Próby zmęczeniowe Wstęp

Wielkość: px
Rozpocząć pokaz od strony:

Download "Próby zmęczeniowe. 13.1. Wstęp"

Transkrypt

1 Próby zmęczeniowe Wstęp Obciążenia działające w różnych układach mechanicznych najczęściej zmieniają się w czasie. Wywołują one w materiale złożone zjawiska i zmiany, zależne od wartości tych naprężeń i liczby cykli, które określamy jako zmęczenie materiału. Zmęczenie materiału obniża trwałość elementów konstrukcyjnych i jest częstym powodem pęknięć zmęczeniowych tych elementów, prowadząc do niebezpiecznych wypadków. Szczególnie niebezpieczne są zniszczenia zmęczeniowe elementów w środkach transportowych, gdyż są powodem poważnych katastrof. Charakterystyczne cechy złomu zmęczeniowego to: 1. Pękniecie zmęczeniowe występuje przy maksymalnych wartościach zmieniającego się naprężenia, znacznie niższych od wytrzymałości doraźnej R m, a nawet granicy plastyczności R e z czego wynika, że zdolność materiału do przenoszenia obciążeń wielokrotnie zmiennych jest mniejsza od obciążeń statycznych. 2. Zniszczenie następuje po pewnym okresie pracy elementu w sposób nagły. 3. Pęknięcia zmęczeniowe mają charakter pęknięć kruchych, niezależnie od tego czy w statycznej próbie rozciągania materiał wykazuje własności sprężysto-plastyczne, czy kruche Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawami doświadczalnych badań wytrzymałości zmęczeniowej materiału, stosowanymi próbkami oraz urządzeniami stosowanymi do tych badań. Wykonanie ćwiczenia polega na przeprowadzeniu próby zmęczeniowej dla stali przy zginaniu obrotowym i wyznaczeniu wytrzymałości zmęczeniowej ograniczonej Charakterystyka naprężeń zmęczeniowych Zmianę naprężenia podczas jednego okresu nazywamy cyklem naprężeń. Cykle naprężeń mają zazwyczaj charakter losowy, wynikający z eksploatacji urządzenia. Na przykład na kadłub statku wpływają fale morza, drgania silnika, rozkład ładunku i manewrowanie podczas pływania. W próbach zmęczeniowych stosuje się cykle sinusoidalne jako najłatwiejsze do zrealizowania. Cykl taki przedstawiony jest na rysunku Rys Sinusoidalny cykl naprężeń W cyklu naprężeń zmiennych sinusoidalnie wyróżniamy: 1) naprężenie maksymalne cyklu max,

2 2) naprężenie minimalne cyklu min, 3) amplitudę naprężenia cyklu a, 4) naprężenie średnie cyklu m, 5) okres zmiany naprężeń T, 6) zakres zmiany naprężeń max min a 2 (13.1) max min m 2 (13.2) 2 a max min Rodzaje cykli naprężeń przedstawione są na rys W cyklu jednostronnym naprężenia zmieniają swoją wartość, ale zachowują ten sam znak. Szczególnym przypadkiem tego cyklu jest cykl odzerowo tętniący, dla którego max 0 lub min 0 oraz m a. W cyklu dwustronnym naprężenia zmieniają wartość i znak. Szczególnym przypadkiem jest tu cykl wahadłowy, w którym max min a oraz m 0. Jest to cykl symetryczny. Wszystkie inne cykle jednostronne i dwustronne są cyklami niesymetrycznymi o różnych co do wartości max i min, czyli o m 0. Niesymetryczność cyklu opisuje współczynnik asymetrii cyklu R: min R (13.3) max W obliczeniach konstrukcyjnych i badaniach zmęczeniowych używa się także współczynnika stałości obciążenia H: H m (13.4) a Dla cyklu symetrycznego R 1, dla odzerowo tętniącego po stronie dodatniej R 0, po stronie ujemnej R. Cykle o jednakowych współczynnikach R nazywają się cyklami podobnymi [11]. Rys Rodzaje sinusoidalnych cykli naprężeń Pojęcie wytrzymałości zmęczeniowej Wytrzymałością zmęczeniową nieograniczoną Z G nazywa się maksymalną wartość okresowo zmieniającego się naprężenia, przy której materiał może pracować nieograniczenie max

3 długo, bez pojawienia się rys zmęczeniowych i zniszczenia materiału. W praktyce przyjmuje się, że wytrzymałość ta osiągnięta jest już po przekroczeniu umownej granicznej liczby cykli N G. Ta liczba cykli zwana potocznie bazą, wynosi przykładowo dla stali N G = 10 7 cykli, a dla metali nieżelaznych N G = 10 8 cykli. Wytrzymałość zmęczeniową nieograniczoną Z G wyznacza się najczęściej dla cykli wahadłowych, rzadziej dla odzerowo tętniących. Rodzaj obciążenia zapisuje się jako wskaźnik wytrzymałości zmęczeniowej nieograniczonej i tak wytrzymałość zmęczeniową nieograniczoną przy wahadłowym zginaniu oznacza się jako Z go, przy odzerowo tętniącym zginaniu Z gj, odpowiednio przy skręcaniu będzie Z so i Z sj. Nie może być jednak wahadłowego rozciągania czy wahadłowego ściskania, może być wyłącznie wahadłowe rozciąganie-ściskanie, a wytrzymałość zmęczeniową nieograniczoną dla tego cyklu zapisuje się jako Z rc. Mamy natomiast wytrzymałość zmęczeniową nieograniczoną przy odzerowo tętniącym rozciąganiu Z rj i ściskaniu Z cj. Do wyznaczenia wytrzymałości zmęczeniowej nieograniczonej metodą klasyczną wykonania wykresu Wöhlera potrzeba minimum 10 identycznych próbek. Próbki doprowadza się do zniszczenia, zmieniając a dla ustalonej wartości m. Pierwszą próbkę obciążamy tak, aby naprężenie max wynosiło ok. 0,67 R m. Obciążenie następnych dobieramy w ten sposób, aby a było za każdym razem mniejsze o MPa. Każdej wartości a odpowiada liczba cykli niszczących N a. Zmniejszając naprężenia a otrzymuje się coraz większe liczby cykli niszczących. Na podstawie otrzymanych doświadczalnie wartości a i N buduje się wykres w prostokątnym układzie współrzędnych a N, jak to jest przedstawione na rysunku Rys Wykres Wöhlera w układzie a N Otrzymana krzywa nosi nazwę wykresu zmęczeniowego lub krzywej Wöhlera. W układzie współrzędnych a log N wykres zmęczeniowy jest linią łamaną, jak to jest przedstawione na rys

