BAZY DANYCH. NIERELACYJNE BAZY DANYCH NoSQL I ASOCJACYJNE STRUKTURY DANYCH. Adrian Horzyk. Akademia Górniczo-Hutnicza

Wielkość: px
Rozpocząć pokaz od strony:

Download "BAZY DANYCH. NIERELACYJNE BAZY DANYCH NoSQL I ASOCJACYJNE STRUKTURY DANYCH. Adrian Horzyk. Akademia Górniczo-Hutnicza"

Transkrypt

1 BAZY DANYCH NIERELACYJNE BAZY DANYCH NoSQL I ASOCJACYJNE STRUKTURY DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium Biocybernetyki Kraków, al. Mickiewicza 0, paw. C/205 horzyk@agh.edu.pl, Google: Adrian Horzyk

2 NIERELACYJNE BAZ DANYCH (NoSQL) Mimo powszechności relacyjnych baz danych opartych na języku zapytań SQL, tabelach, relacjach i kluczach nie są jedynym ani najefektywniejszych schematem służącym do przechowywania i przetwarzania danych. Przez nierelacyjne bazy danych rozumie się wszystkie inne rodzaje baz danych, które nie są oparte na tabelach rekordów powiązanych kluczami. Nierelacyjne bazy danych pełnią szczególną rolę w systemach rozproszonych oraz w systemach przetwarzających BigData. Często łączone są bazy SQL z NoSQL

3 PORÓWNANIE BAZ DANYCH SQL z NoSQL Bazy SQL wymuszają tworzenie relacji, atomowość i normalizację Bazy NoSQL mogą być skalowane również horyzontalnie i nie wymagają tworzenia złączeń pomiędzy danymi rozrzuconymi po tabelach, aczkolwiek są zwykle trudniejsze w utrzymaniu, gdyż mogą zawierać duplikaty danych.

4 PORÓWNANIE BAZ DANYCH SQL z NoSQL Każdy wiersz bazy NoSQL może zawierać różne kolumny (atrybuty opisujące dany obiekt). Silniki baz NoSQL nie wymuszają relacji pomiędzy obiektami. Jeśli obiekty są opisane różnymi atrybutami, może być łatwiejsze wykorzystanie baz nierelacyjnych. W bazach NoSQL nie ma w zasadzie kolumn, lecz tylko listy atrybutów opisujących obiekty, które oczywiście mogą posiadać unikalnie reprezentujące je klucze pośród obiektów tego samego rodzaju. W bazach SQL nie dopuszcza się sytuacji, gdy każdy obiekt (np. krzesło, szafa czy samochód) opisane są różnymi atrybutami, a w praktyce tak zwykle czynimy, gdyż część obiektów z danej klasy może mieć cechy szczególne, które w zupełności nie występują u innych obiektów z tej klasy.

5 TEORIA CAP Według teorii CAP (Consistency - spójność, Availability - dostępność, Partition Tolerance niewrażliwość na podział pomiędzy węzłami) systemy bazodanowe mogą spełniać tylko dwa z tych warunków: CP Consistency & Partition Tolerance AP Availability & Partition Tolerance CA Consistency & Availability Consistency spójność Availability dostępność Partition Tolerance

6 TEORIA CAP Consistency - SPÓJNOŚĆ Consistency spójność oznacza, iż wszystkie węzły bazy danych będą miały takie same wartości, tzn. wszyscy użytkownicy rozproszonego systemu bazodanowego otrzymają takie same dane niezależnie od tego, z którego węzła systemu bazodanowego korzystają. Oznacza to konieczność replikacji w pozostałych węzłach systemu modyfikacji dokonanych w jednym z węzłów systemu bazodanowego. Consistency spójność Availability dostępność Partition Tolerance

7 TEORIA CAP Availability - DOSTĘPNOŚĆ Availability dostępność oznacza, iż operacje odczytu i zapisu będą zawsze możliwe, nawet gdy istnieje przerwa w komunikacji pomiędzy węzłami systemu bazodanowego. Oznacza to konieczność zrezygnowania ze spójności (consistency) [systemy AP], gdyż w tym przypadku nie ma możliwości bieżącego zsynchronizowania danych w sytuacji zapisu bądź z dostępności (availability) [systemy CP], co oznacza konieczność wyłączenia całego klastra w przypadku przerwy w połączeniu. Systemy CA są zwykle oparte na jednym węźle. Consistency spójność Availability dostępność Partition Tolerance

8 Systemy NoSQL i spójność danych W systemach NoSQL powszechnie poświęcana jest spójność (consistency) w celu zagwarantowania wysokiej dostępności danych i szybkości działania systemu bazodanowego. Takie podejście nie może być zastosowane np. do kont bankowych czy stanów magazynowych, gdzie dane muszą być obowiązkowo synchronizowane i spójne, gdyż w odwrotnym przypadku można byłoby zrobić np. kilka przelewów z tych samych pieniędzy czy zamówić towar, którego już nie ma na magazynie! W wielu systemach rozproszonych jednak utrzymanie takiej spójności danych nie jest potrzebne.

9 Zapytania w systemach NoSQL Bazy NoSQL nie mają sformalizowanych ani ustalonych zasad ani języka zapytań, więc sposób zapytań jest określany w zależności od przechowywanych danych i optymalizowany pod ich kątem. Odpowiedzialność za poprawność działania baz NoSQL spoczywa na programiście. Dla przyspieszenia działania można tworzyć indeksy tylko dla kluczy głównych opisujących poszczególne wiersze a nie dla dowolnych kolumn jak ma to miejsce w przypadku relacyjnych baz danych. Bazy NoSQL nie spełniają również standardu ACID (atomicity, consistency, isolation and durability). Trudniej jest również zadbać o transakcyjność operacji.

10 Zastosowania baz NoSQL Bazy NoSQL stosuje się w przypadku konieczności skalowania horyzontalnego, czyli gdy dany obiekt często zmienia atrybuty lub znacznie się różnią dla poszczególnych obiektów. Bazy SQL są znacząco lepsze jeśli skalowalność zachodzi głównie wertykalnie, a horyzontalnie atrybuty są stabilne i jasno określone. W przypadku prostych encji, czyli obiektów opisanych niewielką lecz zmienną ilością różnych atrybutów, skorzystanie z baz NoSQL może być korzystne, zaś w przypadku wielu skomplikowanych encji lepsze będzie zastosowanie baz SQL dla uniknięcia bałaganu lub błędów, dzięki mechanizmom wymuszania i kontroli relacji. W grach on-line, które przetwarzają wiele żądań na sekundę, bazy NoSQL mogą też być dobrym podejściem, gdyż wysoka wydajność i maksymalna przepustowość mogą być ważniejsze niż spójność.

