmiany układu elektronicznego (topografii płytki, elementów) Ten sam obwód drukowany dla produktów o różnych parametrach zmianie ulega wyłącznie program w zakresie parametrów konfiguracyjnych obniżenie kosztów produkcji przez zwiększenie liczby egzemplarzy a zmniejszenie liczby wariantów tańszy również serwis i doskonalenie 22
23 Korzyści z cyfrowego sterowania przekształtników (cd.) Zwiększenie sprawności energetycznej, zmniejszenie poboru mocy Możliwość realizacji pomiarów pośrednich dostosowanie układu do zmiennego obciążenia zmiana częstotliwości przełączania, zmiana zasady sterowania, wyłączenie bloków czasowo zbędnych (np. wentylatora) łatwa realizacja stanu czuwania potrzebna jest tylko energia do zasilenia wybranych bloków mikroprocesora niektóre wielkości fizyczne można obliczyć na podstawie innych, np. moment obrotowy realizacja sprzężeń zwrotnych od momentu, mocy itp. dodatkowa wiedza o stanie układu Poprawa jakości sterowania, w tym zwiększenie szybkości odpowiedzi łatwa realizacja sprzężenia w przód 23
24 Sprzężenie w przód (feedforward) Tradycyjny sterownik ze sprzężeniem zwrotnym najbardziej ogólny PID zsumowane sygnały proporcjonalne do: uchybu, całki z uchybu i pochodnej uchybu określają współczynnik wypełnienia wymaga znajomości uchybu, tj. różnicy między wartością uzyskaną a zadaną wymaga znajomości historii regulacja statyczna tym lepsza, im większe wzmocnienie pogorszona dynamika łatwa realizacja analogowa i cyfrowa Idea sprzężenia w przód współczynnik wypełnienia wyliczany ze wzorów analitycznych wzory te mogą łączyć np. pożądane napięcie wyjściowe, moc wejściową napięcie wejściowe, obciążenie wartości elementów przekształtnika charakter wzorów teoretyczne lub empiryczne idealne lub rzeczywiste oparte na teraźniejszości i przyszłości dodanie do sterownika cyfrowego łatwe, analogowego złożone 24
25 Korzyści ze sprzężenia w przód Pożądany sygnał wyjściowy może być obliczony zanim zmiana w układzie przełoży się na wielkość wyjściową (np. napięcie) Ograniczenie wzory analityczne dają sygnał sterujący poprawny dla układu idealizowanego dla układu rzeczywistego wynik będzie przybliżony dokładne ustalenie odpowiedniego sygnału sterującego możliwe jest wyłącznie poprzez sprzężenie zwrotne Sprzężenie w przód jest z natury stabilne zmiany napięcia wejściowego sygnał mówiący o (planowanym) uśpieniu i wybudzeniu zasilanego podzespołu dodatkowo sterownik PID może mieć mniejsze wzmocnienie, gdyż gros sygnału sterującego pochodzi ze sprzężenia w przód (zwykle) stabilność Łatwo zrealizować wiele sprzężeń napięcie wyjściowe, prąd wejściowy, moc wejściowa itp. tradycyjny podział na sprzężenia napięciowe i prądowe nie ma zastosowania 25
26 Funkcje sterowania cyfrowego przekształtników (lista niewyczerpująca) tryb niskiego poboru mocy przełączanie źródeł zasilania łagodny start pamięć i zarządzanie awariami zmiana (nastawa) sygnału odniesienia zmiana zasady sterowania złożone techniki sterowania (np. PWM z modulacją częstotliwości) cyfrowa implementacja pętli sprzężenia zwrotnego komunikacja z innymi blokami i użytkownikiem pomiar wartości skutecznej, mocy czynnej, współczynnika zniekształceń prędkości, momentu obrotowego kompensacja współczynnika mocy minimalizacja zniekształceń harmonicznych minimalizacja zaburzeń wysokiej częstotliwości funkcje pomocnicze chłodzenie sterowanie wentylatorem 26