4 Rys Wykres Wöhlera dla stali 45 Punkt załamania lub punkt przecięcia się dwóch odcinków wykresu wyznacza teoretyczną, graniczną liczbę cykli N G oraz wytrzymałość zmęczeniową nieograniczoną Z G. Lewa gałąź wykresu Wöhlera zamyka obszar naprężeń większych od wytrzymałości zmęczeniowej nieograniczonej Z G tzw. obszar wytrzymałości zmęczeniowej ograniczonej Z O. Jest to największa wartość okresowo zmieniającego się naprężenia, przy której materiał przeniesie określoną liczbę cykli N < N G. Obszar poniżej poziomu wytrzymałości zmęczeniowej nieograniczonej Z G nazywany jest obszarem wytrzymałości zmęczeniowej nieograniczonej Czynniki wpływające na wytrzymałość zmęczeniową Badania wytrzymałości zmęczeniowej materiałów przeprowadza się na polerowanych próbkach o stałym przekroju. Wytrzymałość ta zależy w głównej mierze od trzech czynników: a) materiału, b) rodzaju obciążenia, c) cyklu naprężeń. Wytrzymałość zmęczeniowa rzeczywistego elementu konstrukcyjnego zależy dodatkowo od wielu innych czynników, takich jak kształt elementu, stan powierzchni, wymiary. Wpływ tych czynników ujmowany jest powszechnie w obliczeniach zmęczeniowych przez wprowadzenie następujących współczynników: a) współczynnik kształtu k, b) współczynnik działania karbu k, c) współczynnik stanu powierzchni p, d) zmęczeniowy współczynnik spiętrzenia naprężeń, e) współczynnik wielkości przedmiotu. Współczynnik kształtu k jest zdefiniowany następująco: k max n max lub k n gdzie: max, max naprężenia maksymalne lokalne związane z istnieniem zmian kształtu, nx, n naprężenia nominalne obliczone z konwencjonalnych wzorów wytrzymałościowych. Wartości współczynnika kształtu k dla zmian przekroju najczęściej spotykanych w budowie maszyn, ujęte są w formie wykresów [15] str

5 Rys Schemat spiętrzenia naprężeń przy osiowym rozciąganiu pręta okrągłego z karbem obrączkowym Współczynnik działania karbu k określa się jako stosunek wytrzymałości zmęczeniowej próbek gładkich bez karbu Z bk do wytrzymałości zmęczeniowej próbek gładkich z karbem Z k : Z bk k (13.6) Zk Ponieważ współczynnik ten zależy od właściwości materiału, przeto wprowadzono tzw. współczynnik wrażliwości na działanie karbu : k 1 (13.7) 1 k Przykładowo współczynnik ten wynosi dla szkła = 1 (bardzo wrażliwe na działanie karbu) i dla żeliwa = 0 (brak wrażliwości na działanie karbu). Dla innych materiałów wartości liczbowe współczynnika wyznacza się z odpowiednich wykresów [15] str Znając k oraz można wyrazić k następującym wzorem: 1 1 (13.8) k k Współczynnik stanu powierzchni p to stosunek wytrzymałości zmęczeniowej próbki polerowanej Z gł do wytrzymałości zmęczeniowej próbki o danym stanie powierzchni Z p. Wartości liczbowe tego współczynnika odczytuje się z wykresów [15] str Zmęczeniowy współczynnik spiętrzenia naprężeń to stosunek wytrzymałości zmęczeniowej próbki laboratoryjnej Z (bez karbu, wypolerowanej, o średnicy od 7 10 mm) do wytrzymałości zmęczeniowej próbki Z kp (z karbem o danym stanie powierzchni): Z (13.9) Z kp Współczynnik można obliczyć jako:

6 k p 1 1 (13.10) Współczynnik wielkości przedmiotu to stosunek wytrzymałości zmęczeniowej próbki laboratoryjnej Z (o średnicy od 7 10 mm) do wytrzymałości zmęczeniowej próbki Z w (o dużych rozmiarach): Z (13.11) Z w Wartości liczbowe współczynnika odczytuje się z wykresów [15] str Złomy zmęczeniowe Zjawisko zmęczenia nie jest w pełni poznane i opracowane. Obciążenie zmienne elementów wywołuje w materiale niezwykle złożone procesy. Istnieje wiele hipotez i teorii dotyczących przyczyn powstawania pęknięć zmęczeniowych. Nowoczesna technika pozwala na coraz bardziej wnikliwe poznanie tego zjawiska. Jedna z teorii dowodzi, że punktem wyjścia zjawiska zmęczeniowego jest anizotropia i nieregularne ułożenie ziaren materiału. W początkowej fazie występują lokalne odkształcenia plastyczne, których odznaką są pasma poślizgów widoczne pod mikroskopem na wypolerowanych powierzchniach jako ciemne pasma w obrębie ziarna. Rozwijają się one w miarę zwiększania się liczby cykli, tworząc skupienia i wiązki co powoduje powstawanie pęknięć i ich łączenie się. Pęknięcia te tworzą się z reguły na powierzchni i w warstwie wierzchniej elementów. Zniszczenie zmęczeniowe ma charakter lokalny. Złom zmęczeniowy ma bardzo charakterystyczny wygląd. Można wydzielić w nim dwie strefy: 1) strefę zniszczenia zmęczeniowego która ma wygładzoną powierzchnię, często o kształtach muszlowych, z widocznymi niekiedy liniami frontu, świadczącymi o nierównomiernym, skokowym pogłębianiu się szczeliny. Strefa ta jest tym większa i gładsza im mniejsze działały naprężenia, 2) strefę zniszczenia doraźnego (strefa resztkowa) która ma powierzchnię wizualnie bardziej gruboziarnistą i powstaje nagle w ostatnim okresie pracy elementu (złom doraźny, podobny do wyglądu przełomu przy obciążeniu statycznym). Na rysunku 13.6 przedstawione są poglądowo schematy przełomów zmęczeniowych. Obok ognisk pierwotnych mogą działać ogniska wtórne. Występują one w przypadku obrotowo zginanych elementów. Na nie zakreskowanych strefach zmęczeniowych narysowano linie zmęczeniowe jako kolejne położenia czoła pęknięcia. Kierunek rozwoju pęknięcia wskazują strzałki Opis badań zmęczeniowych Badania zmęczeniowe możemy podzielić na: 1) badania elementów konstrukcyjnych lub całej konstrukcji przeprowadzone na specjalnie zbudowanych w tym celu stanowiskach lub bezpośrednio w warunkach eksploatacyjnych, 2) badania odpowiednio przygotowanych (znormalizowanych) próbek. Do badań zmęczeniowych próbek stosuje się maszyny o specjalnej konstrukcji zwane zmęczeniówkami. Najczęściej przeprowadza się próby na maszynach, które realizują: osiowe ściskanie rozciąganie (tzw. pulsatory),

