Wprowadzenie do przetwarzania obrazów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wprowadzenie do przetwarzania obrazów"

Transkrypt

1 Wprowadzenie do przetwarzania obrazów Radosław Mantiuk Zakład Grafiki Komputerowej Wydział Informatyki Politechnika Szczecińska Maj 2008 All Images in this presentation are the courtesy of Richard Alan Peters

2 Histogram (1) niezależne histogramy dla wszystkich kanałów koloru Image is a courtesy of Richard Alan Peters

3 Histogram (2) liczba pikseli o danej wartości (poziomie szarości)

4 Histogram (3) liczba pikseli o danej wartości wartość pikseli (ang. bins) Image is a courtesy of Richard Alan Peters

5 Histogram (4) Pseudokod programu obliczającego dane histogramu. // input data:! image[] - data of an input image (one 8-bit channel)! width, height - dimensions of an image!! // clear bins! for( i = 0; i < 256; i++ )!!hist[i] = 0;!! // count frequencies! for( i = 0; i < width*height; i++ ) {!!!hist[ image[i] ]++;!!! }!! return hist[] Image is a courtesy of Richard Alan Peters

6 Przetwarzanie pikseli (ang. Point processing) Przetwarzanie pikseli polega na zmianie wartości koloru dla poszczególnych pikseli obrazu. Każdy piksel przetwarzany jest przez tą samą funkcję.

7 Przetwarzanie pikseli - Przykłady Przykłady przetworzonych obrazów Image is a courtesy of Richard Alan Peters

8 Tablice LUT (Look-up Tables) (1) Szybkie przetwarzanie pikseli.

9 Tablice LUT (Look-up Tables) (2) Piksel może mieć 256 wartości dla każdego kanału koloru.

10 Zwiększenie brightness Dodanie wartości większej od 0 do każdego piksela.

11 Zmniejszenie brightness Odjęcie wartości większej od 0 do każdego piksela.

12 Zwiększenie kontrastu! Zwiększenie wartości jasnych pikseli i zmniejszenie wartości dla ciemnych.

13 Zmniejszenie kontrastu

14 Funcje PDF i CDF Prawdopodobieństwo, że losowo wybrany piksel ma wartość g. liczba pikseli w obrazie N i= 0 liczba pikseli o wartości g (odczytana z histogramu) p(g) = 1 A h(g) A = h(g i ) PDF (ang. Probability Density Function) - prawdopodobieństwo dla danego przedziału Funcja CDF (ang. Cumulative Distribution Function) g CDF(g) = h(g ) i i= 0 Prawdopodobieństwo, że losowo wybrany piksel ma wartość mniejszą lub równą g.

15 Wyrównanie histogramu (ang. histogram equalization) Zmiana wartości pikseli tak, aby histogram był poziomy (wszystkie poziomy szarości występowały jednakową liczbę razy) J(r,c) = 255 CDF(I(r,c)) A Zamiana każdego piksela na CDF dla tego piksela.

16 Wyrównanie histogramu (ang. histogram equalization) Podkreślenie szczegółów w obrazie.

17 Dopasowanie histogramu (ang. histogram matching) Zmiana histogramu danego obrazu tak, aby jak najlepiej pasował on do histogramu innego obrazu. ang. percentile - wartość piksela, dla której określony procent pikseli ma wartość mniejszą (np. 20 percentil oznacza taką wartość piksela, że 20% pikseli w obrazie ma wartość mniejszą od tej wartości)

18 Dopasowanie histogramu (ang. histogram matching)

19 Dopasowanie histogramu (ang. histogram matching)

20 Dopasowanie histogramu (ang. histogram matching)

21 Splot (ang. convolution) Wykorzystanie splotu:

22 Transformacja ruchomego okna (ang. moving window transform) Dla każdego piksela obrazu wykonanie splotu z maską filtra.

23 Rozmycie obrazu - filtr dolnoprzepustowy

24 Rozmycie obrazu - filtr dolnoprzepustowy

25 Rozmycie obrazu - filtr dolnoprzepustowy

26 Rozmycie obrazu - filtr dolnoprzepustowy

27 Wykrywanie krawędzi

28 Wykrywanie krawędzi Wertykalnie

29 Wykrywanie krawędzi Horyzontalnie

30 Wykrywanie krawędzi Wertykalnie + horyzontalnie

31 Wykrywanie krawędzi Diagonalnie

32 Splot w dziedzinie częstotliwości W dziedzinie częstotliwości splot jest iloczynem funkcji. splot w dziedzinie obrazu (całkowanie)

33 Filtr dolnoprzepustowy Maska idealnego filtru dolnoprzepustowego

34 Filtr górnoprzepustowy Maska idelanego filtru górnoprzepustowego

35 Funkcja Gaussa Wykorzystywana do tworzenia masek filtrów

36 Funkcja Gaussa - Filtr dolnoprzepustowy

37 Funkcja Gaussa - Filtry Brak artefaktów

38 Porównanie filtrów Filtry idealne

39 Porównanie filtrów Filtry gaussowskie

40 Band Pass Filter Filtrowanie wybranego zakres częstotliwości

41 Szum (ang. noise) Szum skorelowany z obrazem: interferencja elektryczna, interferencja z sensorem, pasma moire'a. Szum nieskorelowany: błędy sensora, błąd kwantyzacji, szum na siatkówce, halftoning. obraz obraz idealny szum

