Regresja- wstęp Regresja liniowa Regresja nieliniowa. Idea

Wielkość: px
Rozpocząć pokaz od strony:

Download "Regresja- wstęp Regresja liniowa Regresja nieliniowa. Idea"

Transkrypt

1 Idea Termin regresja oznacza metodę pozwalającą na zbadanie związku pomiędzy zmiennymi i wykorzystanie tej wiedzy do przewidywania nieznanych wartości jednych wielkości na podstawie znajomości wartości innych. W praktyce poszukuje się związku między domniemaną jedną(lub więcej) zmienną objaśniającą lub niezależną, a zmienną objaśnianą lub zależną Y. Związek ten może być dalej wykorzystywany do prognozowania wartości Y w zależności od X. Jeżeli badać będziemy zależność zmiennej Y od wartości innej zmiennej, to wartości zmiennej objaśniającej będziemy oznaczać przez x i traktować jako wartości deterministyczne zmiennej X, które wybieramy w celu obserwacji zmiennej losowej Y. Jak widać zmienne X oraz Y traktowane są odmiennie w zagadnieniu regresyjnym. Mianowicie zmienna X uważana jest za w pełni kontrolowaną przez eksperymentatora, a co za tym idzie pozbawiona jest ona elementu losowości(de facto traktowana jest jako liczba).

2 Idea Chcemy zatem odpowiedzieć sobie na pytanie jak zmienia się wartość oczekiwana zmiennej Y w zależności od wartości x zmiennej X, czyli: E(Y) = g(x), gdzie g(x) jest funkcją regresji opisującą poszukiwany związek. Zwyczajowo zakłada się dodatkowo, że Var(Y) jest dla wszystkich wartości xstałairówna σ 2 (jednorodnośćwariancji).z matematycznego punktu widzenia regresją nazywana jest każda metoda, która umożliwia oszacowanie tego równania.

3 Diagramy korelacyjne W celu wstępnej oceny zależności najczęściej konstruuje się diagramy korelacyjne. Ich wagę doskonale uwypuklił Anscombe (1973), który skonstruował 4 zbiory danych, mające identyczne podstawowe charakterystyki, ale ich diagramy korelacyjne diametralniesięróżniły.średniadlakażdejzmiennej x i wynosiłą9, zmiennej y i =10;wariancjadla x i =7,5,dla y i =2,75; współczynnik korelacji liniowej wynosił 0,816 dla każdego zbioru orazprostaregresjimiałapostać y =3+0,5x.

4 Diagramy korelacyjne

5 Diagramy korelacyjne Różnią się one w sposób bardzo wyraźny. Pierwszy wykres(górny lewy róg) sugeruje, że dane mają rozkład normalny i prosta regresji oraz współczynnik korelacji są poprawne. Drugi wykres(górny prawy róg) pokazuje nieliniowy charakter zależności, a zatem i brak uzasadnienia dla prostej regresji oraz współczynnika korelacji. Wykres trzeci(dolny lewy róg) wskazuje na wagę obserwacji odstającej, która jest powodem zaniżenia współczynnika korelacji. Ostatni wykres(dolny prawy róg) pokazuje inne zjawisko, mianowicie tzw. obserwacją wpływową, która tutaj spowodowała, że współczynnik korelacji jest wysoki, mimo, że taki być nie powinien.

6 Zależności regresyjnej poszukuje się w pewnej zadanej z góry klasie funkcji, na ogół klasie funkcji wielomianowych, z których w najprostszym przypadku, gdy za g(x) przyjmiemy funkcję liniową, otrzymamy równanie regresji liniowej postaci: E(Y) = α 0 +α 1 x, wktórym α 0 oraz α 1 sąnieznanymiparametrami.wpraktyce wygodniej jest posługiwać się następującym modelem regresji liniowej: Y i = α 0 +α 1 x i +ε i. Występującewrównaniuzmiennelosowe ε i nazywanesą składnikami losowymi. Zakładamy, że mają one wartość oczekiwaną0,stałąwariancjęrówną σ 2 (homoscedastyczność)oraz są nieskorelowane między sobą. Zauważmy, że nie jest wymagane określenie rozkładu składnika losowego(zwykle zakłada się, że jest to rozkład normalny).