7 zginanie o cyklu symetrycznym sinusoidalnym, realizowane przez ruch obrotowy próbki, przy stałym kierunku obciążenia, skręcanie o cyklu symetrycznym sinusoidalnym, realizowane w postaci skrętnych drgań wymuszonych. Ćwiczenie zostanie przeprowadzone na 4-wrzecionowej zmęczeniówce giętnoobrotowej UBM, której schemat przedstawiony jest na rysunku Maszyna ta służy do wyznaczania wytrzymałości zmęczeniowej na zginanie przy cyklu symetrycznym sinusoidalnym. Cykl zmęczeniowy realizowany jest przez zginanie obracającej się próbki stałym obciążeniem leżącym w jednej płaszczyźnie. Włókna górne podlegają ściskaniu, dolne zaś podlegają rozciąganiu. W ten sposób z częstością równą ilości obrotów n realizowane są liczby cykli sinusoidalnych naprężeń. Na maszynie UBM można realizować dwa rodzaje podparcia: 1) dwustronne podparcie próbki moment zginający na całej długości próbki jest stały, jak to jest przedstawione na rysunku 13.7; 2) jednostronne (wspornikowe) zamocowanie próbki zmienny moment zginający, jak to jest przedstawione na rysunku 13.8.

8 Rys Przełomy zmęczeniowe prętów stalowych poddanych obciążeniom zmiennym [13], [14] Moment zginający M. w przypadku próbki podpartej obustronnie (rys. 13.7): F L M, dla L 0, 1 m M 0, 05 F [Nm] (13.12) 2 gdzie: L wartość stała dla maszyny UBM i równa 0,1 m.

9 Rys Schemat ideowy maszyny zmęczeniowej giętnoobrotowej UBM próbka podparta obustronnie oraz wykres momentów zginających Rys Schemat ideowy maszyny zmęczeniowej giętnoobrotowej UBM próbka zamocowana wspornikowo oraz wykres momentów zginających Naprężenia zginające obliczamy ze wzoru: d gdzie: W 32 3 Wymagane obciążenie F wyniesie: g M 0,05 F 32 F g 0, 5095 (13.13) 3 3 W d d wskaźnik przekroju na zginanie, d średnica próbki. 3 g d F, 0,5095 N 3 m 2 m m = [N] (13.14) Próbki

10 Przy obciążeniu momentem stałym stosuje się próbki cylindryczne o stałym przekroju. Dla tych próbek przedstawionych na rysunku 13.9 średnica d = 5,0; 7,5; 10,0; 12,0 [mm], natomiast R = d. Rys Schemat próbki cylindrycznej o stałym przekroju [12] Rys Schemat próbki cylindrycznej o zmiennym przekroju [12] Przy momencie zmiennym stosuje się próbki cylindryczne o zmiennym przekroju jak na rysunku Dla tych próbek średnice d są identyczne jak dla próbek o stałym przekroju, ale R zwiększa się odpowiednio ze wzrostem średnicy, zgodnie z tabelą Tabela 13.1 Wymiary części pomiarowej próbek cylindrycznych o zmiennym przekroju d [mm] R [mm] ,5 37, Te dwa rodzaje próbek mogą być wykonane z karbem obrączkowym typu V lub z karbem obrączkowym typu U. Przykładowe wymiary dla karbu obrączkowego typu U przedstawione są na rysunku i tabeli Dla próbek z karbem obrączkowym typu V wymiary d i D są takie same jak dla próbek z karbem obrączkowym typu U, ale z racji większego spiętrzenia naprężeń przy karbie typu V współczynnik kształtu k przyjmuje większe wartości (od 1,99 do 3,56). Rys Schemat próbki cylindrycznej z karbem obrączkowym typu U

11 Tabela 13.2 Wymiary części pomiarowej próbki cylindrycznej z karbem obrączkowym typu U D d r t k [mm] [mm] [mm] [mm] 6 5,0 0,50 0,50 1,89 9 7,5 0,75 0,75 1, ,0 1,00 1,00 1,89 Próbki do określania własności zmęczeniowych materiału powinny być pobierane ze strefy o jednakowych parametrach strukturalnych i jednakowym ukierunkowaniu włókien. W celu zmniejszenia rozrzutu wyników, kolejną próbkę do badań należy pobierać w sąsiedztwie poprzedniej. Próbki pobierane z elementów maszyn powinny mieć analogiczny kierunek włókien w stosunku do przykładanego obciążenia, jak kierunek włókien w badanym elemencie w stosunku do obciążenia roboczego. Próbki do badań zmęczeniowych wykonywane są metodą obróbki mechanicznej (toczenie, frezowanie, szlifowanie). Parametry obróbki mechanicznej powinny być jednakowe dla serii próbek. Podczas obróbki mechanicznej nie powinny nagrzewać się do temperatury, w której występują zmiany struktury materiału. Obróbka mechaniczna powinna zapewniać uzyskanie odpowiedniej chropowatości powierzchni; R a = 1,25 szlifowanej, R a = 0,05 polerowanej. W przypadku próbek z karbem wymagania dotyczące chropowatości powierzchni odnoszą się tylko do powierzchni karbu, natomiast pozostałe powierzchnie mogą być wykonane w 5 klasie chropowatości Przebieg ćwiczenia 6 Próby zmęczeniowe są bardzo czasochłonne. Aby uzyskać N 1010 cykli naprężeń przy 6 N n 5000[obr / min] potrzeba 2000 minut pracy maszyny zmęczeniowej. Dlatego n 5000 ćwiczenie będzie miało charakter poglądowy. Będzie przeprowadzona próba zmęczeniowa dla próbki z karbem, silnie obciążona, aby uzyskać możliwie szybko złom zmęczeniowy w zakresie wytrzymałości niskocyklowej (ograniczonej). Wszystkie czynności związane z obsługą maszyny wykonuje prowadzący ćwiczenia Opracowanie wyników badań Sprawozdanie z ćwiczenia powinno zawierać: 1) cel ćwiczenia, 2) definicje wytrzymałości zmęczeniowej trwałej i ograniczonej, 3) schemat stanowiska do badań oraz schemat obciążenia próbki wraz z wzorami obliczeniowymi, 4) rysunek próbki i dane dotyczące materiału, 5) protokół pomiarów, tabela protokółu dostępna jest na pulpicie monitora komputerowego pod nazwą zmęczenie.xls 6) rysunek uzyskanego przełomu zmęczeniowego, 7) analizę uzyskanych wyników.

