Fizyka atomowa i kwantowa. dr Mikołaj Szopa wykład

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fizyka atomowa i kwantowa. dr Mikołaj Szopa wykład"

Transkrypt

1 dr Mikołaj Szopa wykład

2 Struktura materii

3 Fizyka jadrowa: podstawy Fizyka jadrowa zajmuje się badaniem budowy i przemian jądra atomowego Jadro atomowe: - sklad: protony I neutrony - ladunek elektryczny: Z x ladunek protonu - rozmiar: kilka femtometrow: m - masa: masa neutronow i protonow energia wiazania - oddzialywanie: silne > slabe > elektromagn. > grawitacyjne - czas zycia: od nanosekund do nieskonczonosci Poczatki: 1911 (100 lat temu!) Rutherford publikuje artykul o odkryciu jadra atomowego 1932 Chadwick identyfikuje neutron 1935 Yukawa postuluje, ze oddzialywanie neutronow i protonow w jadrze jest przenoszone za pomoca czastki zwanej mezonem 2011 Nadal nie znamy wszystkich wlasnosci oddzialywania jadrowego I brak jest teorii jadra atomowego

4 Fizyka jadrowa: podstawy

5 Co trzyma w całości atom i dlaczego nie rozpada się jądro? p 14 N p Odpychanie el.stat. protonów w jądrze

6 Rodzaje oddziaływań Oddziaływanie Względna wartość Cząstki przenoszące oddziaływanie Występowanie Jądrowe silne ~1 8 gluonów Jądra atomów Elektromagnety czne ~10-3 Fotony Warstwy atomów, urządz. elektr. Jądrowe słabe ~10-5 Bozony Rozpady radioaktywne Grawitacyjne ~10-38 Grawitony(?) Ciała niebieskie

7 Rozmiary jąder eksperymenty Rutherforda Mikroskop Blok z ołowiu Ekran fluorescencyjny Próbka polonu Złota folia Do czego przydała się tu mechanika klasyczna (prawo Newtona)?

8 Masy jąder - spektrograf masowy Źródło Czy jądro (atomu) można zważyć?

9 Stanford Linear Accelerator Laboratory (SLAC) in California

10 We wnętrzu akceleratora

11 Komora pęcherzykowa

12 Energia wiązania w atomie i w jądrze Energia jonizacji Energia rozpadu 1 ev=10-19 J

13 I.D. pierwiastka (jądra) Liczba masowa (protony + neutrony) Liczba atomowa (protony) A Z X

14

15 A jednak się rozpada promieniotwórczość naturalna Tor Rad Radon Polon Ołów

16 Przemiany jąder szeregi promieniotwórcze Czasy rozpadu wewnątrz prostokątów dotyczą wszystkich możliwych ścieżek Układ okresowy pierwiastków Trwały izotop Pb

17 Dlaczego (jądro się rozpada)? E mc 2 c m/s

18 Co siedzi w masie jądra? m E c 2 Energia przyciągających się nukleonów: ujemna! E E o E p Masy składników Energie oddziaływania składników

19 Defekt (niedobór) masy n m Z A H m Z X m A Z ) ( neutronu protonu A Z m Z A m Z X m ) ( X m m Z A m Z m A Z neutronu protonu ) (

20 Siła Coulomba hamulcem rozpadów!!! Kulombowska bariera

21 Reakcje (przemiany) jądrowe można wymuszać - rozszczepienie uranu 235 powolny neutron Jeden z możliwych podziałów Energia z 1 kg uranu Jedn. 1 Jednostka to energia zużywana na rok przez obywatela USA

22 Prawie to samo, ale inaczej pokazane 215 MeV energii promienie gamma powolny neutron o energii ~1eV niestabilny izotop U-236 (oscylacje) neutrony mogące zapoczątkować reakcję łańcuchową

23 Zysk procentowy % Zysk energii z rozpadu Produkty rozpadu U235 Stabilny Liczba masowa A Stabilny

24 Przekrój reaktora

25 Masa krytyczna To minimalna masa, w której reakcja rozszczepienia przebiega w sposób łańcuchowy, czyli każde jedno rozszczepienie jądra atomowego inicjuje dokładnie jedno następne rozszczepienie. W masie mniejszej od masy krytycznej reakcja zainicjowana rozszczepieniem spontanicznym zaniknie, w masie większej od masy krytycznej reakcja będzie przebiegała w sposób lawinowy, tzn. jedno rozszczepienie wywoła więcej niż jedno rozszczepienie.

26 Bomba atomowa Energia wydziela się z reakcji rozszczepienia ciężkich jąder atomowych (np. uranu lub plutonu) na lżejsze pod wpływem bombardowania neutronami. Rozpadające się jądra emitują kolejne neutrony, które bombardują inne jądra, wywołując reakcję łańcuchową.