27 Poziom 1 Sterowanie włącz-wyłącz Funkcje start-stop tryb niskiego poboru energii zarządzanie wieloma odbiornikami pamięć awarii, watchdog, zarządzanie awariami komunikacja zabezpieczenia termiczne Sprzęt przetwornica z własnym sterownikiem analogowym prosty mikrokontroler oddziałujący poprzez wejścia typu włącz-wyłącz 27
28 Poziom 2 Sterowanie proporcjonalne Funkcje sterowanie napięciem wyjściowym ograniczenia prądowe, napięciowe, temperaturowe łagodny start i kontrolowane zatrzymanie sterowanie chłodzeniem Sprzęt przetwornica z własnym sterownikiem analogowym średnio prosty mikrokontroler przebieg impulsowy (PWM/CCP) podawany na wejście typu zezwalającego pomiar (ADC, SPI/I2C) 28
29 Poziom 3 Sterowanie wewnątrz topologii przekształtnika Funkcje przełączanie topologii kompensatora przełączanie zasady sterowania i rodzaju sprzężenia zwrotnego (np. przy małym obciążeniu) zmiana częstotliwości przełączania realizacja sprzężenia zwrotnego Sprzęt wewnętrzny generatormodulator (PWM) wewnętrzne zasoby analogowe lub zewnętrzne układy dedykowane (przetworniki A/C, wzmacniacze operacyjne, komparatory, oscylator, źródło napięcia odniesienia) zewnętrzny sterownik bramki 29
30 Poziom 4 Sterowanie w pełni cyfrowe (1) Funkcje bardziej złożone funkcje z niższych poziomów przekształtniki wielostopniowe cyfrowa (programowa) implementacja sprzężenia zwrotnego sterownik PI(D) lub inne algorytmy sterowania zaawansowane pomiary korektory współczynnika mocy (avg, rms, λ, dh, i(k)) falowniki (v(k), dh) szczególne sprzężenia zwrotne śledzenie punktu maksymalnej mocy (energia słoneczna) 30
31 Poziom 4 Sterowanie w pełni cyfrowe (2) Sprzęt zwykle procesory DSP / mikrokontrolery sygnałowe DSC 31
32 Poziom 4 Sterowanie w pełni cyfrowe (3) Współpraca mikrokontrolerów DSC wielostopniowy przekształtnik z izolacją galwaniczną 32
33 Rodziny mikrokontrolerów MicroChip dedykowane do zastosowań w elektronice mocy 33
34 Sugerowane aplikacje różnych rodzin mikrokontrolerów firmy MicroChip 34
Część 5. Mieszane analogowo-cyfrowe układy sterowania
Część 5 Mieszane analogowo-cyfrowe układy sterowania Korzyści z cyfrowego sterowania przekształtników Zmniejszenie liczby elementów i wymiarów układu obwody sterowania, zabezpieczeń, pomiaru, kompensacji
Część 6. Mieszane analogowo-cyfrowe układy sterowania. Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 2011/12
Część 6 Mieszane analogowo-cyfrowe układy sterowania 1 Korzyści z cyfrowego sterowania przekształtników Zmniejszenie liczby elementów i wymiarów układu Sterowanie przekształtnikami o dowolnej topologii
Przyrządy i układy mocy studia niestacjonarne, sem. 4 lato 2018/19. dr inż. Łukasz Starzak
Przyrządy i układy mocy studia niestacjonarne, sem. 4 lato 2018/19 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik
Przyrządy i układy mocy studia niestacjonarne, sem. 4 lato 2016/17. dr inż. Łukasz Starzak
Przyrządy i układy mocy studia niestacjonarne, sem. 4 lato 2016/17 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik
Funkcje sterowania cyfrowego przekształtników (lista nie wyczerpująca)
Funkcje sterowania cyfrowego przekształtników (lista nie wyczerpująca) tryb niskiego poboru mocy przełączanie źródeł zasilania łagodny start pamięć i zarządzanie awariami zmiana (nastawa) sygnału odniesienia
Cyfrowe sterowanie przekształtników impulsowych lato 2012/13