12

POLITECHNIKA SZCZECINSKA WYDZIAŁ MECHANICZNY KATEDRA MECHANIKI

POLITECHNIKA SZCZECINSKA WYDZIAŁ MECHANICZNY KATEDRA MECHANIKI POLITECHNIKA SZCZECINSKA WYDZIAŁ MECHANICZNY KATEDRA MECHANIKI i PODSTAW KONSTRUKCJI MASZYN ZAKŁAD MECHANIKI TECHNICZNEJ Laboratorium Wytrzymałości Materiałów BADANIE METALI NA ZAMĘCZENIE Opracował: Jędrzej

Bardziej szczegółowo

Metody badań materiałów konstrukcyjnych

Metody badań materiałów konstrukcyjnych Wyznaczanie stałych materiałowych Nr ćwiczenia: 1 Wyznaczyć stałe materiałowe dla zadanych materiałów. Maszyna wytrzymałościowa INSTRON 3367. Stanowisko do badania wytrzymałości na skręcanie. Skalibrować

Bardziej szczegółowo

Temat 2 (2 godziny) : Próba statyczna ściskania metali

Temat 2 (2 godziny) : Próba statyczna ściskania metali Temat 2 (2 godziny) : Próba statyczna ściskania metali 2.1. Wstęp Próba statyczna ściskania jest podstawowym sposobem badania materiałów kruchych takich jak żeliwo czy beton, które mają znacznie lepsze

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA STATYCZNA PRÓBA ROZCIĄGANIA Próba statyczna rozciągania jest jedną z podstawowych prób stosowanych do określenia jakości materiałów konstrukcyjnych wg kryterium naprężeniowego w warunkach obciążeń statycznych.

Bardziej szczegółowo

13. ZMĘCZENIE METALI *

13. ZMĘCZENIE METALI * 13. ZMĘCZENIE METALI * 13.1. WSTĘP Jedną z najczęściej obserwowanych form zniszczenia konstrukcji jest zniszczenie zmęczeniowe, niezwykle groźne w skutkach, gdyż zazwyczaj niespodziewane. Zniszczenie to

Bardziej szczegółowo

Temat 1 (2 godziny): Próba statyczna rozciągania metali

Temat 1 (2 godziny): Próba statyczna rozciągania metali Temat 1 (2 godziny): Próba statyczna rozciągania metali 1.1. Wstęp Próba statyczna rozciągania jest podstawowym rodzajem badania metali, mających zastosowanie w technice i pozwala na określenie własności

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła próba rozciągania stali Numer ćwiczenia: 1 Laboratorium z przedmiotu:

Bardziej szczegółowo

Obciążenia zmienne. Zdeterminowane. Sinusoidalne. Okresowe. Rys Rodzaje obciążeń elementów konstrukcyjnych

Obciążenia zmienne. Zdeterminowane. Sinusoidalne. Okresowe. Rys Rodzaje obciążeń elementów konstrukcyjnych PODSTAWOWE DEFINICJE I OKREŚLENIA DOTYCZĄCE OBCIĄŻEŃ Rodzaje obciążeń W warunkach eksploatacji elementy konstrukcyjne maszyn i urządzeń medycznych poddane mogą być obciążeniom statycznym lub zmiennym.

Bardziej szczegółowo

Mechanika i wytrzymałość materiałów instrukcja do ćwiczenia laboratoryjnego

Mechanika i wytrzymałość materiałów instrukcja do ćwiczenia laboratoryjnego Mechanika i wytrzymałość materiałów instrukcja do ćwiczenia laboratoryjnego Cel ćwiczenia STATYCZNA PRÓBA ŚCISKANIA autor: dr inż. Marta Kozuń, dr inż. Ludomir Jankowski 1. Zapoznanie się ze sposobem przeprowadzania

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej

Bardziej szczegółowo

Laboratorium wytrzymałości materiałów

Laboratorium wytrzymałości materiałów Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie - Wyznaczanie wytrzymałości zmęczeniowej Z rc Przygotował: Andrzej Teter (do użytku wewnętrznego) Wyznaczanie wytrzymałości

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH KATEDRA MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Instrukcja przeznaczona jest dla studentów następujących kierunków: 1. Energetyka - sem. 3

Bardziej szczegółowo

Integralność konstrukcji w eksploatacji

Integralność konstrukcji w eksploatacji 1 Integralność konstrukcji w eksploatacji Wykład 0 PRZYPOMNINI PODSTAWOWYCH POJĘĆ Z WYTRZYMAŁOŚCI MATRIAŁÓW Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Badanie udarności metali Numer ćwiczenia: 7 Laboratorium z przedmiotu: wytrzymałość

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU

Bardziej szczegółowo

Materiały dydaktyczne. Semestr IV. Laboratorium

Materiały dydaktyczne. Semestr IV. Laboratorium Materiały dydaktyczne Wytrzymałość materiałów Semestr IV Laboratorium 1 Temat: Statyczna zwykła próba rozciągania metali. Praktyczne przeprowadzenie statycznej próby rozciągania metali, oraz zapoznanie

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW PRÓBA UDARNOŚCI METALI Opracował: Dr inż. Grzegorz Nowak Gliwice

Bardziej szczegółowo

BADANIA WŁAŚCIWOŚCI MECHANICZNYCH MATERIAŁÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

BADANIA WŁAŚCIWOŚCI MECHANICZNYCH MATERIAŁÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego BADANIA WŁAŚCIWOŚCI MECHANICZNYCH MATERIAŁÓW Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Właściwości Fizyczne (gęstość, ciepło właściwe, rozszerzalność

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 4

INSTRUKCJA DO CWICZENIA NR 4 INSTRUKCJA DO CWICZENIA NR 4 Temat ćwiczenia: Statyczna próba rozciągania metali Celem ćwiczenia jest wykonanie próby statycznego rozciągania metali, na podstawie której można określić następujące własności

Bardziej szczegółowo

Spis treści Przedmowa

Spis treści Przedmowa Spis treści Przedmowa 1. Wprowadzenie do problematyki konstruowania - Marek Dietrich (p. 1.1, 1.2), Włodzimierz Ozimowski (p. 1.3 -i-1.7), Jacek Stupnicki (p. l.8) 1.1. Proces konstruowania 1.2. Kryteria

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE ZACHOWANIA SIĘ MATERIAŁÓW PODCZAS ŚCISKANIA Instrukcja przeznaczona jest dla studentów

Bardziej szczegółowo

Spis treści. Przedmowa 11

Spis treści. Przedmowa 11 Podstawy konstrukcji maszyn. T. 1 / autorzy: Marek Dietrich, Stanisław Kocańda, Bohdan Korytkowski, Włodzimierz Ozimowski, Jacek Stupnicki, Tadeusz Szopa ; pod redakcją Marka Dietricha. wyd. 3, 2 dodr.