11 Podział baz NoSQL Bazy NoSQL dzielimy na cztery podstawowe typy: Bazy oparte na kluczach i wartościach (Key-Values Stores) opierają się na kolekcji słowników, składających się z encji, w których z kluczem powiązane są wartości różnych atrybutów dla różnych encji. Stosowane są w nich funkcje haszujące w celu przyspieszenia odczytu, więc stosujemy je głównie tam, gdzie dane często się odczytuje. [Windows Azure Table Storage, Riak, Redis, Amazon SimpleDB, Berkley DB 12c, Dynomite] Bazy kolumnowe (Column Stores) są swoistą inwersją dla zapisu wierszowego, tzn. dane z tej samej kolumny zapisywane są obok siebie, co może oznaczać szybszy dostęp do danych w kolumnie, gdyż przeszukiwane są kolejne komórki w pamięci RAM, np. w przypadku funkcji agregujących, czyli,, AVR, SUM, COUNT. Stosuje się wyłącznie do małych baz przechowywanych w całości w pamięci RAM. [Apache Cassandra] Bazy dokumentowe (Document Stores) stosowane do przechowywania dokumentów zawierających wiele różnych atrybutów (np. rozmiar czcionki, formatowanie, załączniki różnych typów) oraz możliwość zagnieżdżania jednych dokumentów w innych [MongoDB, CouchDB, RavenDB] Bazy grafowe (Graph Stores) oparte są na grafach i o algorytmy grafowe, w których każdy obiekt może być opisany węzłem w grafie, a relacje pomiędzy nimi krawędziami. Łatwo więc znaleźć np. najkrótszą ścieżkę w grafie pomiędzy obiektami. [Neo4J, Titan, Sparksee, Giraph, InfoGrid] Korzystają z nich np. Facebook i LinkedIn

12 Grafowe asocjacyjne bazy danych Grafowe asocjacyjne bazy danych są rodzajem grafowych baz implementujących relacje pomiędzy danymi w postaci asocjacji. Asocjacje (powiązania pomiędzy danymi) mogą być dodatkowo ważone, definiując istotność takiej relacji (związku). Asocjacje reprezentują relacje, które są bogatsze niż w przypadku klasycznych baz relacyjnych. Obiekty reprezentowane przez węzły mogą charakteryzować się dowolnym stopniem złożoności i zagnieżdżenia oraz być zdefiniowane przy pomocy dowolnej ilości innych węzłów. Dane poszczególnych atrybutów są ze sobą powiązane i względem siebie uporządkowane, jeśli tylko można zdefiniować porządek dla tego atrybutu. Nie wymagają indeksacji ani haszowania, gdyż wszystkie dane są w naturalny sposób posortowane względem wszystkich atrybutów równocześnie. Dane reprezentujące wartości jednego atrybutu nie są duplikowane, lecz agregowane, co stanowi o dużej potencjalnej oszczędności w przechowywaniu danych w takiej postaci, szczególnie jeśli wartości danych często się powtarzają. Agregacja danych oraz powiązania pomiędzy nimi zapewniają bardzo szybki (w czasie stałym) dostęp do wszystkich powiązanych bezpośrednio lub pośrednio danych. Uzyskuje się również błyskawiczny dostęp do niektórych wartości funkcji agregujących (tj., ), jak również bardzo szybko można wyznaczać podobieństwa i różnice pomiędzy obiektami. W działaniu są więc dużo efektywniejsze niż relacyjne bazy danych, lecz niestety ze względu na ograniczenia sprzętowe mogą być stosowane tylko do danych, które mieszą się w pamięci RAM komputera. Największą skuteczność osiąga się w przypadku zastosowania równoległości. [AGDS Associative Graph Data Structure]

13 Przykład grafowych asocjacyjnych baz danych Dane z tabel z relacyjnych baz danych można przekształcić na postać asocjacyjnych grafów AGDS.

14 Przykład grafowych asocjacyjnych baz danych Dane z tabel z relacyjnych baz danych można przekształcić na postać asocjacyjnych grafów AGDS.

15 Przykład grafowych asocjacyjnych baz danych Dane z tabel z relacyjnych baz danych można przekształcić na postać asocjacyjnych grafów AGDS.

16 Przykład grafowych asocjacyjnych baz danych Wykrywanie duplikatów, podobieństw oraz i jest prymitywnie łatwe i szybkie.

17 Przykład grafowych asocjacyjnych baz danych Dochodzi do agregacji wartości i usunięcia wszystkich duplikatów danych!

18 Przykład grafowych asocjacyjnych baz danych Wykrywanie zależności i korelacji pomiędzy danymi można przeprowadzić błyskawicznie!

19 Przykład grafowych asocjacyjnych baz danych Wykrywanie podobieństw i różnic jest również proste i szybkie!

20 Przykład grafowych asocjacyjnych baz danych Z łatwością można je wykorzystać do grupowania (klasteryzacji) oraz klasyfikacji!

21 Przykład grafowych asocjacyjnych baz danych Z łatwością można je wykorzystać do grupowania (klasteryzacji) oraz klasyfikacji!

22 Przykład grafowych asocjacyjnych baz danych Łatwe do wykorzystania do dyskryminacji, klasyfikacji, grupowania (klasteryzacji) i analizy danych!

23 Grafowe asocjacyjne bazy danych w mózgu Grafowe asocjacyjne struktury danych są fundamentem działania ludzkiego mózgu, gdzie neurony aktywnie reprezentują różne obiekty o dowolnej złożoności oraz umożliwiają automatyczne przypominanie skojarzonych wcześniej informacji dzięki połączeniom między nimi.

24 Analiza grafowej asocjacyjnej bazy danych

25 Sortowanie względem wszystkich atrybutów TABELA R1 R2 R R4 R5 R6 R7 R8 R9 A1 A ( A ) ASSORT A1 A2 AANG SENSIN : A1 SENSIN : A2

26 Sortowanie względem wszystkich atrybutów TABELA R1 R2 R R4 R5 R6 R7 R8 R9 A1 A ( B ) ASSORT R1 2 AANG N1 2 SENSIN : A1 SENSIN : A2

27 Sortowanie względem wszystkich atrybutów TABELA R1 R2 R R4 R5 R6 R7 R8 R9 A1 A ( C ) ASSORT R2 8 1 AANG N1 N2 2 SENSIN : A1 SENSIN : A2 8

28 Sortowanie względem wszystkich atrybutów TABELA R1 R2 R R4 R5 R6 R7 R8 R9 A1 A ( D ) ASSORT R 9 AANG N1 N2 1 2 N SENSIN : A1 SENSIN : A2 8 9

29 Sortowanie względem wszystkich atrybutów TABELA R1 R2 R R4 R5 R6 R7 R8 R9 A1 A ( E ) ASSORT R4 AANG 1 N1 N2 N N4 1 2 SENSIN : A1 SENSIN : A2 8 9

30 Sortowanie względem wszystkich atrybutów TABELA R1 R2 R R4 R5 R6 R7 R8 R9 A1 A ( F ) ASSORT R5 4 8 AANG 1 N1 N2 N N4 1 2 SENSIN : A1 4 N5 SENSIN : A

31 Sortowanie względem wszystkich atrybutów TABELA R1 R2 R R4 R5 R6 R7 R8 R9 A1 A ( G ) ASSORT R6 4 5 AANG 1 N1 N2 N N4 1 2 SENSIN : A SENSIN : A2 N5 N6 8 9