Cyfrowe sterowanie przekształtników impulsowych lato 2012/13 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik
Przyrządy i układy mocy studia niestacjonarne, sem. 4 lato 2017/18. dr inż. Łukasz Starzak
Przyrządy i układy mocy studia niestacjonarne, sem. 4 lato 2017/18 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik
dr inż. Łukasz Starzak
Przyrządy półprzewodnikowe mocy Mechatronika, studia niestacjonarne, sem. 5 zima 2015/16 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra
Podzespoły i układy scalone mocy część II
Podzespoły i układy scalone mocy część II dr inż. Łukasz Starzak Katedra Mikroelektroniki Technik Informatycznych ul. Wólczańska 221/223 bud. B18 pok. 51 http://neo.dmcs.p.lodz.pl/~starzak http://neo.dmcs.p.lodz.pl/uep
Elektroniczne Systemy Przetwarzania Energii
Elektroniczne Systemy Przetwarzania Energii Zagadnienia ogólne Przedmiot dotyczy zagadnień Energoelektroniki - dyscypliny na pograniczu Elektrotechniki i Elektroniki. Elektrotechnika zajmuje się: przetwarzaniem
Dobór współczynnika modulacji częstotliwości
Dobór współczynnika modulacji częstotliwości Im większe mf, tym wyżej położone harmoniczne wyższe częstotliwości mniejsze elementy bierne filtru większy odstęp od f1 łatwiejsza realizacja filtru dp. o
Przetwornica SEPIC. Single-Ended Primary Inductance Converter z przełączanym jednym końcem cewki pierwotnej Zalety. Wady
Przetwornica SEPIC Single-Ended Primary Inductance Converter z przełączanym jednym końcem cewki pierwotnej Zalety Wady 2 C, 2 L niższa sprawność przerywane dostarczanie prądu na wyjście duże vo, icout
Część 2. Sterowanie fazowe
Część 2 Sterowanie fazowe Sterownik fazowy prądu przemiennego (AC phase controller) Prąd w obwodzie triak wyłączony: i = 0 triak załączony: i = ui / RL Zmiana kąta opóźnienia załączania θz powoduje zmianę
12. Zasilacze. standardy sieci niskiego napięcia tj. sieci dostarczającej energię do odbiorców indywidualnych
. Zasilacze Wojciech Wawrzyński Wykład z przedmiotu Podstawy Elektroniki - wykład Zasilacz jest to urządzenie, którego zadaniem jest przekształcanie napięcia zmiennego na napięcie stałe o odpowiednich
Część 4. Zmiana wartości napięcia stałego. Stabilizatory liniowe Przetwornice transformatorowe
Część 4 Zmiana wartości napięcia stałego Stabilizatory liniowe Przetwornice transformatorowe Bloki wyjściowe systemów fotowoltaicznych Systemy nie wymagające znaczącego podwyższania napięcia wyjście DC
Scalony analogowy sterownik przekształtników impulsowych MCP1630
Scalony analogowy sterownik przekształtników impulsowych MCP1630 DRV CFB VFB 1. Impuls zegara S=1 R=0 Q=0, DRV=0 (przez bramkę OR) 2. Koniec impulsu S=0 R=0 Q=Q 1=0 DRV=1 3. CFB > COMP = f(vfb VREF) S=0
Wyjścia analogowe w sterownikach, regulatorach
Wyjścia analogowe w sterownikach, regulatorach 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika Elementy sygnalizacyjne Wejścia logiczne (dwustanowe)
Spis treści 3. Spis treści
Spis treści 3 Spis treści Przedmowa 11 1. Pomiary wielkości elektrycznych 13 1.1. Przyrządy pomiarowe 16 1.2. Woltomierze elektromagnetyczne 18 1.3. Amperomierze elektromagnetyczne 19 1.4. Watomierze prądu
Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki
Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Na podstawie instrukcji Wtórniki Napięcia,, Laboratorium układów Elektronicznych Opis badanych układów Spis Treści 1. CEL ĆWICZENIA... 2 2.