27

28 Synteza deuter + tryt Rozpędzone cząsteczki Zysk energii z 1kg paliwa to 676 Jednostek

29 Porównanie! Rozpędzone cząsteczki Synteza Powolny neutron Rozszczepienie 676 Jednostek Zysk energii z 1kg paliwa to 676 Jednostek 176 Jednostek

30 Przemiany protonów w Słońcu

31 Rozpad radioaktywny Rozpad Beta: emisja elektronu lub pozytronu Rozpad Alfa: emisja jadra helu Emisja protonu lub neutronu Emisja innych czastek, np. 2 protonow (emisja gamma: przejscie jadra do stanu mniej wzbudzonego)

32 Światło - wydawało się, że to proste Pole magnetyczne Pole elektryczne Kierunek rozchodzenia się fali Fale radiowe Mikrofale Długość fali Podczerwień Nadfiolet Promieniowani rengenowskie e rentgenowskie Promieniowanie gamma długość fali [m] Światło widzialne m m

33 Prawa [ ] fizyczne mają jedną dziwną cechę im bardziej wzrasta ich ogólność, tym stają się odleglejsze od zdroworozsądkowych przekonań i intuicyjnie coraz mniej zrozumiałe. [ ] Musimy maksymalnie wytężać wyobraźnię, nie po to, żeby odwrotnie niż w literaturze, wyobrazić sobie rzeczy, których naprawdę nie ma, ale by zrozumieć to, co naprawdę istnieje. (Richard P. Feynman, Charakter praw fizycznych, tłum. P. Ansterdamski, Prószyński i S-ka, Warszawa 2000, s )

34 Kwantowy charakter zjawisk W rzeczywistości cała fizyka jest fizyką kwantową prawa fizyki kwantowej są najogólniejszymi znanymi nam prawami przyrody. [ ] fizyka klasyczna dotyczy tych aspektów przyrody, które nie wiążą się bezpośrednio z zagadnieniem podstawowych składników materii (Eyvind H. Wichmann, Fizyka kwantowa, s. 17).

35 Kwantowomechaniczna rewolucja Lata : teoria kwantów przełomowe koncepcje 1900 hipoteza Maxa Plancka (kwant działania) 1905 hipoteza Alberta Einsteina (fotony) 1913 model Nielsa Bohra (atomu wodoru) 1924 hipoteza Louisa de Broglie (fale materii) Lata powstanie mechaniki kwantowej

36 Promieniowanie ciała doskonale czarnego Niepowodzenie interpretacji widma ciała doskonale czarnego przy użyciu pojęć i praw fizyki klasycznej

37 Dlaczego nie wszystko jest fioletowe? Klasyczne rozumowanie: promieniowanie o krótszych długościach fal łatwiej zmieścić w danym obszarze-powinno go być więcej. ALE NIE JEST! Ratunek: Światło niesie energię w porcjach - kwantach. Krótsze fale większa energia porcji trudniej wzbudzić

38 Fotony kwanty światła Światło = i fala i strumień cząstek

39 Kwanty energii Max Planck ( ) prawo promieniowania ciała doskonale czarnego 14 grudnia 1900 narodziny teorii kwantów h elementarny kwant działania 8hc u(, T) d 5 e 1 hc kt d 1

40 Energia jest emitowana i absorbowana w sposób dyskretny Energia kwantu jest proporcjonalna do częstości E h Hipoteza Plancka wprowadzająca kwanty energii nie jest kontynuacją uprzedniej myśli fizycznej. Oznacza przełom zupełny. Jego głębię i konieczność wykazały wyraźniej następne dziesięciolecia. Idea kwantów była kluczem do zrozumienia niedostępnych nam uprzednio zjawisk atomowych (Max von Laue, Historia fizyki, s ).

41 h = 6,62419 x J s elementarny kwant działania

42 To co było proste staje się trudne klasyczna fala foton detektor detektor detektor detektor Jedna porcja energii możemy zmierzyć foton tylko w jednym detektorze Zachowanie fotonu nieprzewidywalne!

43 Interferencja Interferencja konstruktywna + = Interferencja destruktywna + =

44 Eksperyment z dwoma szczelinami

45 A co jeśli wysyłamy fotony pojedynczo??

46 Jeśli szedłby górą

47 A jeśli dołem

48 Jeśli raz tak raz tak, to powinno być

49 A tymczasem jest

50 Pojedynczy foton interferuje sam ze sobą foton przechodzi dwoma szczelinami naraz..

51 Zasada superpozycji Jeśli pewne dopuszczalne stany cząstki to też jest dopuszczalnym stanem cząstka w kilku miejscach jednocześnie cząstka poruszająca się naraz z różnymi prędkościami atom w kilku stanach energetycznych naraz

52 Nie tylko fotony Luis de Broglie Zasada superpozycji dotyczy wszystkich cząstek. Wszystkie cząstki interferują (Nobel 1929 ) elektron, atom, Rekord (2011): interferencja molekuł organicznych ~400 atomów

53 Dlaczego tak trudno zobaczyć efekty kwantowe detektor Jeśli coś mierzy którędy foton przeszedł

54 Dlaczego tak trudno zobaczyć efekty kwantowe detektor Jeśli coś mierzy którędy foton przeszedł Informacja o drodze nie może wyciec do otoczenia! Inaczej następuje dekoherencja

55 Zjawisko fotoelektryczne zewnętrzne Zjawisko wybijania elektronów z powierzchni metalu pod wpływem padającego światła 1887 Hertz: światło ultrafioletowe, przechodząc między elektrodami cewki indukcyjnej, której używał w swoich eksperymentach, ułatwia wyładowanie iskrowe, tak jakby między elektrodami pojawiały się dodatkowe nośniki elektryczności 1888 Wilhelm Hallwachs: przyczyną wzrostu natężenia wyładowania iskrowego w doświadczeniu Hertza jest występowanie naładowanych cząstek, które później zostały zidentyfikowane jako elektrony; ciała naładowane elektrycznie tracą ładunek pod wpływem oświetlania.