32 Sortowanie względem wszystkich atrybutów TABELA R1 R2 R R4 R5 R6 R7 R8 R9 A1 A ( H ) ASSORT R7 AANG 1 N1 N2 N N4 1 2 SENSIN : A SENSIN : A2 N5 N6 8 9

33 Sortowanie względem wszystkich atrybutów TABELA R1 R2 R R4 R5 R6 R7 R8 R9 A1 A ( I ) ASSORT R8 9 1 AANG 1 N1 N2 N N4 1 2 SENSIN : A SENSIN : A2 N5 N6 8 9 ACON 9 N8

34 Sortowanie względem wszystkich atrybutów TABELA R1 R2 R R4 R5 R6 R7 R8 R9 A1 A ( J ) ASSORT R9 6 8 AANG 1 N1 N2 N N4 1 2 SENSIN : A SENSIN : A N5 N6 N8 N9 ACON

35 Sortowanie względem wszystkich atrybutów TABELA R1 R2 R R4 R5 R6 R8 R9 A1 A ASSORT R1 R7... R9 ( K ) AANG 1 N1 N2 N N4 1 2 ACON SENSIN : A SENSIN : A N5 N6 N8 N9 ACON

36 Przykład wnioskowania 1 2 SENSIN : A ZEWNĘTRZNE POBUDZANIE WEJŚĆ SENSORYCZNYCH 4 AANG N1 N2 N N4 1 ACON 5 8 SENSIN : A2 N5 N6 N8 N9 ACON 9

37 Przykład wnioskowania 1 2 SENSIN : A ZEWNĘTRZNE POBUDZANIE NEURONU AANG N1 N2 N N4 1 ACON 5 8 SENSIN : A2 N5 N6 N8 N9 ACON 9

38 ZAAWANSOWANE BAZY I STRUKTURY DANYCH

BAZY DANYCH NORMALIZACJA BAZ DANYCH. Microsoft Access. Adrian Horzyk. Akademia Górniczo-Hutnicza

BAZY DANYCH NORMALIZACJA BAZ DANYCH. Microsoft Access. Adrian Horzyk. Akademia Górniczo-Hutnicza BAZY DANYCH Microsoft Access NORMALIZACJA BAZ DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii

Bardziej szczegółowo

Adrian Horzyk

Adrian Horzyk Metody Inteligencji Obliczeniowej Metoda K Najbliższych Sąsiadów (KNN) Adrian Horzyk horzyk@agh.edu.pl AGH Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

Hurtownie danych wykład 5

Hurtownie danych wykład 5 Hurtownie danych wykład 5 dr Sebastian Zając SGH Warszawa 7 lutego 2017 1 Współbieżność i integracja Niezgodność impedancji 2 bazy danych Współbieżność i integracja Niezgodność impedancji Bazy relacyjne

Bardziej szczegółowo

BAZY DANYCH NORMALIZACJA BAZ DANYCH. Microsoft Access. Adrian Horzyk. Akademia Górniczo-Hutnicza

BAZY DANYCH NORMALIZACJA BAZ DANYCH. Microsoft Access. Adrian Horzyk. Akademia Górniczo-Hutnicza BAZY DANYCH Microsoft Access NORMALIZACJA BAZ DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii

Bardziej szczegółowo

PROLOG WSTĘP DO INFORMATYKI. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej.

PROLOG WSTĘP DO INFORMATYKI. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej. Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk PROLOG www.agh.edu.pl Pewnego dnia przyszedł na świat komputer Komputery

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY

METODY INŻYNIERII WIEDZY METODY INŻYNIERII WIEDZY WALIDACJA KRZYŻOWA dla ZAAWANSOWANEGO KLASYFIKATORA KNN ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

MongoDB. wprowadzenie. dr inż. Paweł Boiński, Politechnika Poznańska

MongoDB. wprowadzenie. dr inż. Paweł Boiński, Politechnika Poznańska MongoDB wprowadzenie dr inż. Paweł Boiński, Politechnika Poznańska Plan Historia Podstawowe pojęcia: Dokument Kolekcja Generowanie identyfikatora Model danych Dokumenty zagnieżdżone Dokumenty z referencjami

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY ASOCJACYJNA REPREZENTACJA POWIĄZANYCH TABEL I WNIOSKOWANIE IGOR CZAJKOWSKI

METODY INŻYNIERII WIEDZY ASOCJACYJNA REPREZENTACJA POWIĄZANYCH TABEL I WNIOSKOWANIE IGOR CZAJKOWSKI METODY INŻYNIERII WIEDZY ASOCJACYJNA REPREZENTACJA POWIĄZANYCH TABEL I WNIOSKOWANIE IGOR CZAJKOWSKI CELE PROJEKTU Transformacja dowolnej bazy danych w min. 3 postaci normalnej do postaci Asocjacyjnej Grafowej

Bardziej szczegółowo

Hbase, Hive i BigSQL

Hbase, Hive i BigSQL Hbase, Hive i BigSQL str. 1 Agenda 1. NOSQL a HBase 2. Architektura HBase 3. Demo HBase 4. Po co Hive? 5. Apache Hive 6. Demo hive 7. BigSQL 1 HBase Jest to rozproszona trwała posortowana wielowymiarowa

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY

METODY INŻYNIERII WIEDZY METODY INŻYNIERII WIEDZY Metoda K Najbliższych Sąsiadów K-Nearest Neighbours (KNN) ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY

METODY INŻYNIERII WIEDZY METODY INŻYNIERII WIEDZY Metoda K Najbliższych Sąsiadów K-Nearest Neighbours (KNN) ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

Bazy danych NoSQL. wprowadzenie. Szymon Francuzik Poznań,

Bazy danych NoSQL. wprowadzenie. Szymon Francuzik Poznań, Bazy danych NoSQL wprowadzenie Szymon Francuzik szymon.francuzik@cs.put.poznan.pl Poznań, 16.05.2012 Szymon Francuzik szymon.francuzik@cs.put.poznan.pl Bazy () danych NoSQL Poznań, 16.05.2012 1 / 37 Plan

Bardziej szczegółowo

NoSQL & relax with CouchDB

NoSQL & relax with CouchDB NoSQL & relax with PyWaw #23 8 kwiecień 2013 Agenda 1 NoSQL - nierelacyjne systemy baz danych Wprowadzenie do NoSQL Rodzaje i porównanie baz NoSQL Polyglot persistence 2 Projekt w CERN wykorzystujacy 3

Bardziej szczegółowo

Pojęcie bazy danych. Funkcje i możliwości.