Przetwarzanie energii elektrycznej w fotowoltaice lato 2015/16. dr inż. Łukasz Starzak
Przetwarzanie energii elektrycznej w fotowoltaice lato 2015/16 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik
Porównanie uzysku energetycznego z użyciem falownika centralnego i mikrofalowników
Porównanie uzysku energetycznego z użyciem falownika centralnego i mikrofalowników mikrofalowniki falownik centralny wzorzec National Renewable Energy Laboratory (USA) 40 Główne grupy rozwiązań falowników
Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI
1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności
Odbiór energii z modułu fotowoltaicznego
Odbiór energii z modułu fotowoltaicznego Charakterystyki pracy typowych odbiorników biernych są w większości nieoptymalne dla poboru energii z ogniw fotowoltaicznych Dopasowanie obciążenia: przełączanie
Analiza ustalonego punktu pracy dla układu zamkniętego
Analiza ustalonego punktu pracy dla układu zamkniętego W tym przypadku oznacza stałą odchyłkę od ustalonego punktu pracy element SUM element DIFF napięcie odniesienia V ref napięcie uchybu V e V ref HV
Zestaw 1 1. Rodzaje ruchu punktu materialnego i metody ich opisu. 2. Mikrokontrolery architektura, zastosowania. 3. Silniki krokowe budowa, zasada działania, sterowanie pracą. Zestaw 2 1. Na czym polega
Część 4. Zagadnienia szczególne. b. Sterowanie prądowe i tryb graniczny prądu dławika
Część 4 Zagadnienia szczególne b. Sterowanie prądowe i tryb graniczny prądu dławika Idea sterowania prądowego sygnał sterujący pseudo-prądowy prąd tranzystora Pomiar prądu tranzystora Zegar Q1 załączony
Część 2. Odbiór energii z modułów fotowoltaicznych. Przetwornice prądu stałego Śledzenie punktu mocy maksymalnej
Część 2 Odbiór energii z modułów fotowoltaicznych Przetwornice prądu stałego Śledzenie punktu mocy maksymalnej Zmiana charakterystyk U-I pod wpływem nasłonecznienia i temperatury 2 Dobowa dynamika zmian
ANALOGOWE I MIESZANE STEROWNIKI PRZETWORNIC. Ćwiczenie 3. Przetwornica podwyższająca napięcie Symulacje analogowego układu sterowania
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki
Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Temat ćwiczenia: Przetwornica impulsowa DC-DC typu boost
12.7 Sprawdzenie wiadomości 225
Od autora 8 1. Prąd elektryczny 9 1.1 Budowa materii 9 1.2 Przewodnictwo elektryczne materii 12 1.3 Prąd elektryczny i jego parametry 13 1.3.1 Pojęcie prądu elektrycznego 13 1.3.2 Parametry prądu 15 1.4
Sterowanie przekształtników elektronicznych zima 2011/12
Sterowanie przekształtników elektronicznych zima 2011/12 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik Informatycznych
Właściwości przetwornicy zaporowej
Właściwości przetwornicy zaporowej Współczynnik przetwarzania napięcia Łatwa realizacja wielu wyjść z warunku stanu ustalonego indukcyjności magnesującej Duże obciążenie napięciowe tranzystorów (Vg + V/n
Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych
Zakres wymaganych wiadomości do testów z przedmiotu Metrologia Ćwiczenie 1 Wprowadzenie do obsługi multimetrów analogowych i cyfrowych budowa i zasada działania przyrządów analogowych magnetoelektrycznych
Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści
Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, 2015 Spis treści Przedmowa 7 Wstęp 9 1. PODSTAWY ELEKTROTECHNIKI 11 1.1. Prąd stały 11 1.1.1. Podstawowe
Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych
Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 1 Podstawy metrologii 1. Model matematyczny pomiaru. 2. Wzorce jednostek miar. 3. Błąd pomiaru.
Stabilizatory impulsowe
POITECHNIKA BIAŁOSTOCKA Temat i plan wykładu WYDZIAŁ EEKTRYCZNY Jakub Dawidziuk Stabilizatory impulsowe 1. Wprowadzenie 2. Podstawowe parametry i układy pracy 3. Przekształtnik obniżający 4. Przekształtnik
Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych
Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 0 Podstawy metrologii 1. Model matematyczny pomiaru. 2. Wzorce jednostek miar. 3. Błąd pomiaru.
Gdy wzmacniacz dostarcz do obciążenia znaczącą moc, mówimy o wzmacniaczu mocy. Takim obciążeniem mogą być na przykład...
Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Gdy wzmacniacz dostarcz do obciążenia znaczącą moc, mówimy
Przerywacz napięcia stałego
Przerywacz napięcia stałego Efektywna topologia układu zmienia się w zależności od stanu łącznika Łukasz Starzak, Przyrządy i układy mocy, lato 2018/19 1 Napięcie wyjściowe przerywacza prądu stałego Przełączanie
42 Przekształtniki napięcia stałego na napięcie przemienne topologia falownika napięcia, sterowanie PWM
42 Przekształtniki napięcia stałego na napięcie przemienne topologia falownika napięcia, sterowanie PWM Falownikami nazywamy urządzenia energoelektroniczne, których zadaniem jest przetwarzanie prądów i
Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści
Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, 2013 Spis treści Słowo wstępne 8 Wymagania egzaminacyjne 9 Wykaz symboli graficznych 10 Lekcja 1. Podstawowe prawa
Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych
Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 0 Podstawy metrologii 1. Co to jest pomiar? 2. Niepewność pomiaru, sposób obliczania. 3.
Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego.
Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. 1. Moc odbiorników prądu stałego Prąd płynący przez odbiornik powoduje wydzielanie się określonej
Przekształtniki napięcia stałego na stałe
Przekształtniki napięcia stałego na stałe Buck converter S 1 łącznik w pełni sterowalny, przewodzi prąd ze źródła zasilania do odbiornika S 2 łącznik diodowy zwiera prąd odbiornika przy otwartym S 1 U
Źródła zasilania i parametry przebiegu zmiennego
POLIECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGEYKI INSYU MASZYN I URZĄDZEŃ ENERGEYCZNYCH LABORAORIUM ELEKRYCZNE Źródła zasilania i parametry przebiegu zmiennego (E 1) Opracował: Dr inż. Włodzimierz
IMPULSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM
Instrukcja do ćwiczenia laboratoryjnego. IMPSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM Przekształtnik impulsowy z tranzystorem szeregowym słuŝy do przetwarzania energii prądu jednokierunkowego
Podstawy Elektroniki dla Informatyki. Tranzystory unipolarne MOS
AGH Katedra Elektroniki Podstawy Elektroniki dla Informatyki Tranzystory unipolarne MOS Ćwiczenie 3 2014 r. 1 1. Wstęp. Celem ćwiczenia jest zapoznanie się z działaniem i zastosowaniami tranzystora unipolarnego
BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO
Ćwiczenie 11 BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO 11.1 Cel ćwiczenia Celem ćwiczenia jest poznanie rodzajów, budowy i właściwości przerzutników astabilnych, monostabilnych oraz
Rys. 1. Przebieg napięcia u D na diodzie D
Zadanie 7. Zaprojektować przekształtnik DC-DC obniżający napięcie tak, aby mógł on zasilić odbiornik o charakterze rezystancyjnym R =,5 i mocy P = 10 W. Napięcie zasilające = 10 V. Częstotliwość przełączania
Projektowanie systemów pomiarowych
Projektowanie systemów pomiarowych 03 Konstrukcja mierników analogowych Zasada działania mierników cyfrowych Przetworniki pomiarowe wielkości elektrycznych 1 Analogowe przyrządy pomiarowe Podział ze względu
Kompensator PID. 1 sω z 1 ω. G cm. aby nie zmienić częstotliwości odcięcia f L. =G c0. s =G cm. G c. f c. /10=500 Hz aby nie zmniejszyć zapasu fazy
Kompensator PID G c s =G cm sω z ω L s s ω p G cm =G c0 aby nie zmienić częstotliwości odcięcia f L f c /0=500 Hz aby nie zmniejszyć zapasu fazy Łukasz Starzak, Sterowanie przekształtników elektronicznych,
(13) B1 (12) OPIS PATENTOWY (19) PL (11) PL B1 RZECZPOSPOLITA POLSKA. (21) Numer zgłoszenia: (51) IntCl7 H02M 7/42
RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS PATENTOWY (19) PL (11) 184340 (13) B1 (21) Numer zgłoszenia: 323484 (22) Data zgłoszenia: 03.12.1997 (51) IntCl7 H02M 7/42 (54)
PLAN PREZENTACJI. 2 z 30
P O L I T E C H N I K A Ś L Ą S K A WYDZIAŁ ELEKTRYCZNY KATEDRA ENERGOELEKTRONIKI, NAPĘDU ELEKTRYCZNEGO I ROBOTYKI Energoelektroniczne przekształtniki wielopoziomowe właściwości i zastosowanie dr inż.
Część 2. Sterowanie fazowe
Część 2 Sterowanie fazowe Sterownik fazowy prądu przemiennego (AC phase controller) Prąd w obwodzie triak wyłączony: i = 0 triak załączony: i = ui / RL Zmiana kąta opóźnienia załączania θz powoduje zmianę
Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki
Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Temat ćwiczenia: Przetwornica impulsowa DC-DC typu buck
Miernictwo I INF Wykład 13 dr Adam Polak
Miernictwo I INF Wykład 13 dr Adam Polak ~ 1 ~ I. Właściwości elementów biernych A. Charakterystyki elementów biernych 1. Rezystor idealny (brak przesunięcia fazowego między napięciem a prądem) brak części
Rok akademicki: 2013/2014 Kod: EEL s Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Elektronika przemysłowa Rok akademicki: 2013/2014 Kod: EEL-1-513-s Punkty ECTS: 4 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika Specjalność:
Wykaz ważniejszych oznaczeń Podstawowe informacje o napędzie z silnikami bezszczotkowymi... 13
Spis treści 3 Wykaz ważniejszych oznaczeń...9 Przedmowa... 12 1. Podstawowe informacje o napędzie z silnikami bezszczotkowymi... 13 1.1.. Zasada działania i klasyfikacja silników bezszczotkowych...14 1.2..