56

57 Empiryczne prawa rządzące zjawiskiem fotoelektrycznym (1902 Lenard) 1) liczba emitowanych z powierzchni fotokatody elektronów jest proporcjonalna do natężenia padającego promieniowania elektromagnetycznego 2) maksymalna energia kinetyczna elektronów jest wprost proporcjonalna do częstości promieniowania, nie zależy natomiast od jego natężenia 3) istnieje graniczna częstość, poniżej której efekt nie zachodzi, tzn. promieniowanie o częstości niższej niż charakterystyczna dla danego metalu częstość graniczna nie powoduje emisji elektronów Rezultatów tych nie można wyjaśnić na podstawie elektrodynamiki klasycznej

58 Albert Einstein ( ) teoria zjawiska fotoelektrycznego (1905) światło jest strumieniem cząstek (fotonów), których energia jest proporcjonalna do częstości fali świetlnej: E = h, pęd fotonów p związany jest z długością fali świetlnej λ wzorem: p = h/λ = h/c c = 3 x 10 8 m/s prędkość światła w próżni W zjawisku fotoelektrycznym pojedynczy foton absorbowany jest przez elektron: h = A + mv 2 /2 A praca wyjścia elektronu z metalu

59 Niels Bohr ( ) model atomu wodoru (1913) planetarny model atomu Rutherforda niezgodne z fizyką klasyczną postulaty kwantowe +

60 Postulaty kwantowe Bohra 1. mvr = nh/2 h stała Plancka orbity są skwantowane - ich promienie mogą przybierać jedynie ściśle określone, dyskretne wartości 2. Elektron na dozwolonej, czyli stacjonarnej orbicie nie promieniuje energii 3. h = E n E m

61 Każde z tych założeń warunek kwantyzacji, brak promieniowania podczas pobytu na jednej ze skwantowanych orbit i promieniowanie w trakcie przeskoku między orbitami, było sprzeczne ze znaną wówczas klasyczną teorią. Jednakże rzeczą konieczną było założenie w jakiś sposób stabilności atomu. Promieniowanie w trakcie przeskoku wydawało się być zgodne z tym, co zostało już stwierdzone przez Einsteina i Plancka. Warunek kwantowania także nie różnił się zbytnio od pierwotnego warunku Plancka (L. N. Cooper, Istota i struktura fizyki, s. 528).

62 Siła dośrodkowa = siła Coulomba mv 2 /r = e 2 /(4 0 r 2 ) z pierwszego postulatu Bohra mvr = nh/(2), prędkość elektronu na danej orbicie: V = nh/(2rm)

63 Promień n-tej orbity Bohrowskiej, n = 1, 2, główna liczba kwantowa; (r 0 = 0, m) 2 2 h n r n Energia na n-tej orbicie: 0 me 2, E n Częstość linii widmowych 4 me 1 2 8h n me h 0 n m

64 Przejście klasycznych cząstek przez układ dwóch szczelin (brak interferencji) N 1 liczba cząstek przechodzących przez szczelinę 1 N 2 liczba cząstek przechodzących przez szczelinę 2 N 12 prawdopodobieństwo = średnia liczba cząstek trafiających w dane miejsce ekranu, gdy otwarte są szczeliny 1 i 2 N 12 = N 1 + N 2 (brak interferencji)

65 Przejście klasycznych fal przez układ dwóch szczelin (interferencja) H 1 amplituda fali przechodzącej przez szczelinę 1 H 2 amplituda fali przechodzącej przez szczelinę 2 H 12 amplituda fali (obydwie szczeliny otwarte) H 12 = H 1 + H 2 Natężenie fali: I 12 = (H 12 ) 2 = (H 1 + H 2 ) 2 (interferencja), I 1 = (H 1 ) 2 I 2 = (H 2 ) 2

66

67 Przejście elektronów (lub fotonów) przez układ dwóch szczelin Interferencja elektronów (fotonów)

68 Przejście elektronów (lub fotonów) przez układ dwóch szczelin Rezultaty eksperymentu: Ale! Elektrony trafiają w detektor pojedynczo Detektor rejestruje zawsze taką samą, dyskretną wartość (cały elektron lub nic) Nigdy dwa detektory nie rejestrują jednego elektronu N 12 N 1 + N 2 N 12 = (a 1 + a 2 ) 2 prawdopodobieństwo trafienia elektronu (fotonu) w dany punkt ekranu (interferencja! jak w przypadku fal) a amplituda prawdopodobieństwa

69 Podsumowując, można powiedzieć, że elektrony docierają do detektorów w całości, tak jak pociski, ale prawdopodobieństwo rejestracji elektronów jest określone takim wzorem jak natężenie fali. W tym sensie elektron zachowuje się jednocześnie jak cząstka i jak fala. (R. P. Feynman, Charakter, s. 147)

70 Określenie, przez którą szczelinę przechodzi elektron brak interferencji

71 Elektrony rejestrowane są jako niepodzielne cząstki Twierdzenie elektron przechodzi albo przez szczelinę 1 albo przez szczelinę 2 jest FAŁSZYWE! jest rzeczą niemożliwą tak ustawić światła, aby stwierdzić, przez którą szczelinę przeleciał elektron, nie zaburzając go na tyle, że znika obraz interferencyjny (Feynman, Charakter, s. 151)