7 W praktyce nie dysponujemy pełną informacją o populacji. Musimy zatem oszacować parametry funkcji regresji na podstawie próby losowej. Odpowiednie oszacowanie ma postać: Element Ŷ i = a 0 +a 1 x i. U i = y i Ŷi nazywany jest składnikiem resztowym, albo prościej resztą (funkcjonuje również nazwa residuum). Jak jednak znaleźć taką dobrze dopasowaną linię prostą? Punktem wyjścia są reszty, a właściwie suma kwadratów reszt, opisująca rozbieżność pomiędzy wartościami empirycznymi zmiennej zależnej, a jej wartościami teoretycznymi, obliczonymi na podstawie wybranej funkcji. Oszacowania parametrów dobieramy tak, aby suma kwadratów reszt osiągnęła minimum. Metoda ta nosi nazwę metody najmniejszych kwadratów(mnk).

8

9 Estymatory parametrów otrzymane za pomocą MNK mają postać: a 1 = n (x i x)(y i ȳ), n (x i x) 2 i=1 i=1 a 0 = ȳ a 1 x. Tak otrzymane estymatory są najefektywniejszymi i równocześnie nieobciążonymi estymatorami parametrów regresji liniowej. Współczynnikkierunkowy a 1 nazywamywspółczynnikiemregresji liniowej. Odpowiada on na pytanie, jaki jest przeciętny przyrost wartości zmiennej zależnej na jednostkę przyrostu zmiennej niezależnej.

10 Dokładność oszacowania można ocenić za pomocą współczynnika determinacji R 2.Mierzyonjakaczęśćogólnejzmiennościzmiennej zależnej jest wyjaśniona przez regresję liniową(współczynnik determinacji nie ma sensu, jeśli w modelu pominięto wyraz wolny). Dołączeniejednaknowejzmiennejdomodeluzawszezwiększa R 2. Celem nie jest uzyskanie jak największej wartości tego współczynnika, lecz znalezienie związku między X i Y z rzetelnymi ocenami parametrów. Dlatego w praktyce używamy raczej tzw. poprawionego R 2.Uwzględniaon,że R 2 jestobliczonyzpróbyi jest trochę za dobry, jeśli uogólniamy nasze wyniki na populację. Poprawiony R 2 jestzawszemniejszyod R 2.Przyjmujesię,żeaby pozytywnie zweryfikować model współczynnik ten musi być większy od 60%. Należy również pamiętać, że taka ocena jakości modelu jest poprawna wtedy i tylko wtedy gdy model jest adekwatny, czyli gdy spełnione są założenia modelu.

11 Wykresy diagnostyczne wykres dźwigini Wykorzystywany do zbadania, czy występują obserwacje odstające. Dla każdego residuum obliczana jest tzw. siła dźwigni zwana również wpływem(miara wpływu obserwacji na oceny). W modelu adekwatnym siła dźwigni nie powinna być zbyt duża, gdyż oznacza, to że pojedyncza obserwacja ma duży wpływ na oceny parametrów. Przyjmuje się, że obserwacja jest wpływowa jeśli przekracza dwie średnie siły dźwigni. Inną podobną miarą wpływu obserwacji na model jest odległość Cooka. Wykazuje ona różnicę między wyznaczonymi wartościami współczynników, a wartościami obliczonymi przy wyłączeniu danego przypadku z obliczeń. Wszystkie odległości powinny być tego samego rzędu. Jeśli nie są, to można przypuszczać, że dany przypadek(przypadki) miał istotny wpływ na obciążenie współczynników równania regresji. Często preferuje się analizę odległości Cooka zamiast analizy wartości wpływowych. Powinna ona być mniejsza od 1, jeśli chcemy uznać model za adekwatny.

12 Wykresy diagnostyczne wykres residuów Wykres przedstawiający na jednej osi wartości dopasowane przez model, a na drugiej residua lub standaryzowane residua. Powszechną praktyką jest uznawanie, że obserwacja jest odstająca jeżeli jej residuum standaryzowane jest większe co do wartości bezwzględnej od 2. Dla modelu adekwatnego średnia wartość residuum nie powinna zależeć od wartości dopasowania (powinniśmy w wyniku dostać pas punktów losowo rozmieszczonych wokół prostej y = 0).