Napęd elektryczny. Główną funkcją jest sterowane przetwarzanie energii elektrycznej na mechaniczną i odwrotnie
Napęd elektryczny Główną funkcją jest sterowane przetwarzanie energii elektrycznej na mechaniczną i odwrotnie Podstawowe elementy napędu: maszyna elektryczna, przekształtnik, czujniki, sterownik z oprogramowaniem,
Modulatory PWM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE
Modulatory PWM CELE ĆWICZEŃ Poznanie budowy modulatora szerokości impulsów z układem A741. Analiza charakterystyk i podstawowych obwodów z układem LM555. Poznanie budowy modulatora szerokości impulsów
SPIS TREŚCI PRZEDMOWA WYKAZ WAŻNIEJSZYCH OZNACZEŃ 1. PODSTAWOWE INFORMACJE O NAPĘDZIE Z SILNIKAMI BEZSZCZOTKOWYMI 1.1. Zasada działania i
SPIS TREŚCI PRZEDMOWA WYKAZ WAŻNIEJSZYCH OZNACZEŃ 1. PODSTAWOWE INFORMACJE O NAPĘDZIE Z SILNIKAMI BEZSZCZOTKOWYMI 1.1. Zasada działania i klasyfikacja silników bezszczotkowych 1.2. Moment elektromagnetyczny
11. Wzmacniacze mocy. Klasy pracy tranzystora we wzmacniaczach mocy. - kąt przepływu
11. Wzmacniacze mocy 1 Wzmacniacze mocy są układami elektronicznymi, których zadaniem jest dostarczenie do obciążenia wymaganej (na ogół dużej) mocy wyjściowej przy możliwie dużej sprawności i małych zniekształceniach
Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny
prąd stały (DC) prąd elektryczny zmienny okresowo prąd zmienny (AC) zmienny bezokresowo Wielkości opisujące sygnały okresowe Wartość chwilowa wartość, jaką sygnał przyjmuje w danej chwili: x x(t) Wartość
Badanie układów prostowniczych
Instrukcja do ćwiczenia: Badanie układów prostowniczych (wersja robocza) Laboratorium Elektroenergetyki 1 1. Cel ćwiczenia Poznanie budowy, zasady działania i właściwości podstawowych układów elektronicznych,
- Przetwornica (transformator): służy do przemiany prądu zmiennego na stały (prostownik);
Nazwa systemów VRF w rozwinięciu brzmi Variable Refrigerant Flow, czyli zmienny przepływ czynnika. I rzeczywiście w systemach VRF praktycznie nie ma momentu w którym czynnik płynie w nominalnej wielkości.
Systemy autonomiczne (Stand-Alone / Autonomous)
Systemy autonomiczne (Stand-Alone / Autonomous) Napięcia stałego np. przyczepa kempingowa DC 12/24 V ograniczona grupa odbiorników niskie napięcie mała moc (przy dużym prądzie duże spadki napięć) nieoptymalny
Elektronika. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.