72 Postulaty mechaniki kwantowej Podstawy matematyczne Liczby zespolone Gerolamo Cardano (Ars Magna, 1545), Raphael Bombelli (L Algebra, 1572) Przestrzeń Hilberta Dla wszystkich, którzy nie wierzyli w praktyczne aspekty liczb zespolonych, musiało być ogromnym zaskoczeniem, kiedy w ostatnich trzech ćwierćwieczach XX stulecia okazało się, że prawa rządzące zachowaniem się Wszechświata w sposób fundamentalny związane są z liczbami zespolonymi. Roger Penrose, Droga do rzeczywistości, s. 71

73 Przestrzeń wektorowa u 1, u 2, u 3 wektory bazy x = a 1 u 1 + a 2 u 2 +a 3 u 3 a 1, a 2, a 3 współrzędne wektora n x a i u i1 k x a i x k i1 i1 a i x i i i 0 liniowa niezależność wektorów

74 Iloczyn skalarny wektorów w przestrzeni trójwymiarowej i i i i i i i i a b y x x x x a x a b y x u b u b b u y u a u a a u x

75 Uogólnienie dla przestrzeni o przeliczalnej liczbie wymiarów iloczyn skalarny kwadrat długości unormowanie ortogonalność * * 1 * i i i i i i i i i b a y x x x x a a x a b y x u b b u y u a a u x

76 Aksjomaty przestrzeni Hilberta x, y wektory ax mnożenie wektora przez liczbę (zespoloną) x + y = y + x dodawanie wektorów (a + b) x = ax + bx a(x + y) = ax + ay (ab)x = a(bx) 1x = x (x + y) + z = x + (y + z) x + 0 = 0 + x = x wektor zerowy x 0 + y 0 = 0, y 0 = - x 0 element przeciwny

77 (x, y) = (y, x)* - iloczyn skalarny (x, ay) = a (x, y) (x 1 + x 2, y) = (x 1, y) + (x 2, y) (x, x) 0 Przestrzeń liniowa, w której zdefiniowano iloczyn skalarny nazywa się przestrzenią unitarną

78 kwadrat długości wektora ( x, x) ( x, x)* długość wektora (przestrzeń unormowana) x ( x, x) odległość (przestrzeń metryczna) x y ( x y, x y) Liniowa przestrzeń wektorowa z określonym iloczynem skalarnym (przestrzeń unitarna) jest jednocześnie przestrzenią metryczną i unormowaną

79 Warunki ciągłości w przestrzeni unitarnej Ciąg x n zbieżny do x x m ciąg podstawowy lim n x n x 0 lim xm xn m, n 0 Jeśli każdy ciąg podstawowy w przestrzeni L jest zbieżny do pewnego wektora w tej przestrzeni, to L nazywamy przestrzenią zupełną Przestrzeń Hilberta jest to unitarna przestrzeń zupełna

80 Reprezentacja stanu układu Stan układu kwantowomechanicznego w danej chwili t reprezentowany jest przez wektor w przestrzeni Hilberta (w notacji Diraca) Inne określenia używane na to: ket, funkcja falowa, funkcja, amplituda prawdopodobieństwa, funkcja stanu

81 Przestrzeń Hilberta jest abstrakcyjną liniową przestrzenią wektorową nad ciałem liczb zespolonych i pełni w mechanice kwantowej funkcję analogiczną do przestrzeni fazowej (przestrzeni stanów) w mechanice klasycznej W przeciwieństwie do stanów układów klasycznych, stany obiektów kwantowych nie są wielkościami obserwowalnymi (mierzalnymi)

82 Max Born (1926): Ψ(x, y, z, t) 2 dxdydz (kwadrat amplitudy zespolonej funkcji falowej) jest proporcjonalny do prawdopodobieństwa tego, że cząstka znajduje się (resp. w rezultacie przeprowadzonego pomiaru znajdziemy cząstkę) w chwili t w elemencie objętości dxdydz.

83 Reprezentacja wielkości fizycznych Wielkości fizyczne mierzalne, takie jak położenie, pęd czy energia, czyli obserwable, reprezentowane są przez liniowe operatory hermitowskie w przestrzeni Hilberta. Wartości własne operatora hermitowskiego są liczbami rzeczywistymi i reprezentują możliwe wyniki pomiarów danej obserwabli.

84 Operatorem A na przestrzeni wektorowej H nazywa się odwzorowanie, które każdemu wektorowi tej przestrzeni przyporządkowuje inny wektor: Operator A jest liniowy: A:. A (a a 2 2 ) = a 1 A 1 + a 2 A 2, gdzie 1, 2 są wektorami z przestrzeni Hilberta, a 1 i a 2 to dowolne liczby zespolone.

85 Jeżeli A = a, to równanie takie nazywa się równaniem własnym operatora A, wektorem własnym (resp. funkcją własną), natomiast a wartością własną. Zbiór wartości własnych operatora nazywa się widmem operatora może ono tworzyć zbiór ciągły lub dyskretny. Wektory własne liniowego operatora hermitowskiego tworzą zupełny układ wektorów, to jest taki, że każdy wektor stanu da się rozwinąć w szereg wektorów własnych tego operatora.