13 Wykresy diagnostyczne wykres kwantylowy Wykresy kwantylowe dla standaryzowanych residuów powinny wskazać na ich normalność.

14 Wykresy diagnostyczne wykres pierwiastków Wykres, na którym dla każdej wartości zmiennej objaśniającej wyznaczono pierwiastek z wartości bezwzględnej jej residuum standaryzowanego. Nie powinniśmy zaobserwować żadnego trendu. Jeśli takowy występuje, oznacza to, że wariancja błędu nie jest stała. Oprócz wizualnej oceny wariancji składnika losowego można również wykonać jeden z wielu dostępnych testów. Najczęściej używany jest test Breuscha-Pagana. Hipoteza zerowa zakłada, że homoskedastyczność zachodzi.

15 Modelowanie w R Odpowiednie sformułowanie modelu w R odbywa się przy pomocy specjalnych formuł opisujących zależności zmiennych. Postać formuły jest następująca: zmienna objaśniana zmienna(e) objaśniająca(e), gdzie symbol oznacza jest modelowana jako funkcja. W formułach można używać wielu specjalnych symboli takich jak: + dodanie zmiennej do modelu(nie suma zmiennych), - usunięcie zmiennej z modelu(nie różnica zmiennych), -1 usunięcie wyrazu wolnego z modelu, * dodanie wszystkich zmiennych oraz interakcji między nimi(nie mnożenie zmiennych), ˆn wszystkie zmienne oraz interakcje pomiędzy nimi aż dorzędu n, : interakcja pomiędzy zmiennymi,. zależność od wszystkich zmiennych w podanej ramce danych.

16 Modelowanie w R Można również używać funkcji arytmetycznych. Jeśli jednak chcemy skorzystać z operatorów arytmetycznych, które mają specjalne znaczenie w formułach powinniśmy skorzystać z funkcji I. Może się również zdarzyć sytuacja, w której chcemy jedynie poprawić istniejący już model, służy do tego funkcja update, w której kluczową rolę odgrywa.. W zależności po której stronie znaku się znajduje, zastępuje prawą lub lewą stronę oryginalnej formuły. model = lm(y x) update(model,.-1)#y x-1 update(model, log(.).)#log(y) x

17 Przykładowe formuły w R Formuła Opis y 1 Model pusty(średnia) y x y x 1 Regresjabezwyrazuwolnego y x +z Regresjawielokrotna y x z Regresjazinterakcją,inaczej y x +z +x : z y x + I(xˆ2) Regresja kwadratowa y x +I(xˆ2)+I(xˆ3) Regresjasześcienna y (x +z +w)ˆ2 y x +z +w +x : z +x : w +z : w y x z x y z +x : z y x/z y x +x : z log(y) I(1/x) + sqrt(z) Użycie funkcji arytmetycznych

18 Przykład zachorowania na gruźlicę Poniższa Tabela przedstawia liczbę zachorowań na gruźlicę układu oddechowego w latach Liczba zachorowań została podana w przeliczeniu na 100 tys. ludności. Zakładając liniową zależność pomiędzy rokiem, a ilością zachorowań, dokonać wszechstronnej analizy regresji. Rok(x i) Zachorowania(y i) 39,7 38,2 34,7 33,1 30,1 28,4 26,3 24,7

19 Przykład zachorowania na gruźlicę Do wykonania analizy regresji służy funkcja lm, w której podajemy jako argument formułę opisującą model. Jako wynik otrzymujemy oszacowany model regresyjny. Wywołanie na nim funkcji summary przedstawia kolejno wartości reszt(lub, w przypadku większej ich liczby, wartości skrajne, medianę i kwartyle), estymatory nachylenia prostej i przecięcia z osia y. Dla każdego z estymatorów podany jest błąd standardowy oraz odpowiadające mu wartości statystyki t i p-wartości dla jego istotności, otrzymujemy również współczynnik R 2 oraz R 2 popr.naskonstruowanymmodelumożnarównież wywołać funkcje: coef(współczynniki modelu), confint(przedziały ufności dla parametrów), fitted(wartości dopasowane przez model), residuals(wartości reszt), vcov(macierz kowariancji parametrów).