Bardziej szczegółowo

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R,5, umownej granicy plastyczności R,2 oraz modułu sprężystości podłużnej E 3.1. Wstęp Nie wszystkie materiały posiadają wyraźną granicę plastyczności

Bardziej szczegółowo

ĆWICZENIE 15 WYZNACZANIE (K IC )

ĆWICZENIE 15 WYZNACZANIE (K IC ) POLITECHNIKA WROCŁAWSKA Imię i Nazwisko... WYDZIAŁ MECHANICZNY Wydzia ł... Wydziałowy Zakład Wytrzymałości Materiałów Rok... Grupa... Laboratorium Wytrzymałości Materiałów Data ćwiczenia... ĆWICZENIE 15

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 5

INSTRUKCJA DO CWICZENIA NR 5 INTRUKCJA DO CWICZENIA NR 5 Temat ćwiczenia: tatyczna próba ściskania materiałów kruchych Celem ćwiczenia jest wykonanie próby statycznego ściskania materiałów kruchych, na podstawie której można określić

Bardziej szczegółowo

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2.

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2. Ocena Laboratorium Dydaktyczne Zakład Wytrzymałości Materiałów, W2/Z7 Dzień i godzina ćw. Imię i Nazwisko ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA 1. Protokół próby rozciągania 1.1.

Bardziej szczegółowo

Zmeczenie materialów

Zmeczenie materialów Zmeczenie materialów Rzeczywiste obciazenia elementów maszyn Naprezenia w dzwigarze skrzydla samolotu Naprezenia w ramie samochodu ciezarowego Rzeczywiste naprezenia maja charakter zmienny - czesto chaotyczny

Bardziej szczegółowo

Liczba godzin Liczba tygodni w tygodniu w semestrze

Liczba godzin Liczba tygodni w tygodniu w semestrze 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Ścisła próba rozciągania stali Numer ćwiczenia: 2 Laboratorium z przedmiotu:

Bardziej szczegółowo

STATYCZNA PRÓBA ŚCISKANIA

STATYCZNA PRÓBA ŚCISKANIA STATYCZNA PRÓBA ŚCISKANIA 1. WSTĘP Statyczna próba ściskania, obok statycznej próby rozciągania jest jedną z podstawowych prób stosowanych dla określenia właściwości mechanicznych materiałów. Celem próby

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła statyczna próba ściskania metali Numer ćwiczenia: 3 Laboratorium z przedmiotu:

Bardziej szczegółowo

WYTRZYMAŁOŚĆ RÓWNOWAŻNA FIBROBETONU NA ZGINANIE

WYTRZYMAŁOŚĆ RÓWNOWAŻNA FIBROBETONU NA ZGINANIE Artykul zamieszczony w "Inżynierze budownictwa", styczeń 2008 r. Michał A. Glinicki dr hab. inż., Instytut Podstawowych Problemów Techniki PAN Warszawa WYTRZYMAŁOŚĆ RÓWNOWAŻNA FIBROBETONU NA ZGINANIE 1.

Bardziej szczegółowo

MATERIAŁOZNAWSTWO vs WYTRZYMAŁOŚĆ MATERIAŁÓW

MATERIAŁOZNAWSTWO vs WYTRZYMAŁOŚĆ MATERIAŁÓW ĆWICZENIA LABORATORYJNE Z MATERIAŁOZNAWSTWA Statyczna próba rozciągania stali Wyznaczanie charakterystyki naprężeniowo odkształceniowej. Określanie: granicy sprężystości, plastyczności, wytrzymałości na

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

BADANIA WŁASNOŚCI MECHANICZNYCH MATERIAŁÓW KONSTRUKCYJNYCH 1. Próba rozciągania metali w temperaturze otoczenia (zg. z PN-EN :2002)

BADANIA WŁASNOŚCI MECHANICZNYCH MATERIAŁÓW KONSTRUKCYJNYCH 1. Próba rozciągania metali w temperaturze otoczenia (zg. z PN-EN :2002) Nazwisko i imię... Akademia Górniczo-Hutnicza Nazwisko i imię... Laboratorium z Wytrzymałości Materiałów Wydział... Katedra Wytrzymałości Materiałów Rok... Grupa... i Konstrukcji Data ćwiczenia... Ocena...

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Rozciąganie/ ściskanie prętów prostych Naprężenia i odkształcenia, statyczna próba rozciągania i ściskania, właściwości mechaniczne, projektowanie elementów obciążonych osiowo.

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 3 Temat ćwiczenia:

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 1 Temat ćwiczenia:

Bardziej szczegółowo

PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH

PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Reologia jest nauką,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW

Bardziej szczegółowo

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.

Bardziej szczegółowo

2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania

2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania UT-H Radom Instytut Mechaniki Stosowanej i Energetyki Laboratorium Wytrzymałości Materiałów instrukcja do ćwiczenia 2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania I ) C E L Ć W I

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE ZACHOWANIA SIĘ MATERIAŁÓW PODCZAS ŚCISKANIA Instrukcja przeznaczona jest dla studentów

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z

Bardziej szczegółowo

SPRAWOZDANIE LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW B Badanie własności mechanicznych materiałów konstrukcyjnych

SPRAWOZDANIE LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW B Badanie własności mechanicznych materiałów konstrukcyjnych Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji SPRAWOZDANIE B Badanie własności mechanicznych materiałów konstrukcyjnych Wydział Specjalność.. Nazwisko

Bardziej szczegółowo

Laboratorium wytrzymałości materiałów

Laboratorium wytrzymałości materiałów Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 1 - Statyczna próba rozciągania Przygotował: Andrzej Teter (do użytku wewnętrznego) Statyczna próba rozciągania Statyczną

Bardziej szczegółowo

Laboratorium Wytrzymałości Materiałów. Statyczna próba ściskania metali

Laboratorium Wytrzymałości Materiałów. Statyczna próba ściskania metali KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium Wytrzymałości Materiałów Statyczna próba ściskania metali Opracował : dr inż. Leus Mariusz Szczecin

Bardziej szczegółowo

PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW.

PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW. PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW. 1 Wiadomości wstępne 1.1 Zakres zastosowania stali do konstrukcji 1.2 Korzyści z zastosowania stali do konstrukcji 1.3 Podstawowe części i elementy

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH POLITECHNIKA WASZAWSKA WYDZIAŁ ELEKTYCZNY INSTYTUT ELEKTOTECHNIKI TEOETYCZNEJ I SYSTEMÓW INOMACYJNO-POMIAOWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTOMAGNETYCZNEJ PACOWNIA MATEIAŁOZNAWSTWA ELEKTOTECHNICZNEGO

Bardziej szczegółowo

POLITECHNIKA RZESZOWSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA

POLITECHNIKA RZESZOWSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA POLITECHNIK RZEZOWK im. IGNCEGO ŁUKIEWICZ WYDZIŁ BUDOWNICTW I INŻYNIERII ŚRODOWIK LBORTORIUM WYTRZYMŁOŚCI MTERIŁÓW Ćwiczenie nr 1 PRÓB TTYCZN ROZCIĄGNI METLI Rzeszów 4-1 - PRz, Katedra Mechaniki Konstrkcji

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU

Bardziej szczegółowo

Projektowanie i obliczanie połączeń i węzłów konstrukcji stalowych. Tom 2

Projektowanie i obliczanie połączeń i węzłów konstrukcji stalowych. Tom 2 Projektowanie i obliczanie połączeń i węzłów konstrukcji stalowych. Tom 2 Jan Bródka, Aleksander Kozłowski (red.) SPIS TREŚCI: 7. Węzły kratownic (Jan Bródka) 11 7.1. Wprowadzenie 11 7.2. Węzły płaskich

Bardziej szczegółowo

Zestaw pytań z konstrukcji i mechaniki

Zestaw pytań z konstrukcji i mechaniki Zestaw pytań z konstrukcji i mechaniki 1. Układ sił na przedstawionym rysunku a) jest w równowadze b) jest w równowadze jeśli jest to układ dowolny c) nie jest w równowadze d) na podstawie tego rysunku

Bardziej szczegółowo

Wyniki badań niskocyklowej wytrzymałości zmęczeniowej stali WELDOX 900

Wyniki badań niskocyklowej wytrzymałości zmęczeniowej stali WELDOX 900 BIULETYN WAT VOL. LVII, NR 1, 2008 Wyniki badań niskocyklowej wytrzymałości zmęczeniowej stali WELDOX 900 CZESŁAW GOSS, PAWEŁ MARECKI Wojskowa Akademia Techniczna, Wydział Mechaniczny, Katedra Budowy Maszyn,

Bardziej szczegółowo

OBLICZANIE KÓŁK ZĘBATYCH

OBLICZANIE KÓŁK ZĘBATYCH OBLICZANIE KÓŁK ZĘBATYCH koło podziałowe linia przyporu P R P N P O koło podziałowe Najsilniejsze zginanie zęba następuje wówczas, gdy siła P N jest przyłożona u wierzchołka zęba. Siłę P N można rozłożyć

Bardziej szczegółowo

α k = σ max /σ nom (1)

α k = σ max /σ nom (1) Badanie koncentracji naprężeń - doświadczalne wyznaczanie współczynnika kształtu oprac. dr inż. Ludomir J. Jankowski 1. Wstęp Występowaniu skokowych zmian kształtu obciążonego elementu, obecności otworów,

Bardziej szczegółowo

Konstrukcje spawane : połączenia / Kazimierz Ferenc, Jarosław Ferenc. Wydanie 3, 1 dodruk (PWN). Warszawa, Spis treści

Konstrukcje spawane : połączenia / Kazimierz Ferenc, Jarosław Ferenc. Wydanie 3, 1 dodruk (PWN). Warszawa, Spis treści Konstrukcje spawane : połączenia / Kazimierz Ferenc, Jarosław Ferenc. Wydanie 3, 1 dodruk (PWN). Warszawa, 2018 Spis treści Przedmowa 11 Przedmowa do wydania drugiego 12 Wykaz podstawowych oznaczeń 13

Bardziej szczegółowo

SPRAWOZDANIE: LABORATORIUM Z WYTRZYMAŁOŚCI MATERIAŁÓW B Badanie własności mechanicznych materiałów konstrukcyjnych

SPRAWOZDANIE: LABORATORIUM Z WYTRZYMAŁOŚCI MATERIAŁÓW B Badanie własności mechanicznych materiałów konstrukcyjnych Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji SPRAWOZDANIE: LABORATORIUM Z WYTRZYMAŁOŚCI MATERIAŁÓW B Badanie własności mechanicznych materiałów konstrukcyjnych

Bardziej szczegółowo

ZMĘCZENIE MATERIAŁU POD KONTROLĄ

ZMĘCZENIE MATERIAŁU POD KONTROLĄ ZMĘCZENIE MATERIAŁU POD KONTROLĄ Mechanika pękania 1. Dla nieograniczonej płyty stalowej ze szczeliną centralną o długości l = 2 [cm] i obciążonej naprężeniem S = 120 [MPa], wykonać wykres naprężeń y w

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

Zmęczenie Materiałów pod Kontrolą

Zmęczenie Materiałów pod Kontrolą 1 Zmęczenie Materiałów pod Kontrolą Wykład Nr 9 Wzrost pęknięć przy obciążeniach zmęczeniowych Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji http://zwmik.imir.agh.edu.pl

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

Katedra Inżynierii Materiałów Budowlanych

Katedra Inżynierii Materiałów Budowlanych Katedra Inżynierii Materiałów Budowlanych TEMAT PRACY: Badanie właściwości mechanicznych płyty "BEST" wykonanej z tworzywa sztucznego. ZLECENIODAWCY: Dropel Sp. z o.o. Bartosz Różański POSY REKLAMA Zlecenie

Bardziej szczegółowo

STATYCZNA PRÓBA SKRĘCANIA

STATYCZNA PRÓBA SKRĘCANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku

Bardziej szczegółowo

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%: Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny

Bardziej szczegółowo

Badanie ugięcia belki

Badanie ugięcia belki Badanie ugięcia belki Szczecin 2015 r Opracował : dr inż. Konrad Konowalski *) opracowano na podstawie skryptu [1] 1. Cel ćwiczenia Celem ćwiczenia jest: 1. Sprawdzenie doświadczalne ugięć belki obliczonych

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA O ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW TECH OLOGICZ A PRÓBA ZGI A IA Zasada wykonania próby. Próba polega

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 2 Temat ćwiczenia:

Bardziej szczegółowo

Materiały do wykładu na temat Obliczanie sił przekrojowych, naprężeń i zmian geometrycznych prętów rozciąganych iściskanych bez wyboczenia.