Pojęcie bazy danych. Funkcje i możliwości. Pojęcie bazy danych. Funkcje i możliwości. Pojęcie bazy danych Baza danych to: zbiór informacji zapisanych według ściśle określonych reguł, w strukturach odpowiadających założonemu modelowi danych, zbiór

Bardziej szczegółowo

Adrian Horzyk

Adrian Horzyk Sztuczne Systemy Skojarzeniowe SSS Asocjacyjne grafowe struktury danych AGDS Associative Graph Data Structure Adrian Horzyk horzyk@agh.edu.pl AGH Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,

Bardziej szczegółowo

Bazy danych 12. Bazy NoSQL. P. F. Góra

Bazy danych 12. Bazy NoSQL. P. F. Góra Bazy danych 12. Bazy NoSQL P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2019 Bazy NoSQL: Nierelacyjne bazy danych, zaprojektowane (między innymi) do tego, aby rozwiazywać problemy z dostępnościa i spójnościa

Bardziej szczegółowo

Wykład XII. optymalizacja w relacyjnych bazach danych

Wykład XII. optymalizacja w relacyjnych bazach danych Optymalizacja wyznaczenie spośród dopuszczalnych rozwiązań danego problemu, rozwiązania najlepszego ze względu na przyjęte kryterium jakości ( np. koszt, zysk, niezawodność ) optymalizacja w relacyjnych

Bardziej szczegółowo

Bazy danych NoSQL. Szymon Francuzik szymon.francuzik@cs.put.poznan.pl. Poznań, 29.10.2012

Bazy danych NoSQL. Szymon Francuzik szymon.francuzik@cs.put.poznan.pl. Poznań, 29.10.2012 Bazy danych NoSQL Szymon Francuzik szymon.francuzik@cs.put.poznan.pl Poznań, 29.10.2012 Szymon Francuzik szymon.francuzik@cs.put.poznan.pl Bazy () danych NoSQL Poznań, 29.10.2012 1 / 45 Plan prezentacji

Bardziej szczegółowo

Wprowadzenie do NoSql. Maksymilian Wiesiołek

Wprowadzenie do NoSql. Maksymilian Wiesiołek Wprowadzenie do NoSql Maksymilian Wiesiołek Agenda O mnie, ACID a CAP, wstęp do NoSql PostgreSql, Redis Hbase, MongoDb, Neo4j, Agenda Coherence, Rozwiązania hybrydowe, Na co warto zwrócić uwagę, Zagrożenia,

Bardziej szczegółowo

Organizacyjnie. Prowadzący: dr Mariusz Rafało (hasło: BIG)

Organizacyjnie. Prowadzący: dr Mariusz Rafało   (hasło: BIG) Big Data Organizacyjnie Prowadzący: dr Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło: BIG) Automatyzacja Automatyzacja przetwarzania: Apache NiFi Źródło: nifi.apache.org 4 Automatyzacja

Bardziej szczegółowo

*Grafomania z. Neo4j. Praktyczne wprowadzenie do grafowej bazy danych.

*Grafomania z. Neo4j. Praktyczne wprowadzenie do grafowej bazy danych. *Grafomania z Neo4j Praktyczne wprowadzenie do grafowej bazy danych. Jak zamodelować relacyjną bazę danych reprezentującą następujący fragment rzeczywistości: Serwis WWW opisuje pracowników różnych firm

Bardziej szczegółowo

WSTĘP DO INFORMATYKI. Struktury liniowe

WSTĘP DO INFORMATYKI. Struktury liniowe Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk Struktury liniowe www.agh.edu.pl STRUKTURY LINIOWE SEKWENCJE Struktury

Bardziej szczegółowo

Adrian Horzyk

Adrian Horzyk Sztuczne Systemy Skojarzeniowe SSS Relacje Bazodanowe czy Asocjacje AGDS? DB Relations v AGDS Associations? Adrian Horzyk horzyk@agh.edu.pl AGH Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,

Bardziej szczegółowo

Big Data i 5V Nowe wyzwania w świecie danych Krzysztof Goczyła

Big Data i 5V Nowe wyzwania w świecie danych Krzysztof Goczyła Big Data i 5V Nowe wyzwania w świecie danych Krzysztof Goczyła Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska kris@eti.pg.gda.pl Sopot, 10.09.2014 1 O czym będzie? Co to jest Big

Bardziej szczegółowo

TRANSFORMACJE I JAKOŚĆ DANYCH

TRANSFORMACJE I JAKOŚĆ DANYCH METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING TRANSFORMACJE I JAKOŚĆ DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium

Bardziej szczegółowo

BAZY DANYCH MAKRA I PRZYCISKI. Microsoft Access. Adrian Horzyk. Akademia Górniczo-Hutnicza

BAZY DANYCH MAKRA I PRZYCISKI. Microsoft Access. Adrian Horzyk. Akademia Górniczo-Hutnicza BAZY DANYCH Microsoft Access MAKRA I PRZYCISKI Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

Szkolenie wycofane z oferty. Apache Cassandra - modelowanie, wydajność, analiza danych

Szkolenie wycofane z oferty. Apache Cassandra - modelowanie, wydajność, analiza danych Szkolenie wycofane z oferty Program szkolenia: Apache Cassandra - modelowanie, wydajność, analiza danych Informacje: Nazwa: Kod: Kategoria: Grupa docelowa: Czas trwania: Forma: Apache Cassandra - modelowanie,

Bardziej szczegółowo

Bazy Danych. C. J. Date, Wprowadzenie do systemów baz danych, WNT - W-wa, (seria: Klasyka Informatyki), 2000

Bazy Danych. C. J. Date, Wprowadzenie do systemów baz danych, WNT - W-wa, (seria: Klasyka Informatyki), 2000 Bazy Danych LITERATURA C. J. Date, Wprowadzenie do systemów baz danych, WNT - W-wa, (seria: Klasyka Informatyki), 2000 J. D. Ullman, Systemy baz danych, WNT - W-wa, 1998 J. D. Ullman, J. Widom, Podstawowy

Bardziej szczegółowo

77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego.

77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego. 77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego. Przy modelowaniu bazy danych możemy wyróżnić następujące typy połączeń relacyjnych: jeden do wielu, jeden do jednego, wiele

Bardziej szczegółowo

Definicja. Not Only SQL

Definicja. Not Only SQL Definicja Not Only SQL Baza danych NoSQL to program zapewniający szybki dostęp do danych różniący się w jakiś sposób od stadardowych baz RDBMS. Baza NoSQL to szereg różnych rozwiązań nazwanych jednym określeniem.