86 Czy kot może być jednocześnie żywy i martwy.. atom promieniotwórczy układ: atom + kot Kot Schroedingera kot jednocześnie żywy i martwy ale dekoherencja niszczy superpozycję i kot albo żywy albo martwy

87 Komputery kwantowe 1 klasyczny bit może mieć wartości 0 albo 1 qubit Kwantowy bit (qubit) może być jednocześnie i 0 i 1 Stan N qubitów Jednocześnie reprezentuje wiele różnych liczb przetwarzanie równoległe Ewolucja układu kwantowego obliczenie jednocześnie na 2 N różnych danych wejściowych

88 Jeśli komputer kwantowy powstanie Kwantowy algorytm Shora łamie systemy kryptograficzne bazujące na kluczu publicznym (RSA) Secure Socket Layer Bazuje na w wymianie klucza metodą RSA - już nie gwarantuje bezpieczeństwa

89 Era inżynierii kwantowej Prawo Moore a komputery kwantowe ~2050 rok praktyczna kryptografia kwantowa wcześniej precyzyjne zegary atomowe na pojedynczych jonach - już!

90 30.01 o 9:15 Egzamin z Fizyki, audytorium 007 Koniec Dziękuję za uwagę

Wczesne modele atomu

Wczesne modele atomu Wczesne modele atomu Wczesne modele atomu Demokryt (400 p.n.e.) Grecki filozof Demokryt rozpoczął poszukiwania opisu materii około 2400 lat temu. Postawił pytanie: Czy materia może być podzielona na mniejsze

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

Początek XX wieku. Dualizm korpuskularno - falowy

Początek XX wieku. Dualizm korpuskularno - falowy Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy

Bardziej szczegółowo

Energia wiatru i atomu Mikołaj Szopa

Energia wiatru i atomu Mikołaj Szopa Energia wiatru i atomu Mikołaj Szopa Nie równomierne nagrzanie powierzchni Ziemi i ruch obrotowy Ziemi Rozmiary wiatraków i moc Prędkość zależy od wysokości Siła pchająca i siła ciągu Prędkość końcówki/prędkość

Bardziej szczegółowo

Wykład Budowa atomu 1

Wykład Budowa atomu 1 Wykład 30. 11. 2016 Budowa atomu 1 O atomach Trochę historii i wprowadzenie w temat Promieniowanie i widma Doświadczenie Rutherforda i odkrycie jądra atomowego Model atomu wodoru Bohra sukcesy i ograniczenia

Bardziej szczegółowo

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św.

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św. Foton, kwant światła Wielkość fizyczna jest skwantowana jeśli istnieje w pewnych minimalnych (elementarnych) porcjach lub ich całkowitych wielokrotnościach w klasycznym opisie świata, światło jest falą

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę

Bardziej szczegółowo

Kwantowa natura promieniowania

Kwantowa natura promieniowania Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała

Bardziej szczegółowo

Fizyka klasyczna. - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia

Fizyka klasyczna. - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia Fizyka klasyczna - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia Zaczniemy historię od optyki W połowie XiX wieku Maxwell wprowadził

Bardziej szczegółowo

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie

Bardziej szczegółowo

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra

CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna Model atomu Bohra SPIS TREŚCI: 1. Modele budowy atomu Thomsona, Rutherforda i Bohra 2. Budowa atomu 3. Liczba atomowa a liczba

Bardziej szczegółowo

Rysunek 3-23 Hipotetyczne widmo ciągłe atomu Ernesta Rutherforda oraz rzeczywiste widmo emisyjne wodoru w zakresie światła widzialnego

Rysunek 3-23 Hipotetyczne widmo ciągłe atomu Ernesta Rutherforda oraz rzeczywiste widmo emisyjne wodoru w zakresie światła widzialnego 3.5. Model Bohra-Sommerfelda Przeciw modelowi atomu zaproponowanego przez Ernesta Rutherforda przemawiały także wyniki badań spektroskopowych pierwiastków. Jeśli elektrony, jak wynika z teorii Maxwella,

Bardziej szczegółowo

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Odkrycie jądra atomowego: 9, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Tor ruchu rozproszonych cząstek (fakt, że część cząstek rozprasza się pod bardzo dużym kątem) wskazuje na

Bardziej szczegółowo

Autorzy: Zbigniew Kąkol, Piotr Morawski

Autorzy: Zbigniew Kąkol, Piotr Morawski Rodzaje rozpadów jądrowych Autorzy: Zbigniew Kąkol, Piotr Morawski Rozpady jądrowe zachodzą zawsze (prędzej czy później) jeśli jądro o pewnej liczbie nukleonów znajdzie się w stanie energetycznym, nie

Bardziej szczegółowo

41P6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY

41P6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY 41P6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V Optyka fizyczna POZIOM PODSTAWOWY Dualizm korpuskularno-falowy Atom wodoru. Widma Fizyka jądrowa Teoria względności Rozwiązanie zadań należy

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

Wykład 17: Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 17: Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 17: Atom Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Wczesne modele atomu Grecki filozof Demokryt rozpoczął poszukiwania

Bardziej szczegółowo

p.n.e. Demokryt z Abdery. Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny)

p.n.e. Demokryt z Abdery. Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny) O atomie 460-370 p.n.e. Demokryt z Abdery Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny) 1808 John Dalton teoria atomistyczna 1. Pierwiastki składają się z małych, niepodzielnych