42 Szum nieskorelowany - losowy

43 Szum nieskorelowany - Szum Gaussa

44 Szum nieskorelowany - Szum jednorodny

45 Obraz zaszumiony szumem Gaussa

46 Reprezentacja częstotliwościowa obraz idealny obraz zaszumiony

47 Redukcja szumu obraz rozmyty obraz z zamaskowanym szumem

48 PSF (ang. Point Spread Function) Splot obrazu z funkcja PSF (ang. Point Spread Function ) (OTF (ang.optical Transfer Function) )

49 Szum skorelowany - Periodyczny

50 Redukcja szumu periodycznego obraz idealny obraz zaszumiony maskowanie na zaszumionym obrazie

51 Redukcja szumu periodycznego

52 Szum na obrazach po skanowaniu (ang. halftoning)

53 Redukcja szumu - Filtr Gauss'a

54 Redukcja szumu - Filtr Gauss'a

55 Filtr bilateralny (ang. bilateral filtering) Rozmycie obrazu obraz wejściowy * obraz wyjściowy * * Stały kernel

56 Filtr bilateralny (ang. bilateral filtering) obraz wejściowy * obraz wyjściowy * * Kształt kernela zależy od kontentu obrazu.

57 Filtr bilateralny (ang. bilateral filtering) Filtr nieliniowy wygładzający obraz z zachowaniem krawędzi. Jasność piksela zastępowana jest sumą ważoną jasności otoczenia tego piksela. Wagi zależą od odległości od piksela oraz od różnicy jasności między pikselami z otoczenia. BF 1 [ I] = p G r W p q S ( p q ) G ( I I ) σ s σ p q I q współ. normalizujący waga przestrzenna (space) waga jasności (range) I

58 Filtr bilateralny (ang. bilateral filtering) σ r = 0.1 σ r = 0.25 σ r = (Gaussian blur) σ s = 2 σ s = 6 σ s = 18

59 Filtr bilateralny (ang. bilateral filtering) function Y = bilateral_fast( X, sigma_s, sigma_r ) % Fast bilateral filter % Y = bilateral_fast( X, sigma_s, sigma_r ) % sigma_s - space (2% of image diagonal) % sigma_r - range (mean or median of image gradients) if ~exist( 'sigma_s', 'var' ) sigma_s = 2; end if ~exist( 'sigma_r', 'var' ) sigma_r = 0.1; end n=6; % number of layers min_x = min(x(:)); max_x = max(x(:)); r = linspace( min_x, max_x, n ); L = zeros( n, numel( X ) ); for i=1:n D = exp(-(x - r(i)).^2/(2*sigma_r^2)); K = blur_gaussian( D, sigma_s ); Ls = blur_gaussian( X.*D, sigma_s ); L(i,:) = Ls(:)./K(:); end % interpolate ind_r = clamp((x(:)-min_x)/(max_x-min_x)*(n-1)+1, 1, n); ind_down = floor(ind_r); ind_up = ceil(ind_r); ind_fix = (0:n:((numel(X)-1)*n))'; ind_up = ind_up + ind_fix; ind_down = ind_down + ind_fix; ratio = mod( ind_r, 1 ); Y = zeros( size(x) ); Y(:) = L(ind_up).*ratio + L(ind_down).*(1-ratio); end function Y = clamp( X, min, max ) Y = X; Y(X<min) = min; Y(X>max) = max; end

60 Unsharp masking Wyostrzanie obrazu za pomocą jego rozmytej wersji (unsharp mask). Generuje iluzję typu Cornsweet. Od obrazu odejmowana jest jego rozmyta i przeskalowana wersja. W rezultacie w pobliżu krawędzi pojawia się efekt Cornsweet. Rozmyty obraz odejmowany jest selektywnie, w zależności od tego czy różnica wartości piksela oryginału i obrazu rozmytego jest wystarczająca.

61 Unsharp masking imsharpening

Rekonstrukcja obrazu (Image restoration)

Rekonstrukcja obrazu (Image restoration) Rekonstrukcja obrazu (Image restoration) Celem rekonstrukcji obrazu cyfrowego jest odtworzenie obrazu oryginalnego na podstawie obrazu zdegradowanego. Obejmuje ona identyfikację procesu degradacji i próbę

Bardziej szczegółowo

Przetwarzanie obrazu

Przetwarzanie obrazu Przetwarzanie obrazu Przekształcenia kontekstowe Liniowe Nieliniowe - filtry Przekształcenia kontekstowe dokonują transformacji poziomów jasności pikseli analizując za każdym razem nie tylko jasność danego

Bardziej szczegółowo

POPRAWIANIE JAKOŚCI OBRAZU W DZIEDZINIE PRZESTRZENNEJ (spatial image enhancement)

POPRAWIANIE JAKOŚCI OBRAZU W DZIEDZINIE PRZESTRZENNEJ (spatial image enhancement) POPRAWIANIE JAKOŚCI OBRAZU W DZIEDZINIE PRZESTRZENNEJ (spatial image enhancement) Przetwarzanie obrazów cyfrowych w celu wydobycia / uwydatnienia specyficznych cech obrazu dla określonych zastosowań. Brak

Bardziej szczegółowo

Wyższa Szkoła Informatyki Stosowanej i Zarządzania

Wyższa Szkoła Informatyki Stosowanej i Zarządzania Wyższa Szkoła Informatyki Stosowanej i Zarządzania Grupa ID308, Zespół 11 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 6 Temat: Operacje sąsiedztwa wyostrzanie obrazu Wykonali: 1. Mikołaj Janeczek

Bardziej szczegółowo

Politechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 8. Filtracja uśredniająca i statystyczna.

Politechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 8. Filtracja uśredniająca i statystyczna. Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 8 Filtracja uśredniająca i statystyczna. Cel ćwiczenia Celem ćwiczenia jest zdobycie umiejętności tworzenia i wykorzystywania

Bardziej szczegółowo

Proste metody przetwarzania obrazu

Proste metody przetwarzania obrazu Operacje na pikselach obrazu (operacje punktowe, bezkontekstowe) Operacje arytmetyczne Dodanie (odjęcie) do obrazu stałej 1 Mnożenie (dzielenie) obrazu przez stałą Operacje dodawania i mnożenia są operacjami

Bardziej szczegółowo

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,

Bardziej szczegółowo

Analiza obrazów - sprawozdanie nr 2

Analiza obrazów - sprawozdanie nr 2 Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która

Bardziej szczegółowo

Grafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38

Grafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38 Wykład 2 Przetwarzanie obrazów mgr inż. 1/38 Przetwarzanie obrazów rastrowych Jedna z dziedzin cyfrowego obrazów rastrowych. Celem przetworzenia obrazów rastrowych jest użycie edytujących piksele w celu

Bardziej szczegółowo

Rozpoznawanie Twarzy i Systemy Biometryczne

Rozpoznawanie Twarzy i Systemy Biometryczne Filtry Plan wykładu Przegląd dostępnych filtrów Zastosowanie filtrów na różnych etapach pracy systemu Dalsze badania Kontrast i ostrość Kontrast różnica w kolorze i świetle między częściami ś i obrazu

Bardziej szczegółowo

Próbkowanie (ang. sampling) - kwantyzacja. Rastrowa reprezentacja obrazu 2D. Generowanie obrazu rastrowego 2D. Próbkowanie i integracja

Próbkowanie (ang. sampling) - kwantyzacja. Rastrowa reprezentacja obrazu 2D. Generowanie obrazu rastrowego 2D. Próbkowanie i integracja Próbkowanie (ang. sampling) - kwantyzacja Rastrowa reprezentacja obrazu 2D Próbkowanie - proces zamiany ciągłego sygnału f(x) na skończoną liczbę wartości opisujących ten sygnał. Kwantyzacja - proces zamiany

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa 1. Cel ćwiczenia Ćwiczenie piąte Filtrowanie obrazu Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z pojęciami szumu na obrazie oraz metodami redukcji szumów

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie piate Filtrowanie obrazu Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z pojęciami szumu na obrazie oraz metodami redukcji szumów przez

Bardziej szczegółowo

Parametryzacja obrazu na potrzeby algorytmów decyzyjnych

Parametryzacja obrazu na potrzeby algorytmów decyzyjnych Parametryzacja obrazu na potrzeby algorytmów decyzyjnych Piotr Dalka Wprowadzenie Z reguły nie stosuje się podawania na wejście algorytmów decyzyjnych bezpośrednio wartości pikseli obrazu Obraz jest przekształcany

Bardziej szczegółowo

Filtracja splotowa obrazu

Filtracja splotowa obrazu Informatyka, S1 sem. letni, 2012/2013, wykład#3 Filtracja splotowa obrazu dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 53 Proces przetwarzania obrazów Obraz f(x,y)

Bardziej szczegółowo

Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 9. Przetwarzanie sygnałów wizyjnych. Politechnika Świętokrzyska.

Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 9. Przetwarzanie sygnałów wizyjnych. Politechnika Świętokrzyska. Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 9 Przetwarzanie sygnałów wizyjnych. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z funkcjami pozwalającymi na

Bardziej szczegółowo

Projekt 2: Filtracja w domenie przestrzeni

Projekt 2: Filtracja w domenie przestrzeni Projekt 2: Filtracja w domenie przestrzeni 1. 2. Wstęp teoretyczny a. Filtracja w domenie przestrzeni b. Krótko o szumie c. Filtracja d. Usuwanie szumu typu Salt and Pepper filtrem medianowym e. Wnioski

Bardziej szczegółowo

Obraz cyfrowy. Radosław Mantiuk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Obraz cyfrowy. Radosław Mantiuk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Obraz cyfrowy Radosław Mantiuk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Obraz Funkcja dwuwymiarowa. Wartością tej funkcji w dowolnym punkcie jest kolor (jasność). Obraz

Bardziej szczegółowo

Zbigniew Sołtys - Komputerowa Analiza Obrazu Mikroskopowego 2016 część 5

Zbigniew Sołtys - Komputerowa Analiza Obrazu Mikroskopowego 2016 część 5 5. FILTRY LINIOWE I STATYSTYCZNE. WYRÓWNYWANIE TŁA. Znacznie większe znaczenie w przetwarzaniu obrazu niż operacje punktowe mają takie przekształcenia w których zmiana poziomu szarości piksela zależy nie

Bardziej szczegółowo

WYKŁAD 3. Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego

WYKŁAD 3. Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego WYKŁAD 3 Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego 1 Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego (c.d.) 2 Zestawienie zbiorcze - Regulacje

Bardziej szczegółowo

Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny.

Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny. Filtracja nieliniowa może być bardzo skuteczną metodą polepszania jakości obrazów Filtry nieliniowe Filtr medianowy Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy

Bardziej szczegółowo

Komputerowe obrazowanie medyczne

Komputerowe obrazowanie medyczne Komputerowe obrazowanie medyczne Część II Przetwarzanie i analiza obrazów medycznych Grafika rastrowa i wektorowa W grafice wektorowej obrazy i rysunki składają się z szeregu punktów, przez które prowadzi

Bardziej szczegółowo

Przetwarzanie obrazów. Grupy metod przetwarzania obrazu. Przetwarzanie jednopunktowe. Przetwarzanie jednopunktowe. Przetwarzanie jednopunktowe

Przetwarzanie obrazów. Grupy metod przetwarzania obrazu. Przetwarzanie jednopunktowe. Przetwarzanie jednopunktowe. Przetwarzanie jednopunktowe Przetwarzanie obrazów Ogólna definicja Algorytm przetwarzający obraz to algorytm który, otrzymując na wejściu obraz wejściowy f, na wyjściu zwraca takŝe obraz (g). Grupy metod przetwarzania obrazu Przekształcenia

Bardziej szczegółowo

WYDZIAŁ FIZYKI I INFORMATYKI STOSOWANEJ

WYDZIAŁ FIZYKI I INFORMATYKI STOSOWANEJ WYDZIAŁ FIZYKI I INFORMATYKI STOSOWANEJ Hybrid Images Imię i nazwisko: Anna Konieczna Kierunek studiów: Informatyka Stosowana Rok studiów: 4 Przedmiot: Analiza i Przetwarzanie Obrazów Prowadzący przedmiot:

Bardziej szczegółowo

Przekształcenia kontekstowe. Filtry nieliniowe Typowy przykład usuwania zakłóceń z obrazu

Przekształcenia kontekstowe. Filtry nieliniowe Typowy przykład usuwania zakłóceń z obrazu Definicja Przekształcenia kontekstowe są to przekształcenia które dla wyznaczenia wartości jednego punktu obrazu wynikowego trzeba dokonać określonych obliczeń na wielu punktach obrazu źródłowego. Przekształcenia

Bardziej szczegółowo

Operatory mapowania tonów

Operatory mapowania tonów Operatory mapowania tonów (ang. Tone Mapping Operators) Radosław Mantiuk rmantiuk@wi.zut.edu.pl 1 Operatory Tonów (TMO - tone mapping operator) Kompresja luminancji obrazów HDR Dostosowanie zakresu dynamiki

Bardziej szczegółowo

Filtracja obrazów. w dziedzinie częstotliwości. w dziedzinie przestrzennej

Filtracja obrazów. w dziedzinie częstotliwości. w dziedzinie przestrzennej Filtracja obrazów w dziedzinie częstotliwości w dziedzinie przestrzennej filtry liniowe filtry nieliniowe Filtracja w dziedzinie częstotliwości Obraz oryginalny FFT2 IFFT2 Obraz po filtracji f(x,y) H(u,v)

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 3 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 3 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

Przetwarzanie obrazów rastrowych macierzą konwolucji

Przetwarzanie obrazów rastrowych macierzą konwolucji Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie szóste Transformacje obrazu w dziedzinie częstotliwości 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie szóste Transformacje obrazu w dziedzinie częstotliwości 1. Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami

Bardziej szczegółowo

Ćwiczenia z grafiki komputerowej 5 FILTRY. Miłosz Michalski. Institute of Physics Nicolaus Copernicus University. Październik 2015

Ćwiczenia z grafiki komputerowej 5 FILTRY. Miłosz Michalski. Institute of Physics Nicolaus Copernicus University. Październik 2015 Ćwiczenia z grafiki komputerowej 5 FILTRY Miłosz Michalski Institute of Physics Nicolaus Copernicus University Październik 2015 1 / 12 Wykorzystanie warstw Opis zadania Obrazy do ćwiczeń Zadanie ilustruje

Bardziej szczegółowo

Detekcja punktów zainteresowania

Detekcja punktów zainteresowania Informatyka, S2 sem. Letni, 2013/2014, wykład#8 Detekcja punktów zainteresowania dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Proces przetwarzania obrazów

Bardziej szczegółowo

ANALIZA I PRZETWARZANIE OBRAZÓW

ANALIZA I PRZETWARZANIE OBRAZÓW ANALIZA I PRZETWARZANIE OBRAZÓW Instalacja pip install opencv-python run pip install opencv-contrib-python Przydatne Potrzebne importy: import cv2 import numpy as np Odczyt, zapis i wyświetlanie obrazu:

Bardziej szczegółowo

Aparat widzenia człowieka (ang. Human Visual System, HVS) Budowa oka. Komórki światłoczułe. Rastrowa reprezentacja obrazu 2D.

Aparat widzenia człowieka (ang. Human Visual System, HVS) Budowa oka. Komórki światłoczułe. Rastrowa reprezentacja obrazu 2D. 1/9 Aparat widzenia człowieka (ang. Human Visual System, HVS) Rastrowa reprezentacja obrazu 2D Radosław Mantiuk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Courtesy of

Bardziej szczegółowo

Grafika komputerowa. Zajęcia IX

Grafika komputerowa. Zajęcia IX Grafika komputerowa Zajęcia IX Ćwiczenie 1 Usuwanie efektu czerwonych oczu Celem ćwiczenia jest usunięcie efektu czerwonych oczu u osób występujących na zdjęciu tak, aby plik wynikowy wyglądał jak wzor_1.jpg

Bardziej szczegółowo

Przetwarzanie obrazów wykład 4

Przetwarzanie obrazów wykład 4 Przetwarzanie obrazów wykład 4 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Filtry nieliniowe Filtry nieliniowe (kombinowane)

Bardziej szczegółowo

Filtracja w domenie przestrzeni

Filtracja w domenie przestrzeni 1 Filtracja Filtracja w domenie przestrzeni Filtracja liniowa jest procesem splotu (konwolucji) obrazu z maską (filtrem). Dla dwuwymiarowej i dyskretnej funkcji filtracja dana jest wzorem: L2(m, n) = (w