Elektronika Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Zadania elektroniki: Urządzenia elektroniczne służą do przetwarzania i przesyłania informacji w postaci
Metoda zaburz-obserwuj oraz metoda wspinania
Metoda zaburz-obserwuj oraz metoda wspinania Algorytm zaburz-obserwuj mierzy się moc (zwykle modułu) przed i po zmianie na tej podstawie podejmuje się decyzję o kierunku następnej zmiany Metoda wspinania
Impulsowe przekształtniki napięcia stałego. Włodzimierz Janke Katedra Elektroniki, Zespół Energoelektroniki
Impulsowe przekształtniki napięcia stałego Włodzimierz Janke Katedra Elektroniki, Zespół Energoelektroniki 1 1. Wstęp 2. Urządzenia do przetwarzanie energii elektrycznej 3. Problemy symulacji i projektowania
Rozwój sterowania prędkością silnika indukcyjnego trójfazowego
Rozwój sterowania prędkością silnika indukcyjnego trójfazowego 50Hz Maszyna robocza Rotor 1. Prawie stała prędkość automatyka Załącz- Wyłącz metod a prymitywna w pierwszym etapie -mechanizacja AC silnik
Liniowe układy scalone w technice cyfrowej
Liniowe układy scalone w technice cyfrowej Wykład 6 Zastosowania wzmacniaczy operacyjnych: konwertery prąd-napięcie i napięcie-prąd, źródła prądowe i napięciowe, przesuwnik fazowy Konwerter prąd-napięcie
Elektrotechnika Electrical Engineering
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 TRANZYSTORY JAKO ELEMENTY DWUSTANOWE BIAŁYSTOK
SILNIK INDUKCYJNY STEROWANY Z WEKTOROWEGO FALOWNIKA NAPIĘCIA
SILNIK INDUKCYJNY STEROWANY Z WEKTOROWEGO FALOWNIKA NAPIĘCIA Rys.1. Podział metod sterowania częstotliwościowego silników indukcyjnych klatkowych Instrukcja 1. Układ pomiarowy. Dane maszyn: Silnik asynchroniczny:
ELEMENTY ELEKTRONICZNE. Układy polaryzacji i stabilizacji punktu pracy tranzystora
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONICZNE TS1C300 018 Układy polaryzacji i stabilizacji punktu
Podstawy Elektroniki dla Tele-Informatyki. Tranzystory unipolarne MOS
AGH Katedra Elektroniki Podstawy Elektroniki dla Tele-Informatyki Tranzystory unipolarne MOS Ćwiczenie 4 2014 r. 1. Wstęp. Celem ćwiczenia jest zapoznanie się z działaniem i zastosowaniami tranzystora
Energoelektronika Cyfrowa
Energoelektronika Cyfrowa dr inż. Maciej Piotrowicz Katedra Mikroelektroniki i Technik Informatycznych PŁ piotrowi@dmcs.p.lodz.pl http://fiona.dmcs.pl/~piotrowi -> Energoelektr... Energoelektronika Dziedzina
Właściwości tranzystora MOSFET jako przyrządu (klucza) mocy
Właściwości tranzystora MOSFET jako przyrządu (klucza) mocy Zalety sterowanie polowe niska moc sterowania wyłącznie nośniki większościowe krótki czas przełączania wysoka maksymalna częstotliwość pracy
A6: Wzmacniacze operacyjne w układach nieliniowych (diody)
A6: Wzmacniacze operacyjne w układach nieliniowych (diody) Jacek Grela, Radosław Strzałka 17 maja 9 1 Wstęp Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1. Charakterystyka
Diagnostyka układów elektrycznych i elektronicznych pojazdów samochodowych. 1.1.1. Podstawowe wielkości i jednostki elektryczne
Diagnostyka układów elektrycznych i elektronicznych pojazdów samochodowych 1. Prąd stały 1.1. Obwód elektryczny prądu stałego 1.1.1. Podstawowe wielkości i jednostki elektryczne 1.1.2. Natężenie prądu
Mechatronika i inteligentne systemy produkcyjne. Aktory
Mechatronika i inteligentne systemy produkcyjne Aktory 1 Definicja aktora Aktor (ang. actuator) -elektronicznie sterowany człon wykonawczy. Aktor jest łącznikiem między urządzeniem przetwarzającym informację
Mikrokontroler w roli generatora PWM. Wpisany przez Administrator piątek, 06 lipca :51 -
PWM - Pulse-width modulation - modulacja szerokości impulsu. Jest to jedna z metod regulacji sygnału prądowego lub napięciowego, polegająca na zmianie szerokości impulsów sygnału o stałej amplitudzie generowanego
Wykaz symboli, oznaczeń i skrótów
Wykaz symboli, oznaczeń i skrótów Symbole a a 1 operator obrotu podstawowej zmiennych stanu a 1 podstawowej uśrednionych zmiennych stanu b 1 podstawowej zmiennych stanu b 1 A A i A A i, j B B i cosφ 1
R 1 = 20 V J = 4,0 A R 1 = 5,0 Ω R 2 = 3,0 Ω X L = 6,0 Ω X C = 2,5 Ω. Rys. 1.