Bardziej szczegółowo

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 1 własności jąder atomowych Odkrycie jądra atomowego Rutherford (1911) Ernest Rutherford (1871-1937) R 10 fm 1908 Skala przestrzenna jądro

Bardziej szczegółowo

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) 1 doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) Ilość protonów w jądrze określa liczba atomowa Z Ilość

Bardziej szczegółowo

Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa

Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa Pokazy Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa Zjawisko fotoelektryczne Zjawisko fotoelektryczne polega na tym, że w wyniku

Bardziej szczegółowo

Światło ma podwójną naturę:

Światło ma podwójną naturę: Światło ma podwójną naturę: przejawia własności fal i cząstek W. C. Roentgen ( Nobel 1901) Istnieje ciągłe przejście pomiędzy tymi własnościami wzdłuż spektrum fal elektromagnetycznych Dla niskich częstości

Bardziej szczegółowo

Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Energetyka Jądrowa Wykład 8 lutego 07 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Model atomu. Promieniowanie atomów 8.II.07 EJ - Wykład / r

Bardziej szczegółowo

Model Bohra budowy atomu wodoru - opis matematyczny

Model Bohra budowy atomu wodoru - opis matematyczny Model Bohra budowy atomu wodoru - opis matematyczny Uwzględniając postulaty kwantowe Bohra, można obliczyć promienie orbit dozwolonych, energie elektronu na tych orbitach, wartość prędkości elektronu na

Bardziej szczegółowo

I ,11-1, 1, C, , 1, C

I ,11-1, 1, C, , 1, C Materiał powtórzeniowy - budowa atomu - cząstki elementarne, izotopy, promieniotwórczość naturalna, okres półtrwania, średnia masa atomowa z przykładowymi zadaniami I. Cząstki elementarne atomu 1. Elektrony

Bardziej szczegółowo

Wielcy rewolucjoniści nauki

Wielcy rewolucjoniści nauki Isaak Newton Wilhelm Roentgen Albert Einstein Max Planck Wielcy rewolucjoniści nauki Erwin Schrödinger Werner Heisenberg Niels Bohr dr inż. Romuald Kędzierski W swoim słynnym dziele Matematyczne podstawy

Bardziej szczegółowo

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Plan ogólny Kryształy, półprzewodniki, nanotechnologie, czyli czym będziemy się

Bardziej szczegółowo

Chemia ogólna - część I: Atomy i cząsteczki

Chemia ogólna - część I: Atomy i cząsteczki dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

Energetyka konwencjonalna odnawialna i jądrowa

Energetyka konwencjonalna odnawialna i jądrowa Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa

Bardziej szczegółowo

Atomowa budowa materii

Atomowa budowa materii Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól

Bardziej szczegółowo

r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1

r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1 r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1 Budowa jądra atomowego każde jądro atomowe składa się z dwóch rodzajów nukleonów: protonów

Bardziej szczegółowo

Falowa natura materii

Falowa natura materii r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie

Bardziej szczegółowo

Wykład FIZYKA II. 11. Optyka kwantowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 11. Optyka kwantowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 11. Optyka kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ FIZYKA KLASYCZNA A FIZYKA WSPÓŁCZESNA Fizyka klasyczna

Bardziej szczegółowo

Dział: 7. Światło i jego rola w przyrodzie.

Dział: 7. Światło i jego rola w przyrodzie. Dział: 7. Światło i jego rola w przyrodzie. TEMATY I ZAKRES TREŚCI NAUCZANIA Fizyka klasa 3 LO Nr programu: DKOS-4015-89/02 Moduł Dział - Temat L. Zjawisko odbicia i załamania światła 1 Prawo odbicia i

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

Doświadczenie Rutherforda. Budowa jądra atomowego.

Doświadczenie Rutherforda. Budowa jądra atomowego. Doświadczenie Rutherforda. Budowa jądra atomowego. Rozwój poglądów na budowę atomu Model atomu Thomsona - zwany także modelem "'ciasta z rodzynkami". Został zaproponowany przez brytyjskiego fizyka J. J.

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

Podstawowe własności jąder atomowych

Podstawowe własności jąder atomowych Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii

Bardziej szczegółowo

Promieniowanie cieplne ciał.

Promieniowanie cieplne ciał. Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego -  - zadania z fizyki, wzory fizyczne, fizyka matura 14. Fizyka jądrowa zadania z arkusza I 14.10 14.1 14.2 14.11 14.3 14.12 14.4 14.5 14.6 14.13 14.7 14.8 14.14 14.9 14. Fizyka jądrowa - 1 - 14.15 14.23 14.16 14.17 14.24 14.18 14.25 14.19 14.26 14.27 14.20

Bardziej szczegółowo

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około

Bardziej szczegółowo

Podstawy fizyki wykład 3

Podstawy fizyki wykład 3 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

III. EFEKT COMPTONA (1923)

III. EFEKT COMPTONA (1923) III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.

Bardziej szczegółowo

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka.

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka. Fale materii 194- Louis de Broglie teoria fal materii, 199- nagroda Nobla Hipoteza de Broglie głosi, że dwoiste korpuskularno falowe zachowanie jest cechą nie tylko promieniowania, lecz również materii.