Bardziej szczegółowo

Operator rozciągania. Obliczyć obraz q i jego histogram dla p 1 =4, p 2 =8; Operator redukcji poziomów szarości

Operator rozciągania. Obliczyć obraz q i jego histogram dla p 1 =4, p 2 =8; Operator redukcji poziomów szarości Operator rozciągania q = 15 ( p p1 ) ( p p ) 0 2 1 dla p < p p 1 2 dla p p, p > p 1 2 Obliczyć obraz q i jego histogram dla p 1 =4, p 2 =8; Operator redukcji poziomów szarości q = 0 dla p p1 q2 dla p1

Bardziej szczegółowo

Detekcja twarzy w obrazie

Detekcja twarzy w obrazie Detekcja twarzy w obrazie Metoda na kanałach RGB 1. Należy utworzyć nowy obrazek o wymiarach analizowanego obrazka. 2. Dla każdego piksela oryginalnego obrazka pobiera się informację o wartości kanałów

Bardziej szczegółowo

FILTRACJE W DZIEDZINIE CZĘSTOTLIWOŚCI

FILTRACJE W DZIEDZINIE CZĘSTOTLIWOŚCI FILTRACJE W DZIEDZINIE CZĘSTOTLIWOŚCI ( frequency domain filters) Każdy człon F(u,v) zawiera wszystkie wartości f(x,y) modyfikowane przez wartości członów wykładniczych Za wyjątkiem trywialnych przypadków

Bardziej szczegółowo

Filtracja obrazu operacje kontekstowe

Filtracja obrazu operacje kontekstowe Filtracja obrazu operacje kontekstowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu Poprawa ostrości Usunięcie określonych wad obrazu Poprawa obrazu o złej jakości technicznej Rekonstrukcja

Bardziej szczegółowo

Algorytmy Laplacian of Gaussian i Canny ego detekcji krawędzi w procesie analizy satelitarnych obrazów procesów atmosferycznych.

Algorytmy Laplacian of Gaussian i Canny ego detekcji krawędzi w procesie analizy satelitarnych obrazów procesów atmosferycznych. Algorytmy Laplacian of Gaussian i Canny ego detekcji krawędzi w procesie analizy satelitarnych obrazów procesów atmosferycznych. Słowa kluczowe: teledetekcja, filtracja obrazu, segmentacja obrazu, algorytmy

Bardziej szczegółowo

Przekształcenia punktowe

Przekształcenia punktowe Przekształcenia punktowe Przekształcenia punktowe realizowane sa w taki sposób, że wymagane operacje wykonuje sie na poszczególnych pojedynczych punktach źródłowego obrazu, otrzymujac w efekcie pojedyncze

Bardziej szczegółowo

Rekonstrukcja obrazu - usuwanie rozmycia (image deblurring)

Rekonstrukcja obrazu - usuwanie rozmycia (image deblurring) Rekonstrukcja obrazu - usuwanie rozmycia (image deblurring) W trakcie rejestracji obrazu występuje wiele czynników powodujących degradację jakości zarejestrowanego obrazu. Poza szumami jedną z podstawowych

Bardziej szczegółowo

Filtracja obrazu operacje kontekstowe

Filtracja obrazu operacje kontekstowe Filtracja obrazu operacje kontekstowe Podział metod filtracji obrazu Metody przestrzenne i częstotliwościowe Metody liniowe i nieliniowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu

Bardziej szczegółowo

CYFROWE PRZETWARZANIE SYGNAŁÓW

CYFROWE PRZETWARZANIE SYGNAŁÓW POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Sygnały stochastyczne, parametry w dziedzinie

Bardziej szczegółowo

Cyfrowe Przetwarzanie Obrazów i Sygnałów

Cyfrowe Przetwarzanie Obrazów i Sygnałów Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX Lokalne transformacje obrazów Joanna Ratajczak, Wrocław, 28 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami lokalnych

Bardziej szczegółowo

Algorytmy graficzne. Nieliniowa filtracja obrazów monochromatycznych

Algorytmy graficzne. Nieliniowa filtracja obrazów monochromatycznych Algorytmy graficzne Nieliniowa filtracja orazów monochromatycznych Metody oceny efektywności filtracji Analizując filtry redukujące zakłócenia w orazie cyfrowym konieczne jest określenie ścisłych miar

Bardziej szczegółowo

Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 11. Filtracja sygnałów wizyjnych

Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 11. Filtracja sygnałów wizyjnych Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 11 Filtracja sygnałów wizyjnych Operacje kontekstowe (filtry) Operacje polegające na modyfikacji poszczególnych elementów obrazu w zależności od stanu

Bardziej szczegółowo

Informatyka, studia dzienne, mgr II st. Przetwarzanie obrazu i dźwięku 2011/2012 Prowadzący: dr inż. Bartłomiej Stasiak czwartek, 8:30

Informatyka, studia dzienne, mgr II st. Przetwarzanie obrazu i dźwięku 2011/2012 Prowadzący: dr inż. Bartłomiej Stasiak czwartek, 8:30 Informatyka, studia dzienne, mgr II st. semestr I Przetwarzanie obrazu i dźwięku 2011/2012 Prowadzący: dr inż. Bartłomiej Stasiak czwartek, 8:30 Data oddania: Ocena: Grzegorz Graczyk 178717 Andrzej Stasiak

Bardziej szczegółowo

Cyfrowe Przetwarzanie Obrazów i Sygnałów

Cyfrowe Przetwarzanie Obrazów i Sygnałów Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX3 Globalne transformacje obrazów Joanna Ratajczak, Wrocław, 2018 1 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami globalnych