Bardziej szczegółowo

Nierelacyjne bazy danych

Nierelacyjne bazy danych Nierelacyjne bazy danych Wprowadzenie do baz danych typu NoSQL Grzegorz Gołaszewski, Wojciech Waloszek, Teresa Zawadzka, Michał Zawadzki Zasady prowadzenia przedmiotu (1) Osoby prowadzące: mgr inż. Grzegorz

Bardziej szczegółowo

Przetwarzanie danych z wykorzystaniem technologii NoSQL na przykładzie serwisu Serp24

Przetwarzanie danych z wykorzystaniem technologii NoSQL na przykładzie serwisu Serp24 Przetwarzanie danych z wykorzystaniem technologii NoSQL na przykładzie serwisu Serp24 Agenda Serp24 NoSQL Integracja z CMS Drupal Przetwarzanie danych Podsumowanie Serp24 Darmowe narzędzie Ułatwia planowanie

Bardziej szczegółowo

BAZY DANYCH WYKŁAD 5 NO-SQL DATABASE

BAZY DANYCH WYKŁAD 5 NO-SQL DATABASE BAZY DANYCH WYKŁAD 5 NO-SQL DATABASE CO TO JEST NOSQL NoSQL obejmuje szeroką gamę różnych technologii baz danych, które zostały opracowane w odpowiedzi na wymagania stawiane w budowaniu nowoczesnych aplikacji:

Bardziej szczegółowo

WIEDZA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza

WIEDZA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING WIEDZA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki

Bardziej szczegółowo

Podstawowe pojęcia dotyczące relacyjnych baz danych. mgr inż. Krzysztof Szałajko

Podstawowe pojęcia dotyczące relacyjnych baz danych. mgr inż. Krzysztof Szałajko Podstawowe pojęcia dotyczące relacyjnych baz danych mgr inż. Krzysztof Szałajko Czym jest baza danych? Co rozumiemy przez dane? Czym jest system zarządzania bazą danych? 2 / 25 Baza danych Baza danych

Bardziej szczegółowo

Indeksy w bazach danych. Motywacje. Techniki indeksowania w eksploracji danych. Plan prezentacji. Dotychczasowe prace badawcze skupiały się na

Indeksy w bazach danych. Motywacje. Techniki indeksowania w eksploracji danych. Plan prezentacji. Dotychczasowe prace badawcze skupiały się na Techniki indeksowania w eksploracji danych Maciej Zakrzewicz Instytut Informatyki Politechnika Poznańska Plan prezentacji Zastosowania indeksów w systemach baz danych Wprowadzenie do metod eksploracji

Bardziej szczegółowo

BAZY DANYCH. Microsoft Access. Adrian Horzyk OPTYMALIZACJA BAZY DANYCH I TWORZENIE INDEKSÓW. Akademia Górniczo-Hutnicza

BAZY DANYCH. Microsoft Access. Adrian Horzyk OPTYMALIZACJA BAZY DANYCH I TWORZENIE INDEKSÓW. Akademia Górniczo-Hutnicza BAZY DANYCH Microsoft Access OPTYMALIZACJA BAZY DANYCH I TWORZENIE INDEKSÓW Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki

Bardziej szczegółowo

NoSQL: Riak. dr inż. Sebastian Ernst Katedra Informatyki Stosowanej

NoSQL: Riak. dr inż. Sebastian Ernst Katedra Informatyki Stosowanej NoSQL: Riak dr inż. Sebastian Ernst Katedra Informatyki Stosowanej Twierdzenie CAP W przypadku rozdziału węzłów (partition), możliwe jest zachowanie jednej z dwóch cech: spójności (consistency) wszystkie

Bardziej szczegółowo

Systemy baz danych w zarządzaniu przedsiębiorstwem. W poszukiwaniu rozwiązania problemu, najbardziej pomocna jest znajomość odpowiedzi

Systemy baz danych w zarządzaniu przedsiębiorstwem. W poszukiwaniu rozwiązania problemu, najbardziej pomocna jest znajomość odpowiedzi Systemy baz danych w zarządzaniu przedsiębiorstwem W poszukiwaniu rozwiązania problemu, najbardziej pomocna jest znajomość odpowiedzi Proces zarządzania danymi Zarządzanie danymi obejmuje czynności: gromadzenie

Bardziej szczegółowo

Oracle11g: Wprowadzenie do SQL

Oracle11g: Wprowadzenie do SQL Oracle11g: Wprowadzenie do SQL OPIS: Kurs ten oferuje uczestnikom wprowadzenie do technologii bazy Oracle11g, koncepcji bazy relacyjnej i efektywnego języka programowania o nazwie SQL. Kurs dostarczy twórcom

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne Bazy danych Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności November 28, 2016 1 Płaskie pliki 2 Hierarchiczne bazy danych 3 Sieciowe bazy danych 4 Relacyjne bazy danych 5 Kolumnowe Bazy

Bardziej szczegółowo

Wprowadzenie do baz NoSQL

Wprowadzenie do baz NoSQL Wprowadzenie do baz NoSQL Technologie zarządzania treścią dr inż. Robert Perliński rperlinski@icis.pcz.pl Politechnika Częstochowska Instytut Informatyki Teoretycznej i Stosowanej 13 października 2016

Bardziej szczegółowo

Definicja bazy danych TECHNOLOGIE BAZ DANYCH. System zarządzania bazą danych (SZBD) Oczekiwania wobec SZBD. Oczekiwania wobec SZBD c.d.

Definicja bazy danych TECHNOLOGIE BAZ DANYCH. System zarządzania bazą danych (SZBD) Oczekiwania wobec SZBD. Oczekiwania wobec SZBD c.d. TECHNOLOGIE BAZ DANYCH WYKŁAD 1 Wprowadzenie do baz danych. Normalizacja. (Wybrane materiały) Dr inż. E. Busłowska Definicja bazy danych Uporządkowany zbiór informacji, posiadający własną strukturę i wartość.

Bardziej szczegółowo

Hurtownie danych. 31 stycznia 2017

Hurtownie danych. 31 stycznia 2017 31 stycznia 2017 Definicja hurtowni danych Hurtownia danych wg Williama Inmona zbiór danych wyróżniający się następującymi cechami uporządkowany tematycznie zintegrowany zawierający wymiar czasowy nieulotny

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: BAZY DANYCH 2. Kod przedmiotu: Bda 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Informatyka Stosowana

Bardziej szczegółowo

Indeksowanie w bazach danych

Indeksowanie w bazach danych w bazach Katedra Informatyki Stosowanej AGH 5grudnia2013 Outline 1 2 3 4 Czym jest indeks? Indeks to struktura, która ma przyspieszyć wyszukiwanie. Indeks definiowany jest dla atrybutów, które nazywamy

Bardziej szczegółowo

Tabela wewnętrzna - definicja

Tabela wewnętrzna - definicja ABAP/4 Tabela wewnętrzna - definicja Temporalna tabela przechowywana w pamięci operacyjnej serwera aplikacji Tworzona, wypełniana i modyfikowana jest przez program podczas jego wykonywania i usuwana, gdy

Bardziej szczegółowo

Wprowadzenie do Hurtowni Danych

Wprowadzenie do Hurtowni Danych Wprowadzenie do Hurtowni Danych Organizacyjnie Prowadzący: mgr. Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło HD2) Literatura 1. Inmon, W., Linstedt, D. (2014). Data Architecture: A

Bardziej szczegółowo

Obiektowość BD Powtórka Czas odpowiedzi. Bazy Danych i Systemy informacyjne Wykład 14. Piotr Syga

Obiektowość BD Powtórka Czas odpowiedzi. Bazy Danych i Systemy informacyjne Wykład 14. Piotr Syga Bazy Danych i Systemy informacyjne Wykład 14 Piotr Syga 18.01.2019 Motywacja Ograniczenia relacyjnych baz danych proste typu i struktury klucze (w tym sztuczne) relacje między tabelami uwzględniane w triggerach