Bardziej szczegółowo

Atom wodoru i jony wodoropodobne

Atom wodoru i jony wodoropodobne Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek

Bardziej szczegółowo

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów Włodzimierz Wolczyński 40 FIZYKA JĄDROWA A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów O nazwie pierwiastka decyduje liczba porządkowa Z, a więc ilość

Bardziej szczegółowo

Wykład 13 Mechanika Kwantowa

Wykład 13 Mechanika Kwantowa Wykład 13 Mechanika Kwantowa Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 25 maja 2016 Maciej J. Mrowiński (IF PW) Wykład 13 25 maja 2016 1 / 21 Wprowadzenie Sprawy organizacyjne

Bardziej szczegółowo

Mechanika kwantowa Schrödingera

Mechanika kwantowa Schrödingera Fizyka 2 Wykład 2 1 Mechanika kwantowa Schrödingera Hipoteza de Broglie a wydawała się nie zgadzać z dynamiką Newtona. Mechanika kwantowa Schrödingera zawiera mechanikę kwantową jako przypadek graniczny

Bardziej szczegółowo

Wykład Budowa atomu 2

Wykład Budowa atomu 2 Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN ŚRÓROCZNYCH I ROCZNYCH FIZYKA - ZAKRES PODSTAWOWY KLASA I

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN ŚRÓROCZNYCH I ROCZNYCH FIZYKA - ZAKRES PODSTAWOWY KLASA I WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN ŚRÓROCZNYCH I ROCZNYCH FIZYKA - ZAKRES PODSTAWOWY KLASA I GRAWITACJA opowiedzieć o odkryciach Kopernika, Keplera i Newtona, opisać ruchy

Bardziej szczegółowo

Zasada nieoznaczoności Heisenberga. Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest:

Zasada nieoznaczoności Heisenberga. Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest: Zasada nieoznaczoności Heisenberga Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest: Pewnych wielkości fizycznych nie moŝna zmierzyć równocześnie z dowolną dokładnością. Iloczyn

Bardziej szczegółowo

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na

Bardziej szczegółowo

2008/2009. Seweryn Kowalski IVp IF pok.424

2008/2009. Seweryn Kowalski IVp IF pok.424 2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie

Bardziej szczegółowo

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe

Bardziej szczegółowo

Własności jąder w stanie podstawowym

Własności jąder w stanie podstawowym Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów

Bardziej szczegółowo

FIZYKA IV etap edukacyjny zakres podstawowy

FIZYKA IV etap edukacyjny zakres podstawowy FIZYKA IV etap edukacyjny zakres podstawowy Cele kształcenia wymagania ogólne I. Wykorzystanie wielkości fizycznych do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych. II. Przeprowadzanie

Bardziej szczegółowo

Poziom nieco zaawansowany Wykład 2

Poziom nieco zaawansowany Wykład 2 W2Z Poziom nieco zaawansowany Wykład 2 Witold Bekas SGGW Promieniotwórczość Henri Becquerel - 1896, Paryż, Sorbona badania nad solami uranu, odkrycie promieniotwórczości Maria Skłodowska-Curie, Piotr Curie

Bardziej szczegółowo

ZJAWISKA KWANTOWO-OPTYCZNE

ZJAWISKA KWANTOWO-OPTYCZNE ZJAWISKA KWANTOWO-OPTYCZNE Źródła światła Prawo promieniowania Kirchhoffa Ciało doskonale czarne Promieniowanie ciała doskonale czarnego Prawo promieniowania Plancka Prawo Stefana-Boltzmanna Prawo przesunięć

Bardziej szczegółowo

W2. Struktura jądra atomowego

W2. Struktura jądra atomowego W2. Struktura jądra atomowego Doświadczenie Rutherforda - badanie odchylania wiązki cząstek alfa w cienkiej folii metalicznej Hans Geiger, Ernest Marsden, Ernest Rutherford ( 1911r.) detektor pierwiastek

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

h 2 h p Mechanika falowa podstawy pˆ 2

h 2 h p Mechanika falowa podstawy pˆ 2 Mechanika falowa podstawy Hipoteza de Broglie a Zarówno promieniowanie jak i cząstki materialne posiadają naturę dwoistą korpuskularno-falową. Z każdą mikrocząstką można związać pewien proces falowy pierwotnie

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Wykład I Prolog Przy końcu XIX wieku fizyka, którą dzisiaj określamy jako klasyczną, zdawała się być nauką ostateczną w tym sensie, że wszystkie jej podstawowe prawa były już ustanowione, a efektem dalszego

Bardziej szczegółowo

Rysunek 3-19 Model ciała doskonale czarnego

Rysunek 3-19 Model ciała doskonale czarnego 3.4. Początki teorii kwantów narodziny fizyki kwantowej Od czasów sformułowania przez Isaaca Newtona zasad mechaniki klasycznej teoria ta stała się podstawą wszystkich nowopowstałych atomistycznych modeli

Bardziej szczegółowo

Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan

Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan Promieniowanie jonizujące i metody radioizotopowe dr Marcin Lipowczan Budowa atomu 897 Thomson, 0 0 m, kula dodatnio naładowana ładunki ujemne 9 Rutherford, rozpraszanie cząstek alfa na folię metalową,

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 15 Janusz Andrzejewski Janusz Andrzejewski 2 Egzamin z fizyki I termin 31 stycznia2014 piątek II termin 13 luty2014 czwartek Oba egzaminy odbywać się będą: sala 301 budynek D1 Janusz Andrzejewski