Materiały do wykładu na temat Obliczanie sił przekrojowych, naprężeń i zmian geometrycznych prętów rozciąganych iściskanych bez wyboczenia. Materiały do wykładu na temat Obliczanie sił przekrojowych naprężeń i zmian geometrycznych prętów rozciąganych iściskanych bez wyboczenia. Sprawdzanie warunków wytrzymałości takich prętów. Wydruk elektroniczny

Bardziej szczegółowo

Integralność konstrukcji

Integralność konstrukcji Integralność konstrukcji Wykład Nr 3 Zależność między naprężeniami i odkształceniami Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji 2 3.. Zależność

Bardziej szczegółowo

Próby udarowe. Opracował: XXXXXXX studia inŝynierskie zaoczne wydział mechaniczny semestr V. Gdańsk 2002 r.

Próby udarowe. Opracował: XXXXXXX studia inŝynierskie zaoczne wydział mechaniczny semestr V. Gdańsk 2002 r. Próby udarowe Opracował: XXXXXXX studia inŝynierskie zaoczne wydział mechaniczny semestr V Gdańsk 00 r. 1. Cel ćwiczenia. Przeprowadzenie ćwiczenia ma na celu: 1. zapoznanie się z próbą udarności;. zapoznanie

Bardziej szczegółowo

Probabilistyczny opis parametrów wytrzymałościowych stali EPSTAL i eksperymentalne potwierdzenie ich wartości

Probabilistyczny opis parametrów wytrzymałościowych stali EPSTAL i eksperymentalne potwierdzenie ich wartości Probabilistyczny opis parametrów wytrzymałościowych stali EPSTAL i eksperymentalne potwierdzenie ich wartości Prof. dr hab. inż. Tadeusz Chmielewski, Politechnika Opolska, mgr inż. Magdalena Piotrowska,

Bardziej szczegółowo

Informacje ogólne. Rys. 1. Rozkłady odkształceń, które mogą powstać w stanie granicznym nośności

Informacje ogólne. Rys. 1. Rozkłady odkształceń, które mogą powstać w stanie granicznym nośności Informacje ogólne Założenia dotyczące stanu granicznego nośności przekroju obciążonego momentem zginającym i siłą podłużną, przyjęte w PN-EN 1992-1-1, pozwalają na ujednolicenie procedur obliczeniowych,

Bardziej szczegółowo

NK315 EKSPOATACJA STATKÓW LATAJĄCYCH. Procesy degradacyjne i destrukcyjne (c.d.)

NK315 EKSPOATACJA STATKÓW LATAJĄCYCH. Procesy degradacyjne i destrukcyjne (c.d.) NK315 EKSPOATACJA STATKÓW LATAJĄCYCH Procesy degradacyjne i destrukcyjne (c.d.) 1 ZMĘCZENIE ZAKŁAD SAMOLOTÓW I ŚMIGŁOWCÓW obciążenia zmęczeniowe elementów konstrukcyjnych Obciążenia eksploatacyjne którym

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 N 0 3 19-0_1 Rok: II Semestr: 3 Forma studiów:

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,

Bardziej szczegółowo

SPRAWOZDANIE Z BADAŃ

SPRAWOZDANIE Z BADAŃ POLITECHNIKA ŁÓDZKA ul. Żeromskiego 116 90-924 Łódź KATEDRA BUDOWNICTWA BETONOWEGO NIP: 727 002 18 95 REGON: 000001583 LABORATORIUM BADAWCZE MATERIAŁÓW I KONSTRUKCJI BUDOWLANYCH Al. Politechniki 6 90-924

Bardziej szczegółowo

Laboratorium Wytrzymałości Materiałów

Laboratorium Wytrzymałości Materiałów KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium Wytrzymałości Materiałów Próba udarności Szczecin 2013 r. Opracował : dr inż. Konrad Konowalski

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

PaleZbrojenie 5.0. Instrukcja użytkowania

PaleZbrojenie 5.0. Instrukcja użytkowania Instrukcja użytkowania ZAWARTOŚĆ INSTRUKCJI UŻYTKOWANIA: 1. WPROWADZENIE 3 2. TERMINOLOGIA 3 3. PRZEZNACZENIE PROGRAMU 3 4. WPROWADZENIE DANYCH ZAKŁADKA DANE 4 5. ZASADY WYMIAROWANIA PRZEKROJU PALA 8 5.1.

Bardziej szczegółowo

SPRAWOZDANIE Z BADAŃ

SPRAWOZDANIE Z BADAŃ POLITECHNIKA ŁÓDZKA ul. Żeromskiego 116 90-924 Łódź KATEDRA BUDOWNICTWA BETONOWEGO NIP: 727 002 18 95 REGON: 000001583 LABORATORIUM BADAWCZE MATERIAŁÓW I KONSTRUKCJI BUDOWLANYCH Al. Politechniki 6 90-924

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Wytrzymałość materiałów Rok akademicki: 2030/2031 Kod: MEI-1-305-s Punkty ECTS: 2 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Edukacja Techniczno Informatyczna Specjalność:

Bardziej szczegółowo

DEGRADACJA MATERIAŁÓW

DEGRADACJA MATERIAŁÓW DEGRADACJA MATERIAŁÓW Zmęczenie materiałów Proces polegający na wielokrotnym obciążaniu elementu wywołującym zmienny stan naprężeń Zmienność w czasie t wyraża się częstotliwością, wielkością i rodzajem

Bardziej szczegółowo

WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G PRZEZ POMIAR KĄTA SKRĘCENIA

WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G PRZEZ POMIAR KĄTA SKRĘCENIA LABORATORIU WYTRZYAŁOŚCI ATERIAŁÓW Ćwiczenie 7 WYZNACZANIE ODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G PRZEZ POIAR KĄTA SKRĘCENIA 7.1. Wprowadzenie - pręt o przekroju kołowym W pręcie o przekroju kołowym, poddanym

Bardziej szczegółowo

Metody badań kamienia naturalnego: Oznaczanie wytrzymałości na zginanie pod działaniem siły skupionej

Metody badań kamienia naturalnego: Oznaczanie wytrzymałości na zginanie pod działaniem siły skupionej Metody badań kamienia naturalnego: Oznaczanie wytrzymałości na zginanie pod działaniem siły skupionej 1. Zasady metody Zasada metody polega na stopniowym obciążaniu środka próbki do badania, ustawionej