Bardziej szczegółowo

Systemy baz danych. mgr inż. Sylwia Glińska

Systemy baz danych. mgr inż. Sylwia Glińska Systemy baz danych Wykład 1 mgr inż. Sylwia Glińska Baza danych Baza danych to uporządkowany zbiór danych z określonej dziedziny tematycznej, zorganizowany w sposób ułatwiający do nich dostęp. System zarządzania

Bardziej szczegółowo

WSTĘP DO INFORMATYKI. Drzewa i struktury drzewiaste

WSTĘP DO INFORMATYKI. Drzewa i struktury drzewiaste Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk Drzewa i struktury drzewiaste www.agh.edu.pl DEFINICJA DRZEWA Drzewo

Bardziej szczegółowo

Nowe technologie baz danych

Nowe technologie baz danych Nowe technologie baz danych Partycjonowanie Partycjonowanie jest fizycznym podziałem danych pomiędzy różne pliki bazy danych Partycjonować można tabele i indeksy bazy danych Użytkownik bazy danych nie

Bardziej szczegółowo

Baza danych. Baza danych to:

Baza danych. Baza danych to: Baza danych Baza danych to: zbiór danych o określonej strukturze, zapisany na zewnętrznym nośniku (najczęściej dysku twardym komputera), mogący zaspokoić potrzeby wielu użytkowników korzystających z niego

Bardziej szczegółowo

WPROWADZENIE DO BAZ DANYCH

WPROWADZENIE DO BAZ DANYCH WPROWADZENIE DO BAZ DANYCH Pojęcie danych i baz danych Dane to wszystkie informacje jakie przechowujemy, aby w każdej chwili mieć do nich dostęp. Baza danych (data base) to uporządkowany zbiór danych z

Bardziej szczegółowo

WSTĘP I TAKSONOMIA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza

WSTĘP I TAKSONOMIA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING WSTĘP I TAKSONOMIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. EKSPLORACJA DANYCH Ćwiczenia. Adrian Horzyk. Akademia Górniczo-Hutnicza

METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. EKSPLORACJA DANYCH Ćwiczenia. Adrian Horzyk. Akademia Górniczo-Hutnicza METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING EKSPLORACJA DANYCH Ćwiczenia Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

BAZY DANYCH. Microsoft Access. Adrian Horzyk OPTYMALIZACJA BAZY DANYCH I TWORZENIE INDEKSÓW. Akademia Górniczo-Hutnicza

BAZY DANYCH. Microsoft Access. Adrian Horzyk OPTYMALIZACJA BAZY DANYCH I TWORZENIE INDEKSÓW. Akademia Górniczo-Hutnicza BAZY DANYCH Microsoft Access OPTYMALIZACJA BAZY DANYCH I TWORZENIE INDEKSÓW Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki

Bardziej szczegółowo

Informacje wstępne Autor Zofia Kruczkiewicz Wzorce oprogramowania 4

Informacje wstępne Autor Zofia Kruczkiewicz Wzorce oprogramowania 4 Utrwalanie danych zastosowanie obiektowego modelu danych warstwy biznesowej do generowania schematu relacyjnej bazy danych Informacje wstępne Autor Zofia Kruczkiewicz Wzorce oprogramowania 4 1. Relacyjne

Bardziej szczegółowo

Rozdział 1 Wprowadzenie do baz danych. (c) Instytut Informatyki Politechniki Poznańskiej 1

Rozdział 1 Wprowadzenie do baz danych. (c) Instytut Informatyki Politechniki Poznańskiej 1 Rozdział 1 Wprowadzenie do baz danych 1 Model danych 2 Funkcje systemu zarządzania bazą danych Wymagania spójność bazy danych po awarii trwałość danych wielodostęp poufność danych wydajność rozproszenie

Bardziej szczegółowo

Tworzenie aplikacji bazodanowych

Tworzenie aplikacji bazodanowych Wydział Informatyki Politechnika Białostocka Studia stacjonarne Tworzenie aplikacji bazodanowych Prowadzący: pokój: E-mail: WWW: Małgorzata Krętowska, Agnieszka Oniśko 206 (Małgorzata Krętowska), 207 (Agnieszka

Bardziej szczegółowo

SQL Server i T-SQL w mgnieniu oka : opanuj język zapytań w 10 minut dziennie / Ben Forta. Gliwice, Spis treści

SQL Server i T-SQL w mgnieniu oka : opanuj język zapytań w 10 minut dziennie / Ben Forta. Gliwice, Spis treści SQL Server i T-SQL w mgnieniu oka : opanuj język zapytań w 10 minut dziennie / Ben Forta. Gliwice, 2017 Spis treści O autorze 9 Wprowadzenie 11 Lekcja 1. Zrozumieć SQL 15 Podstawy baz danych 15 Język SQL

Bardziej szczegółowo

PRZESTRZENNE BAZY DANYCH WYKŁAD 2

PRZESTRZENNE BAZY DANYCH WYKŁAD 2 PRZESTRZENNE BAZY DANYCH WYKŁAD 2 Baza danych to zbiór plików, które fizycznie przechowują dane oraz system, który nimi zarządza (DBMS, ang. Database Management System). Zadaniem DBMS jest prawidłowe przechowywanie

Bardziej szczegółowo

Wprowadzenie do Informatyki. Bazy Danych. mgr inż. Michał Grygierzec mgry@agh.edu.pl. http://home.agh.edu.pl/~horzyk/lectures/pi/ahdydpiwykl10.

Wprowadzenie do Informatyki. Bazy Danych. mgr inż. Michał Grygierzec mgry@agh.edu.pl. http://home.agh.edu.pl/~horzyk/lectures/pi/ahdydpiwykl10. Wprowadzenie do Informatyki Bazy Danych mgr inż. Michał Grygierzec mgry@agh.edu.pl http://home.agh.edu.pl/~horzyk/lectures/pi/ahdydpiwykl10.html WDI Bazy Danych Agenda: 1) Wstęp 2) Relacyjne bazy danych

Bardziej szczegółowo

Projektowanie rozwiązań Big Data z wykorzystaniem Apache Hadoop & Family

Projektowanie rozwiązań Big Data z wykorzystaniem Apache Hadoop & Family Kod szkolenia: Tytuł szkolenia: HADOOP Projektowanie rozwiązań Big Data z wykorzystaniem Apache Hadoop & Family Dni: 5 Opis: Adresaci szkolenia: Szkolenie jest adresowane do programistów, architektów oraz

Bardziej szczegółowo

HURTOWNIE DANYCH I BUSINESS INTELLIGENCE

HURTOWNIE DANYCH I BUSINESS INTELLIGENCE BAZY DANYCH HURTOWNIE DANYCH I BUSINESS INTELLIGENCE Akademia Górniczo-Hutnicza w Krakowie Adrian Horzyk horzyk@agh.edu.pl Google: Horzyk HURTOWNIE DANYCH Hurtownia danych (Data Warehouse) to najczęściej

Bardziej szczegółowo

Więzy integralności referencyjnej i klucze obce. PYTANIE NA EGZAMIN LICENCJACKI

Więzy integralności referencyjnej i klucze obce. PYTANIE NA EGZAMIN LICENCJACKI Więzy integralności referencyjnej i klucze obce. PYTANIE NA EGZAMIN LICENCJACKI Relacyjny model baz danych. PYTANIE NA EGZAMIN LICENCJACKI Wszystkie wartości danych oparte są na prostych typach danych.