Bardziej szczegółowo

Filtracja liniowa (metody konwolucyjne, tzn. uwzględniające pewne otoczenie przetwarzanego piksla):

Filtracja liniowa (metody konwolucyjne, tzn. uwzględniające pewne otoczenie przetwarzanego piksla): WYKŁAD 3 Operacje sąsiedztwa Są to operacje, w których na wartość zadanego piksla obrazu wynikowego q o współrz. (i,j) mają wpływ wartości piksli pewnego otoczenia piksla obrazu pierwotnego p o współrzędnych

Bardziej szczegółowo

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

Przetwarzanie obrazów wykład 2

Przetwarzanie obrazów wykład 2 Przetwarzanie obrazów wykład 2 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Etapy obróbki pozyskanego obrazu Obróbka wstępna

Bardziej szczegółowo

Podstawy Przetwarzania Sygnałów

Podstawy Przetwarzania Sygnałów Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech

Bardziej szczegółowo

Analiza obrazu. wykład 3. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009

Analiza obrazu. wykład 3. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Analiza obrazu komputerowego wykład 3 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Binaryzacja Binaryzacja jest jedną z ważniejszych ż czynności punktowego przetwarzania obrazów. Poprzedza prawie zawsze

Bardziej szczegółowo

Implementacja filtru Canny ego

Implementacja filtru Canny ego ANALIZA I PRZETWARZANIE OBRAZÓW Implementacja filtru Canny ego Autor: Katarzyna Piotrowicz Kraków,2015-06-11 Spis treści 1. Wstęp... 1 2. Implementacja... 2 3. Przykłady... 3 Porównanie wykrytych krawędzi

Bardziej szczegółowo

Ćwiczenie 2. Przetwarzanie graficzne plików. Wprowadzenie teoretyczne

Ćwiczenie 2. Przetwarzanie graficzne plików. Wprowadzenie teoretyczne Ćwiczenie Przetwarzanie graficzne plików Wprowadzenie teoretyczne ddytywne składanie kolorów (podstawowe barwy R, G, ) arwy składane addytywnie wykorzystywane są najczęściej w wyświetlaczach, czyli stosuje

Bardziej szczegółowo

Histogram obrazu, modyfikacje histogramu

Histogram obrazu, modyfikacje histogramu March 15, 2013 Histogram Jeden z graficznych sposobów przedstawiania rozkładu cechy. Składa się z szeregu prostokatów umieszczonych na osi współrzędnych. Prostokaty te sa z jednej strony wyznaczone przez

Bardziej szczegółowo

3. OPERACJE BEZKONTEKSTOWE

3. OPERACJE BEZKONTEKSTOWE 3. OPERACJE BEZKONTEKSTOWE 3.1. Tablice korekcji (LUT) Przekształcenia bezkontekstowe (punktowe) to takie przekształcenia obrazu, w których zmiana poziomu szarości danego piksela zależy wyłącznie od jego

Bardziej szczegółowo

Przetwarzanie obrazów wykład 6. Adam Wojciechowski

Przetwarzanie obrazów wykład 6. Adam Wojciechowski Przetwarzanie obrazów wykład 6 Adam Wojciechowski Przykłady obrazów cyfrowych i ich F-obrazów Parzysta liczba powtarzalnych wzorców Transformata Fouriera może być przydatna przy wykrywaniu określonych

Bardziej szczegółowo

RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski

RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski RENDERING W CZASIE RZECZYWISTYM Michał Radziszewski Plan wykładu Postprocessing wprowadzenie Rendering do tekstury Obliczenia w GLSL Odczyt transformacji (transform feedback) Pełnoekranowy czworokąt Rozmywanie

Bardziej szczegółowo

HDR. Obrazy o rozszerzonym zakresie dynamiki

HDR. Obrazy o rozszerzonym zakresie dynamiki Synteza i obróbka obrazu HDR Obrazy o rozszerzonym zakresie dynamiki Dynamika obrazu Zakres dynamiki (dynamicrange) to różnica między najciemniejszymi i najjaśniejszymi elementami obrazu. W fotografice

Bardziej szczegółowo

AKWIZYCJA I PRZETWARZANIE WSTĘPNE OBRAZU

AKWIZYCJA I PRZETWARZANIE WSTĘPNE OBRAZU AKWIZYCJA I PRZETWARZANIE WSTĘPNE OBRAZU WYKŁAD 2 Marek Doros Przetwarzanie obrazów Wykład 2 2 Akwizycja (pozyskiwanie) obrazu Akwizycja obrazu - przetworzenie obrazu obiektu fizycznego (f(x, y)) do postaci

Bardziej szczegółowo

Fotometria CCD 4. Fotometria profilowa i aperturowa

Fotometria CCD 4. Fotometria profilowa i aperturowa Fotometria CCD 4. Fotometria profilowa i aperturowa Andrzej Pigulski Instytut Astronomiczny Uniwersytetu Wrocławskiego Produkty HELAS-a, 2010 Fotometria CCD Proces wyznaczania jasności gwiazd na obrazie

Bardziej szczegółowo

Akwizycja obrazów HDR

Akwizycja obrazów HDR Akwizycja obrazów HDR Radosław Mantiuk radoslaw.mantiuk@gmail.com 1 Składanie HDRa z sekwencji zdjęć LDR (1) Seria&zdjęć&sceny&wykonanych&z&różnymi&ustawieniami&ekspozycji& 2 Składanie HDRa z sekwencji