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

Probabilistyczny opis parametrów wytrzymałościowych stali zbrojeniowej EPSTAL i eksperymentalne potwierdzenie ich wartości

Probabilistyczny opis parametrów wytrzymałościowych stali zbrojeniowej EPSTAL i eksperymentalne potwierdzenie ich wartości Probabilistyczny opis parametrów wytrzymałościowych stali zbrojeniowej EPSTAL i eksperymentalne potwierdzenie ich wartości Tadeusz CHMIELEWSKI Magdalena PIOTROWSKA Probabilistyczny opis parametrów wytrzymałościowych

Bardziej szczegółowo

Ćwiczenie 6 STATYCZNA PRÓBA ROZCIĄGANIA *

Ćwiczenie 6 STATYCZNA PRÓBA ROZCIĄGANIA * Ćwiczenie 6 1. CEL ĆWICZENIA TATYCZNA PRÓBA ROZCIĄGANIA * Celem ćwiczenia jest zapoznanie się z przebiegiem próby rozciągania i wielkościami wyznaczanymi podczas tej próby. 2. WIADOMOŚCI PODTAWOWE Próba

Bardziej szczegółowo

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 2 Przykład obliczenia

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 2 Przykład obliczenia Materiały pomocnicze do projektowania z przedmiotu: Wprowadzenie do Techniki Ćwiczenie nr 2 Przykład obliczenia Opracował: dr inż. Andrzej J. Zmysłowski Katedra Podstaw Systemów Technicznych Wydział Organizacji

Bardziej szczegółowo

Badania wytrzymałościowe

Badania wytrzymałościowe WyŜsza Szkoła InŜynierii Dentystycznej im. prof. A.Meissnera w Ustroniu Badania wytrzymałościowe elementów drucianych w aparatach czynnościowych. Pod kierunkiem naukowym prof. V. Bednara Monika Piotrowska

Bardziej szczegółowo

Integralność konstrukcji

Integralność konstrukcji 1 Integralność konstrukcji Wykład Nr 1 Mechanizm pękania Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Konspekty wykładów dostępne na stronie: http://zwmik.imir.agh.edu.pl/dydaktyka/imir/index.htm

Bardziej szczegółowo

LABORATORIUM Z WYTRZYMAŁOŚCI MATERIAŁÓW

LABORATORIUM Z WYTRZYMAŁOŚCI MATERIAŁÓW Praca zbiorowa pod redakcją: Tadeusza BURCZYŃSKIEGO, Witolda BELUCHA, Antoniego JOHNA LABORATORIUM Z WYTRZYMAŁOŚCI MATERIAŁÓW Autorzy: Witold Beluch, Tadeusz Burczyński, Piotr Fedeliński, Antoni John,

Bardziej szczegółowo

BADANIA URZĄDZEŃ TECHNICZNYCH ELEMENTEM SYSTEMU BIEŻĄCEJ OCENY ICH STANU TECHNICZNEGO I PROGNOZOWANIA TRWAŁOŚCI

BADANIA URZĄDZEŃ TECHNICZNYCH ELEMENTEM SYSTEMU BIEŻĄCEJ OCENY ICH STANU TECHNICZNEGO I PROGNOZOWANIA TRWAŁOŚCI BADANIA URZĄDZEŃ TECHNICZNYCH ELEMENTEM SYSTEMU BIEŻĄCEJ OCENY ICH STANU TECHNICZNEGO I PROGNOZOWANIA TRWAŁOŚCI Opracował: Paweł Urbańczyk Zawiercie, marzec 2012 1 Charakterystyka stali stosowanych w energetyce

Bardziej szczegółowo

Próba statyczna zwykła rozciągania metali

Próba statyczna zwykła rozciągania metali Próba statyczna zwykła rozciągania metai Opracował: XXXXXXX stdia inŝynierskie zaoczne wydział mechaniczny semestr V Gdańsk 1 r. Wprowadzenie Podstawową próbą badań własności mechanicznych metai jest próba

Bardziej szczegółowo

Konstrukcje spawane Połączenia

Konstrukcje spawane Połączenia Ferenc Kazimierz, Ferenc Jarosław Konstrukcje spawane Połączenia 2006, wyd. 3, B5, s. 460, rys. 246, tabl. 67 ISBN 83-204-3229-4 cena 58,00 zł Rabat 10% cena 52,20 W książce w sposób nowatorski przedstawiono

Bardziej szczegółowo

1. BADANIE SPIEKÓW 1.1. Oznaczanie gęstości i porowatości spieków

1. BADANIE SPIEKÓW 1.1. Oznaczanie gęstości i porowatości spieków 1. BADANIE SPIEKÓW 1.1. Oznaczanie gęstości i porowatości spieków Gęstością teoretyczną spieku jest stosunek jego masy do jego objętości rzeczywistej, to jest objętości całkowitej pomniejszonej o objętość

Bardziej szczegółowo

Próba udarności. Opracował : dr inż. Konrad Konowalski *) Szczecin 2013 r. *) opracowano na podstawie skryptu [1]

Próba udarności. Opracował : dr inż. Konrad Konowalski *) Szczecin 2013 r. *) opracowano na podstawie skryptu [1] Próba udarności Opracował : dr inż. Konrad Konowalski *) Szczecin 2013 r. *) opracowano na podstawie skryptu [1] 1. Cel ćwiczenia Próby udarowe są próbami dynamicznymi, określającymi zdolność materiału

Bardziej szczegółowo

Laboratorium Wytrzymałości Materiałów

Laboratorium Wytrzymałości Materiałów Katedra Wytrzymałości Materiałów Instytut Mechaniki Budowli Wydział Inżynierii Lądowej Politechnika Krakowska Laboratorium Wytrzymałości Materiałów Praca zbiorowa pod redakcją S. Piechnika Skrypt dla studentów

Bardziej szczegółowo

I. Wstępne obliczenia

I. Wstępne obliczenia I. Wstępne obliczenia Dla złącza gwintowego narażonego na rozciąganie ze skręcaniem: 0,65 0,85 Przyjmuję 0,70 4 0,7 0,7 0,7 A- pole powierzchni przekroju poprzecznego rdzenia śruby 1,9 2,9 Q=6,3kN 13,546

Bardziej szczegółowo

CEL PRACY ZAKRES PRACY

CEL PRACY ZAKRES PRACY CEL PRACY. Analiza energetycznych kryteriów zęczenia wieloosiowego pod względe zastosowanych ateriałów, rodzajów obciążenia, wpływu koncentratora naprężenia i zakresu stosowalności dla ałej i dużej liczby

Bardziej szczegółowo