Bardziej szczegółowo

Wprowadzenie do Hurtowni Danych

Wprowadzenie do Hurtowni Danych Wprowadzenie do Hurtowni Danych BIG DATA Definicja Big Data Big Data definiowane jest jako składowanie zbiorów danych o tak dużej złożoności i ilości danych, że jest to niemożliwe przy zastosowaniu podejścia

Bardziej szczegółowo

Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU

Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Hurtownie danych Przetwarzanie zapytań. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Magazyny danych operacyjnych, źródła Centralna hurtownia danych Hurtownie

Bardziej szczegółowo

BAZY DANYCH. Microsoft Access NAWIGACJA, MENU I PARAMETRY WYSZUKIWANIA. Adrian Horzyk. Akademia Górniczo-Hutnicza

BAZY DANYCH. Microsoft Access NAWIGACJA, MENU I PARAMETRY WYSZUKIWANIA. Adrian Horzyk. Akademia Górniczo-Hutnicza BAZY DANYCH Microsoft Access NAWIGACJA, MENU I PARAMETRY WYSZUKIWANIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki

Bardziej szczegółowo

NoSQL. Technologie zarządzania treścią. dr inż. Robert Perliński rperlinski@icis.pcz.pl

NoSQL. Technologie zarządzania treścią. dr inż. Robert Perliński rperlinski@icis.pcz.pl NoSQL Technologie zarządzania treścią dr inż. Robert Perliński rperlinski@icis.pcz.pl Politechnika Częstochowska Instytut Informatyki Teoretycznej i Stosowanej NoSQL 2/36 Plan wykładu 1 NoSQL 2 Model danych

Bardziej szczegółowo

BAZY DANYCH LABORATORIUM. Studia niestacjonarne I stopnia

BAZY DANYCH LABORATORIUM. Studia niestacjonarne I stopnia BAZY DANYCH LABORATORIUM Studia niestacjonarne I stopnia Gdańsk, 2011 1. Cel zajęć Celem zajęć laboratoryjnych jest wyrobienie praktycznej umiejętności tworzenia modelu logicznego danych a nastepnie implementacji

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2011/2012

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2011/2012 PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS Obowiązuje od roku akademickiego: 2011/2012 Instytut Techniczny Kierunek studiów: Informatyka Kod kierunku: 11.3 Specjalność: Informatyka Stosowana

Bardziej szczegółowo

SQL w 24 godziny / Ryan Stephens, Arie D. Jones, Ron Plew. Warszawa, cop Spis treści

SQL w 24 godziny / Ryan Stephens, Arie D. Jones, Ron Plew. Warszawa, cop Spis treści SQL w 24 godziny / Ryan Stephens, Arie D. Jones, Ron Plew. Warszawa, cop. 2016 Spis treści O autorach 11 Podziękowania 12 Część I Wprowadzenie do języka SQL 13 Godzina 1. Witamy w świecie języka SQL 15

Bardziej szczegółowo

PODSTAWY INFORMATYKI wykład 5.

PODSTAWY INFORMATYKI wykład 5. PODSTAWY INFORMATYKI wykład 5. Adrian Horzyk Web: http://home.agh.edu.pl/~horzyk/ E-mail: horzyk@agh.edu.pl Google: Adrian Horzyk Gabinet: paw. D13 p. 325 Akademia Górniczo-Hutnicza w Krakowie WEAIiE,

Bardziej szczegółowo

Bazy danych - wykład wstępny

Bazy danych - wykład wstępny Bazy danych - wykład wstępny Wykład: baza danych, modele, hierarchiczny, sieciowy, relacyjny, obiektowy, schemat logiczny, tabela, kwerenda, SQL, rekord, krotka, pole, atrybut, klucz podstawowy, relacja,

Bardziej szczegółowo

Opisy efektów kształcenia dla modułu

Opisy efektów kształcenia dla modułu Karta modułu - Bazy Danych II 1 / 5 Nazwa modułu: Bazy Danych II Rocznik: 2012/2013 Kod: BIT-2-105-s Punkty ECTS: 4 Wydział: Geologii, Geofizyki i Ochrony Środowiska Poziom studiów: Studia II stopnia Specjalność:

Bardziej szczegółowo

Specjalizacja magisterska Bazy danych

Specjalizacja magisterska Bazy danych Specjalizacja magisterska Bazy danych Strona Katedry http://bd.pjwstk.edu.pl/katedra/ Prezentacja dostępna pod adresem: http://www.bd.pjwstk.edu.pl/bazydanych.pdf Wymagania wstępne Znajomość podstaw języka

Bardziej szczegółowo

Relacyjne bazy danych. Podstawy SQL

Relacyjne bazy danych. Podstawy SQL Relacyjne bazy danych Podstawy SQL Język SQL SQL (Structured Query Language) język umożliwiający dostęp i przetwarzanie danych w bazie danych na poziomie obiektów modelu relacyjnego tj. tabel i perspektyw.

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo

Szkolenie autoryzowane. MS 6232 Wdrażanie bazy danych Microsoft SQL Server 2008 R2

Szkolenie autoryzowane. MS 6232 Wdrażanie bazy danych Microsoft SQL Server 2008 R2 Szkolenie autoryzowane MS 6232 Wdrażanie bazy danych Microsoft SQL Server 2008 R2 Strona szkolenia Terminy szkolenia Rejestracja na szkolenie Promocje Opis szkolenia Szkolenie, gdzie uczestnicy zapoznają

Bardziej szczegółowo

Modelowanie hierarchicznych struktur w relacyjnych bazach danych

Modelowanie hierarchicznych struktur w relacyjnych bazach danych Modelowanie hierarchicznych struktur w relacyjnych bazach danych Wiktor Warmus (wiktorwarmus@gmail.com) Kamil Witecki (kamil@witecki.net.pl) 5 maja 2010 Motywacje Teoria relacyjnych baz danych Do czego

Bardziej szczegółowo

Model logiczny SZBD. Model fizyczny. Systemy klientserwer. Systemy rozproszone BD. No SQL

Model logiczny SZBD. Model fizyczny. Systemy klientserwer. Systemy rozproszone BD. No SQL Podstawy baz danych: Rysunek 1. Tradycyjne systemy danych 1- Obsługa wejścia 2- Przechowywanie danych 3- Funkcje użytkowe 4- Obsługa wyjścia Ewolucja baz danych: Fragment świata rzeczywistego System przetwarzania

Bardziej szczegółowo

K1A_W11, K1A_W18. Egzamin. wykonanie ćwiczenia lab., sprawdzian po zakończeniu ćwiczeń, egzamin, K1A_W11, K1A_W18 KARTA PRZEDMIOTU