Bardziej szczegółowo

Wymagania edukacyjne z fizyki zakres podstawowy. Grawitacja

Wymagania edukacyjne z fizyki zakres podstawowy. Grawitacja Wymagania edukacyjne z fizyki zakres podstawowy opowiedzieć o odkryciach Kopernika, Keplera i Newtona, Grawitacja opisać ruchy planet, podać treść prawa powszechnej grawitacji, narysować siły oddziaływania

Bardziej szczegółowo

Optyka falowa. Optyka falowa zajmuje się opisem zjawisk wynikających z falowej natury światła

Optyka falowa. Optyka falowa zajmuje się opisem zjawisk wynikających z falowej natury światła Optyka falowa Optyka falowa zajmuje się opisem zjawisk wynikających z falowej natury światła Optyka falowa Fizjologiczne, fotochemiczne, fotoelektryczne działanie światła wywołane jest drganiami wektora

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy

Bardziej szczegółowo

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Fizyka promieniowania jonizującego. Zygmunt Szefliński Fizyka promieniowania jonizującego Zygmunt Szefliński 1 Wykład 1 Podstawy budowy materii (chemiczne i fizyczne) O wykładzie Pojęcia fizyki subatomowej rządzące zastosowaniami fizyki w diagnostyce i terapii

Bardziej szczegółowo

o pomiarze i o dekoherencji

o pomiarze i o dekoherencji o pomiarze i o dekoherencji Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW pomiar dekoherencja pomiar kolaps nieoznaczoność paradoksy dekoherencja Przykładowy

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa

Bardziej szczegółowo

I. Poziom: poziom rozszerzony (nowa formuła)

I. Poziom: poziom rozszerzony (nowa formuła) Analiza wyników egzaminu maturalnego wiosna 2017 + poprawki Przedmiot: FIZYKA I. Poziom: poziom rozszerzony (nowa formuła) 1. Zestawienie wyników. Liczba uczniów zdających - LO 6 Zdało egzamin 4 % zdawalności

Bardziej szczegółowo

Problemy fizyki początku XX wieku

Problemy fizyki początku XX wieku Mechanika kwantowa Problemy fizyki początku XX wieku Promieniowanie ciała doskonale czarnego Ciałem doskonale czarnym nazywamy ciało całkowicie pochłaniające na nie promieniowanie elektromagnetyczne, niezależnie

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

Wykład 18: Elementy fizyki współczesnej -2

Wykład 18: Elementy fizyki współczesnej -2 Wykład 18: Elementy fizyki współczesnej - Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Efekt fotoelektryczny 1887 Hertz;

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(

Bardziej szczegółowo

Podstawy Fizyki Jądrowej

Podstawy Fizyki Jądrowej Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA: Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu (raczej

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Krzysztof Golec-Biernat Promieniotwórczość Uniwersytet Rzeszowski, 18 października 2017 Wykład II Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 23 Jądra pomieniotwórcze

Bardziej szczegółowo

Energetyka Jądrowa. Wykład 3 14 marca Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Energetyka Jądrowa. Wykład 3 14 marca Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Energetyka Jądrowa Wykład 3 14 marca 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Henri Becquerel 1896 Promieniotwórczość 14.III.2017 EJ

Bardziej szczegółowo

Promieniotwórczość naturalna. Jądro atomu i jego budowa.

Promieniotwórczość naturalna. Jądro atomu i jego budowa. Promieniotwórczość naturalna. Jądro atomu i jego budowa. Doświadczenie Rutherforda (1909). Polegało na bombardowaniu złotej folii strumieniem cząstek alfa (jąder helu) i obserwacji odchyleń ich toru ruchu.

Bardziej szczegółowo

WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU)

WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU) WSTĘP DO FIZYKI CZĄSTEK Julia Hoffman (NCU) WSTĘP DO WSTĘPU W wykładzie zostały bardzo ogólnie przedstawione tylko niektóre zagadnienia z zakresu fizyki cząstek elementarnych. Sugestie, pytania, uwagi:

Bardziej szczegółowo

zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź.

zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź. zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (1 p.) Wybierz ten zestaw wielkości fizycznych, który zawiera wyłącznie wielkości skalarne. a. ciśnienie,

Bardziej szczegółowo

II. KWANTY A ELEKTRONY

II. KWANTY A ELEKTRONY II. KWANTY A ELEKTRONY II.1. PROMIENIE KATODOWE Promienie katodowe są przyczyną fluorescencji. Odegrały one bardzo ważną rolę w odkryciu elektronów. Skład promieniowania katodowego stanowią cząstki elektrycznie

Bardziej szczegółowo

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Fizyka promieniowania jonizującego. Zygmunt Szefliński Fizyka promieniowania jonizującego Zygmunt Szefliński 1 Wykład 3 Ogólne własności jąder atomowych (masy ładunki, izotopy, izobary, izotony izomery). 2 Liczba atomowa i masowa Liczba nukleonów (protonów

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

Reakcje jądrowe dr inż. Romuald Kędzierski

Reakcje jądrowe dr inż. Romuald Kędzierski Reakcje jądrowe dr inż. Romuald Kędzierski Wybuch bomby Ivy Mike (fot. National Nuclear Security Administration/Nevada Site Office, domena publiczna) Przemiany jądrowe 1. Spontaniczne (niewymuszone) związane

Bardziej szczegółowo