EROELEKR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 9/ Rozwiązania zadań dla grupy elektrycznej na zawody stopnia adanie nr (autor dr inŝ. Eugeniusz RoŜnowski) Stosując twierdzenie
Część 4. Zmiana wartości napięcia stałego. Stabilizatory liniowe Przetwornice transformatorowe
Część 4 Zmiana wartości napięcia stałego Stabilizatory liniowe Przetwornice transformatorowe Bloki wyjściowe systemów fotowoltaicznych Systemy nie wymagające znaczącego podwyższania napięcia wyjście DC
PL 217306 B1. AZO DIGITAL SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Gdańsk, PL 27.09.2010 BUP 20/10. PIOTR ADAMOWICZ, Sopot, PL 31.07.
PL 217306 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 217306 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 387605 (22) Data zgłoszenia: 25.03.2009 (51) Int.Cl.
Generatory przebiegów niesinusoidalnych
Generatory przebiegów niesinusoidalnych Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Przerzutniki Przerzutniki
AKTYWNY FILTR HARMONICZNYCH HARMONICZNYCH AKTYWNY FILTR.
AKTYWNY FILTR HARMONICZNYCH HARMONICZNYCH AKTYWNY FILTR www.rabbit.pl Znaczenie kompleksowej kompensacji mocy biernej Problemy związane z jakością energii są jedną z głównych przyczyn coraz wyższych rachunków
Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych
Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału
Stabilizatory ciągłe
POLITECHNIKA BIAŁOSTOCKA Temat i plan wykładu WYDZIAŁ ELEKTRYCZNY Jakub Dawidziuk Stabilizatory ciągłe 1. Wprowadzenie 2. Podstawowe parametry i układy pracy 3. Stabilizatory parametryczne 4. Stabilizatory
Problematyka mocy biernej w instalacjach oświetlenia drogowego. Roman Sikora, Przemysław Markiewicz
Problematyka mocy biernej w instalacjach oświetlenia drogowego Roman Sikora, Przemysław Markiewicz WPROWADZENIE Moc bierna a efektywność energetyczna. USTAWA z dnia 20 maja 2016 r. o efektywności energetycznej.
a) dolno przepustowa; b) górno przepustowa; c) pasmowo przepustowa; d) pasmowo - zaporowa.
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2009/2010 Zadania dla grupy elektroniczno-telekomunikacyjnej na zawody I. stopnia 1 Na rysunku przedstawiony jest schemat
Przekształtniki DC/DC
UWAGA! Teoria Przekształtników zadania zaliczeniowe cz. II ( Przekształtniki impulsowe - PI) 1.Przy rozwiązywaniu każdego zdania należy podać kompletny schemat przekształtnika wraz z zastrzałkowanymi i
Opis przedmiotu 3 części zamówienia Zestawy ćwiczeń
Opis przedmiotu 3 części zamówienia Zestawy ćwiczeń Załącznik 4c do SIWZ Lp. NAZWA OPIS GŁÓWNYCH PARAMETRÓW TECHNICZNYCH ILOŚĆ (szt.) Zestaw powinien składać się min. z modułu bazowego oraz modułów ćwiczeniowych
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej
Maszyny i urządzenia elektryczne. Tematyka zajęć
Nazwa przedmiotu Maszyny i urządzenia elektryczne Wprowadzenie do maszyn elektrycznych Transformatory Maszyny prądu zmiennego i napęd elektryczny Maszyny prądu stałego i napęd elektryczny Urządzenia elektryczne
PRZETWORNIKI POMIAROWE
PRZETWORNIKI POMIAROWE PRZETWORNIK POMIAROWY element systemu pomiarowego, który dokonuje fizycznego przetworzenia z określoną dokładnością i według określonego prawa mierzonej wielkości na inną wielkość
Demonstracja: konwerter prąd napięcie
Demonstracja: konwerter prąd napięcie i WE =i i WE i v = i WE R R=1 M Ω i WE = [V ] 10 6 [Ω] v + Zasilanie: +12, 12 V wy( ) 1) Oświetlanie o stałym natężeniu: =? (tryb DC) 2) Oświetlanie przez lampę wstrząsoodporną:
Przekształtniki impulsowe prądu stałego (dc/dc)
Przekształtniki impulsowe prądu stałego (dc/dc) Wprowadzenie Sterowanie napięciem przez Modulację Szerokości Impulsów MSI (Pulse Width Modulation - PWM) Przekształtnik obniżający napięcie (buck converter)