20 Przykład zachorowania na gruźlicę Przeciążona funkcja plot rysuje wykresy diagnostyczne(domyślnie cztery opisane wcześniej). W pakiecie car znajduje się ciekawa możliwość wizualizacji miar wpływu na jednym wykresie. Jest to funkcja influenceplot. Na osi odciętych znajdują się wartości siły dźwigni, a na osi rzędnych studentyzowane residua. Dodatkowo pole każdego punktu jest proporcjonalne do odległości Cooka. Wykres umożliwia również na wskazywanie wartości odstających poprzez kliknięcie. Pionowe linie pomocnicze rysowane są w punktach podwójnej i potrójnej średniej siły dźwigni, natomiast poziome na wysokości-2, 0 oraz 2. Całościowa analiza diagnostyczna modelu zawarta jest w pakiecie gvlma i jest to funkcja gvlma.

21 Regresja wielokrotna Wcześniej założyliśmy, że zmienna objaśniana zależy jedynie od jednej zmiennej objaśniającej. Jest to duże uproszczenie. Zdarza się, że badane zjawisko zależy nie tylko od jednego czynnika, ale od wielu. Uogólnieniem prostej regresji jest regresja wielokrotna lub wieloraka, w której uwzględnia się wpływ wielu cech niezależnych na wybraną cechę zależną. Załóżmy, że dysponujemy teraz układem kcech X 1,X 2,...,X k.modelregresjiwielokrotnejmożna zapisać w postaci: Y = Xα+ε, gdzie Y jest wektorem obserwacji zmiennej objaśnianej, a X macierzą z pomiarami zmiennych objaśniających(pierwsza kolumna to kolumna jedynek odpiwiadająca za wyraz wolny w modelu).

22 Regresja wielokrotna W celu estymacji parametrów modelu ponownie używamy MNK otrzymując(oprócz poprzednich założeń, musimy jeszcze przyjąć, że nie istnieje liniowa zależność pomiędzy zmiennymi objaśniającymi): ˆα = (X X) 1 X Y.

23 Regresja wielokrotna Częstokroć w przypadku wykorzystania regresji wielorakiej bardziej od prognozy interesuje nas, które zmienne wpływają na badane zjawisko w sposób stymulujący, a które je hamują. Pierwsze z tych czynników nazywamy stymulantami, a drugie destymulantami. Oczywiście stymulantami są zmienne, które w oszacowanym modelu regresji mają dodatnie wartości parametrów regresji. Destymulanty to zmienne o ujemnych parametrach. Można jeszcze określić zmienne neutralne(nieistotne), czyli takie, które nie mają wpływu na badane zjawisko.

24 Regresja wielokrotna przykład Weźmy pod uwagę zbiór longley. Zbiór ten zawiera informacje dotyczące 7 wskaźników makroekonomicznych. Skonstruujemy model regresji wielorakiej zależności wielkości zatrudnienia (Employed) od pozostałych zmiennych. Określimy, które zmienne są istotne w tym modelu, zmienne nieistotne zostaną z modelu usunięte. Wyznaczymy dopasowanie modelu oraz określimy, które zmienne są stymulantami, a które destymulantami.

25 Regresja krokowa Istnieje również inna metoda budowania modeli z dużą liczbą zmiennych objaśniających niż konstrukcja pełnego modelu i oszacowanie jego parametrów. Jest to procedura regresji krokowej, w której na każdym kroku możemy odrzucić lub dodać zmienną. Powiedzmy, że zaczynamy od modelu zawierającego tylko stałą (można zacząć również od modelu pełnego). W kolejnym kroku dodajemy najlepszą w sensie jakiegoś kryterium(np. test t) zmienną. W kolejnym dodajemy znowu, ale sprawdzamy również cosiędziejejakbyśmyztegomodeluusunęlidodanąw poprzednim kroku zmienną itd.