Bardziej szczegółowo

Fuzja sygnałów i filtry bayesowskie

Fuzja sygnałów i filtry bayesowskie Fuzja sygnałów i filtry bayesowskie Roboty Manipulacyjne i Mobilne dr inż. Janusz Jakubiak Katedra Cybernetyki i Robotyki Wydział Elektroniki, Politechnika Wrocławska Wrocław, 10.03.2015 Dlaczego potrzebna

Bardziej szczegółowo

Analiza obrazów. Segmentacja i indeksacja obiektów

Analiza obrazów. Segmentacja i indeksacja obiektów Analiza obrazów. Segmentacja i indeksacja obiektów Wykorzystane materiały: R. Tadeusiewicz, P. Korohoda, Komputerowa analiza i przetwarzanie obrazów, Wyd. FPT, Kraków, 1997 Analiza obrazu Analiza obrazu

Bardziej szczegółowo

Ćwiczenia z grafiki komputerowej 2 RETUSZ OBRAZU. Miłosz Michalski. Institute of Physics Nicolaus Copernicus University.

Ćwiczenia z grafiki komputerowej 2 RETUSZ OBRAZU. Miłosz Michalski. Institute of Physics Nicolaus Copernicus University. Ćwiczenia z grafiki komputerowej 2 RETUSZ OBRAZU Miłosz Michalski Institute of Physics Nicolaus Copernicus University Październik 2015 1 / 8 Retusz obrazu Opis zadania Obrazy do ćwiczeń Zadanie ilustruje

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

POB Odpowiedzi na pytania

POB Odpowiedzi na pytania POB Odpowiedzi na pytania 1.) Na czym polega próbkowanie a na czym kwantyzacja w procesie akwizycji obrazu, jakiemu rodzajowi rozdzielczości odpowiada próbkowanie a jakiemu kwantyzacja Próbkowanie inaczej

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie drugie Podstawowe przekształcenia obrazu 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami obrazu wykonywanymi

Bardziej szczegółowo

Techniki wizualizacji. Ćwiczenie 4. Podstawowe algorytmy przetwarzania obrazów

Techniki wizualizacji. Ćwiczenie 4. Podstawowe algorytmy przetwarzania obrazów Doc. dr inż. Jacek Jarnicki Instytut Informatyki, Automatyki i Robotyki Politechniki Wrocławskiej jacek.jarnicki@pwr.wroc.pl Techniki wizualizacji Ćwiczenie 4 Podstawowe algorytmy przetwarzania obrazów

Bardziej szczegółowo

PRZETWARZANIE SYGNAŁÓW

PRZETWARZANIE SYGNAŁÓW PRZETWARZANIE SYGNAŁÓW SEMESTR V Wykład VII Sygnały 2D i transformacja Fouriera 2D 2 1 2 Splot 2D d d y H F y H y F y G ), ( ), ( ), ( ), ( ), ( H(,) F(,) H(-,-) H(-,y-) G(,y) Delta Diraca 2D (,y) 0 ),

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie trzecie Operacje na dwóch obrazach 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z operacjami jakie możemy wykonywać na dwóch obrazach,

Bardziej szczegółowo

Wybrane metody kompresji obrazów

Wybrane metody kompresji obrazów Wybrane metody kompresji obrazów Celem kodowania kompresyjnego obrazu jest redukcja ilości informacji w nim zawartej. Redukcja ta polega na usuwaniu informacji nadmiarowej w obrazie, tzw. redundancji.

Bardziej szczegółowo

Filtracja. Krzysztof Patan

Filtracja. Krzysztof Patan Filtracja Krzysztof Patan Wprowadzenie Działanie systemu polega na przetwarzaniu sygnału wejściowego x(t) na sygnał wyjściowy y(t) Równoważnie, system przetwarza widmo sygnału wejściowego X(jω) na widmo

Bardziej szczegółowo

Synteza i obróbka obrazu HDR. Obrazy o rozszerzonym zakresie dynamiki

Synteza i obróbka obrazu HDR. Obrazy o rozszerzonym zakresie dynamiki Synteza i obróbka obrazu HDR Obrazy o rozszerzonym zakresie dynamiki Dynamika obrazu Zakres dynamiki (dynamicrange) to różnica między najciemniejszymi i najjaśniejszymi elementami obrazu. W fotografii

Bardziej szczegółowo

EKSPLORACJA ZASOBÓW INTERNETU LABORATORIUM VIII WYSZUKIWANIE OBRAZÓW

EKSPLORACJA ZASOBÓW INTERNETU LABORATORIUM VIII WYSZUKIWANIE OBRAZÓW EKSPLORACJA ZASOBÓW INTERNETU LABORATORIUM VIII WYSZUKIWANIE OBRAZÓW 1. Motywacja Strony internetowe zawierają 70% multimediów Tradycyjne wyszukiwarki wspierają wyszukiwanie tekstu Kolekcje obrazów: Dwie

Bardziej szczegółowo

30 godzin, 6 punktów ECTS

30 godzin, 6 punktów ECTS Reprezentacja obrazów cyfrowych Podstawowe pojęcia i operacje Komputerowa analiza obrazów 30 godzin, 6 punktów ECTS Treści programowe 1. Reprezentacja obrazów cyfrowych, informacja obrazowa. 2. Modele

Bardziej szczegółowo

Przetwarzanie obrazu

Przetwarzanie obrazu Przetwarzanie obrazu Przekształcenia geometryczne Obroty Przesunięcia Odbicia Rozciągnięcia itp Przekształcenia geometryczne Obroty Wielokrotność 90 stopni Inne Przekształcenia geometryczne Obroty Wielokrotność

Bardziej szczegółowo

ALGORYTMY PRZETWARZANIA OBRAZÓW Projekt. Aplikacja przetwarzająca obrazy z możliwością eksportu i importu do programu MS Excel.