K1A_W11, K1A_W18. Egzamin. wykonanie ćwiczenia lab., sprawdzian po zakończeniu ćwiczeń, egzamin, K1A_W11, K1A_W18 KARTA PRZEDMIOTU (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: BAZY DANYCH 2. Kod przedmiotu: 3. Karta przedmiotu ważna od roku akademickiego: 2014/2015 4. Forma kształcenia: studia pierwszego stopnia 5. Forma

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU DYPLOMOWEGO NA STUDIACH INŻYNIERSKICH. Matematyka dyskretna, algorytmy i struktury danych, sztuczna inteligencja

ZAGADNIENIA DO EGZAMINU DYPLOMOWEGO NA STUDIACH INŻYNIERSKICH. Matematyka dyskretna, algorytmy i struktury danych, sztuczna inteligencja Kierunek Informatyka Rok akademicki 2016/2017 Wydział Matematyczno-Przyrodniczy Uniwersytet Rzeszowski ZAGADNIENIA DO EGZAMINU DYPLOMOWEGO NA STUDIACH INŻYNIERSKICH Technika cyfrowa i architektura komputerów

Bardziej szczegółowo

SQL SERVER 2012 i nie tylko:

SQL SERVER 2012 i nie tylko: SQL SERVER 2012 i nie tylko: Wstęp do planów zapytań Cezary Ołtuszyk coltuszyk.wordpress.com Kilka słów o mnie Starszy Administrator Baz Danych w firmie BEST S.A. (Bazy danych > 1TB) Konsultant z zakresu

Bardziej szczegółowo

Hurtownie danych. Wprowadzenie do systemów typu Business Intelligence

Hurtownie danych. Wprowadzenie do systemów typu Business Intelligence Hurtownie danych Wprowadzenie do systemów typu Business Intelligence Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika

Bardziej szczegółowo

SZCZEGÓŁOWY HARMONOGRAM SZKOLENIA

SZCZEGÓŁOWY HARMONOGRAM SZKOLENIA SZCZEGÓŁOWY HARMONOGRAM SZKOLENIA Projekt: Podnoszenie kwalifikacji drogą do sukcesu Szkolenie: Kurs obsługi komputera ECDL start (harmonogram kursu języka angielskiego zostanie umieszczony wkrótce) Termin

Bardziej szczegółowo

DB2 with BLU acceleration rozwiązanie in-memory szybsze niż pamięć operacyjna&

DB2 with BLU acceleration rozwiązanie in-memory szybsze niż pamięć operacyjna& DB2 with BLU acceleration rozwiązanie in-memory szybsze niż pamięć operacyjna& Artur Wroński" Priorytety rozwoju technologii Big Data& Analiza większych zbiorów danych, szybciej& Łatwość użycia& Wsparcie

Bardziej szczegółowo

Bazy danych Wykład zerowy. P. F. Góra

Bazy danych Wykład zerowy. P. F. Góra Bazy danych Wykład zerowy P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Patron? Św. Izydor z Sewilli (VI wiek), biskup, patron Internetu (sic!), stworzył pierwszy katalog Copyright c 2011-12 P.

Bardziej szczegółowo

Podstawy języka T-SQL : Microsoft SQL Server 2016 i Azure SQL Database / Itzik Ben-Gan. Warszawa, Spis treści

Podstawy języka T-SQL : Microsoft SQL Server 2016 i Azure SQL Database / Itzik Ben-Gan. Warszawa, Spis treści Podstawy języka T-SQL : Microsoft SQL Server 2016 i Azure SQL Database / Itzik Ben-Gan. Warszawa, 2016 Spis treści Wprowadzenie Podziękowania xiii xvii 1 Podstawy zapytań i programowania T-SQL 1 Podstawy

Bardziej szczegółowo

Cel przedmiotu. Wymagania wstępne w zakresie wiedzy, umiejętności i innych kompetencji 1 Język angielski 2 Inżynieria oprogramowania

Cel przedmiotu. Wymagania wstępne w zakresie wiedzy, umiejętności i innych kompetencji 1 Język angielski 2 Inżynieria oprogramowania Przedmiot: Bazy danych Rok: III Semestr: V Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 30 21 Ćwiczenia Laboratorium 30 21 Projekt Liczba punktów ECTS: 4 C1 C2 C3 Cel przedmiotu

Bardziej szczegółowo

Optymalizacja w relacyjnych bazach danych - wybór wydajnej strategii obliczania wyrażenia relacyjnego.

Optymalizacja w relacyjnych bazach danych - wybór wydajnej strategii obliczania wyrażenia relacyjnego. Plan wykładu Spis treści 1 Optymalizacja 1 1.1 Etapy optymalizacji............................... 3 1.2 Transformacja zapytania............................ 3 1.3 Przepisywanie zapytań.............................

Bardziej szczegółowo

Praca dyplomowa magisterska

Praca dyplomowa magisterska WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I INŻYNIERII BIOMEDYCZNEJ KATEDRA AUTOMATYKI I INŻYNIERII BIOMEDYCZNEJ Praca dyplomowa magisterska System szybkiego inteligentnego asocjacyjnego wyszukiwania

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING

METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING NEURONOWE MAPY SAMOORGANIZUJĄCE SIĘ Self-Organizing Maps SOM Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,

Bardziej szczegółowo

Przestrzenne bazy danych Podstawy języka SQL

Przestrzenne bazy danych Podstawy języka SQL Przestrzenne bazy danych Podstawy języka SQL Stanisława Porzycka-Strzelczyk porzycka@agh.edu.pl home.agh.edu.pl/~porzycka Konsultacje: wtorek godzina 16-17, p. 350 A (budynek A0) 1 SQL Język SQL (ang.structured

Bardziej szczegółowo

PERSPEKTYWY ZASTOSOWANIA BAZ DANYCH NoSQL W INTELIGENTNYCH SYSTEMACH TRANSPORTOWYCH

PERSPEKTYWY ZASTOSOWANIA BAZ DANYCH NoSQL W INTELIGENTNYCH SYSTEMACH TRANSPORTOWYCH PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 90 Transport 2013 Andrzej Czerepicki Politechnika Warszawska, Wydział Transportu PERSPEKTYWY ZASTOSOWANIA BAZ DANYCH NoSQL W INTELIGENTNYCH SYSTEMACH TRANSPORTOWYCH

Bardziej szczegółowo

Wprowadzenie do baz danych

Wprowadzenie do baz danych Wprowadzenie do baz danych Dr inż. Szczepan Paszkiel szczepanpaszkiel@o2.pl Katedra Inżynierii Biomedycznej Politechnika Opolska Wprowadzenie DBMS Database Managment System, System za pomocą którego można

Bardziej szczegółowo

Alicja Marszałek Różne rodzaje baz danych

Alicja Marszałek Różne rodzaje baz danych Alicja Marszałek Różne rodzaje baz danych Rodzaje baz danych Bazy danych można podzielić wg struktur organizacji danych, których używają. Można podzielić je na: Bazy proste Bazy złożone Bazy proste Bazy

Bardziej szczegółowo