ALGORYTMY PRZETWARZANIA OBRAZÓW Projekt. Aplikacja przetwarzająca obrazy z możliwością eksportu i importu do programu MS Excel. Grupa IZ07IO1 Wyższa Szkoła Informatyki Stosowanej i Zarządzania WIT ALGORYTMY PRZETWARZANIA OBRAZÓW Projekt Aplikacja przetwarzająca obrazy z możliwością eksportu i importu do programu MS Excel. Wykonali:

Bardziej szczegółowo

Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab

Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab Zygmunt Wróbel i Robert Koprowski Praktyka przetwarzania obrazów w programie Matlab EXIT 2004 Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja obrazu

Bardziej szczegółowo

AKWIZYCJA I PRZETWARZANIE WSTĘPNE

AKWIZYCJA I PRZETWARZANIE WSTĘPNE WYKŁAD 2 AKWIZYCJA I PRZETWARZANIE WSTĘPNE Akwizycja (pozyskiwanie) obrazu Akwizycja obrazu - przetworzenie obrazu obiektu fizycznego (f(x,y)) do postaci zbioru danych dyskretnych (obraz cyfrowy) nadających

Bardziej szczegółowo

Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych

Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych Plan laboratorium Generatory liczb pseudolosowych dla rozkładów dyskretnych: Generator liczb o rozkładzie równomiernym Generator

Bardziej szczegółowo

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa 1. Cel ćwiczenia Ćwiczenie trzecie Operacje na dwóch obrazach Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z operacjami jakie możemy wykonywać na dwóch obrazach,

Bardziej szczegółowo

Wyższa Szkoła Informatyki Stosowanej i Zarządzania WIT

Wyższa Szkoła Informatyki Stosowanej i Zarządzania WIT 3-1 Wyższa Szkoła Informatyki Stosowanej i Zarządzania WIT Grupa BD2,TC1, Zespół 2 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń laboratoryjnych Ćwiczenie nr3 Temat: Operacje sąsiedztwa wygładzanie i wyostrzanie

Bardziej szczegółowo

Uniwersytet Warszawski, Wydział Fizyki

Uniwersytet Warszawski, Wydział Fizyki TELEDETEKCJA A źródło B oddziaływanie z atmosferą C obiekt, oddziaływanie z obiektem D detektor E zbieranie danych F analiza G zastosowania A C B D E F G Obraz wejściowy Analiza Algorytmy przetwarzania

Bardziej szczegółowo

CYFROWE PRZETWARZANIE SYGNAŁÓW

CYFROWE PRZETWARZANIE SYGNAŁÓW POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza widmowa sygnałów (2) dr inż. Robert

Bardziej szczegółowo

3. Przetwarzanie analogowo-cyfrowe i cyfrowo-analogowe... 43

3. Przetwarzanie analogowo-cyfrowe i cyfrowo-analogowe... 43 Spis treści 3 Przedmowa... 9 Cele książki i sposoby ich realizacji...9 Podziękowania...10 1. Rozległość zastosowań i głębia problematyki DSP... 11 Korzenie DSP...12 Telekomunikacja...14 Przetwarzanie sygnału

Bardziej szczegółowo

FFT i dyskretny splot. Aplikacje w DSP

FFT i dyskretny splot. Aplikacje w DSP i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata

Bardziej szczegółowo

Zbigniew Sołtys - Komputerowa Analiza Obrazu Mikroskopowego 2016 część 7

Zbigniew Sołtys - Komputerowa Analiza Obrazu Mikroskopowego 2016 część 7 7. NORMALIZACJA I BINARYZACJA ADAPTATYWNA 7.1. Normalizacja lokalna Zwykłe konwolucje działają w jednakowy sposób na całym obrazie. Plugin Local Normalization przeprowadza filtrowanie Gaussa w zależności

Bardziej szczegółowo

Plan wykładu. Wprowadzenie Program graficzny GIMP Edycja i retusz zdjęć Podsumowanie. informatyka +

Plan wykładu. Wprowadzenie Program graficzny GIMP Edycja i retusz zdjęć Podsumowanie. informatyka + Plan wykładu Wprowadzenie Program graficzny GIMP Edycja i retusz zdjęć Podsumowanie 2 Wprowadzenie Po co obrabiamy zdjęcia Obrazy wektorowe i rastrowe Wielkość i rozdzielczość obrazu Formaty graficzne

Bardziej szczegółowo

Analiza obrazu. wykład 4. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009

Analiza obrazu. wykład 4. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Analiza obrazu komputerowego wykład 4 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Filtry górnoprzepustowe - gradienty Gradient - definicje Intuicyjnie, gradient jest wektorem, którego zwrot wskazuje

Bardziej szczegółowo

Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (1)

Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (1) Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (1) Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna

Bardziej szczegółowo

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe

Bardziej szczegółowo

Akwizycja obrazów HDR

Akwizycja obrazów HDR Akwizycja obrazów HDR Radosław Mantiuk radoslaw.mantiuk@gmail.com 1 Składanie HDRa z sekwencji zdjęć LDR (1) Seria zdjęć sceny wykonanych z różnymi ustawieniami ekspozycji 2 Składanie HDRa z sekwencji

Bardziej szczegółowo