26 Regresja krokowa Jakość modelu oceniana jest za pomocą współczynnika informacyjnego Akaike. Jest to najpopularniejsze kryterium optymalności modelu(nieco mniej popularny jest bayesowski współczynnik informacyjny). Ponieważ wartość tego współczynnika zależy nie tylko od sumy kwadratów reszt, ale również od ilości zmiennych w równaniu, zwiększając stopień wielomianu, mimo iż suma kwadratów reszt zawsze maleje, od pewnego momentu współczynnik AIC zacznie rosnąć(i to jest optymalny stopień wielomianu). Kryterium AIC ma tendencję do wybierania modelu ze zbyt dużą liczbie parametrów. Jeśli bardziej zależy nam na precyzji predykcji powinniśmy wykorzystać kryterium AIC, podczas gdy jeśli priorytetem jest jakość dopasowania modelu od danych należy wybrać BIC.

27 Regresja odporna Podobnie jak średnia czy odchylenie standardowe współczynniki regresji są wrażliwe na obserwacje odstające. I podobnie jak dla nich możemy poszukiwać tzw. regresji odpornej. W pakiecie MASS znajdują się dwie funkcje, które umożliwiają podobne analizy. Jedna z nich to tzw. metoda najmniejszych przyciętych kwadratów, w której zamiast zwykłej sumy używamy sumy przyciętej (wykonujemy regresję liniową, liczymy residua, usuwamy największe residua i ponownie estymujemy parametry minimalizując sumę kwadratów m = n/2 + (k + 2)/2 najmniejszych residuów.). Odpowiednia funkcja to lqs, która ma podobne działanie do omówionej wcześniej funkcji lm. Nieco inne podejście (wykorzystuje M-estymatory) oferuje funkcja rlm, która jest najbardziej polecana w przypadku istnienia obserwacji odstających.

28 Regresja, a współliniowość zmiennych W przypadku gdy zmienne są ze sobą mocno skorelowane nie można użyć metody regresji wielorakiej. Ponieważ analiza jedynie korelacji zmiennych nie wskaże na związki więcej niż dwóch zmiennych, zatem sprawdzenia współliniowości dokonuje się najczęściej za pomocą czynników rozdęcia wariancji. W celu ich policzenia konstruuje się modele regresji liniowej dla każdej zmiennej objaśniającej(zmiennymi objaśniającymi są dla niej pozostałe zmienne). Definiujemy: 1 VIF i = 1 Ri 2, gdzie Ri 2 jestwspółczynnikiemdopasowaniadla i-tegomodelu regresji. Przyjmuje się, że wielkość tego czynnika powyżej 5 wymaga dalszych badań, a powyżej 10 oznacza już współliniowość pomiędzy badanymi zmiennymi(wartość 1 oznacza brak zależności lub też występowanie w modelu jedynie jednej zmiennej objaśniającej).

29 Regresja składowych głównych Próbą uniknięcia problemu zależności zmiennych objaśniających jest regresja składowych głównych. Zamiast oryginalnych zmiennych objaśniających używamy składowych głównych, które są nieskorelowane. W praktyce używamy jedynie kilku pierwszych składowych, które w zadowalający sposób odzwierciedlają zmienność oryginalnych danych. Pojawia się jednak pewien problem. Ponieważ usuwamy część składowych nigdy nie mamy pewności, że nie usunęliśmy ważnej informacji a zostawiliśmy zaburzenie(wybrane składowe niekoniecznie są maksymalnie skorelowane ze zmienną objaśnianą).

30 Regresja częściowych najmniejszych kwadratów Próbą rozwiązania tego ostatniego problemu jest regresja częściowych najmniejszych kwadratów. W przypadku tej metody nowe zmienne objaśniające poszukiwane są w taki sposób, aby oprócz dobrego wyjaśniania zmienności oryginalnych danych, były maksymalnie skorelowane ze zmiennymi objaśnianymi. Metody tej używamy w przypadku gdy chcemy dokonać analizy zależności zbioru zmiennych objaśnianych od bardzo wielu zmiennych objaśniających. Szczególnie użyteczna bywa gdy liczba zmiennych jest większa od liczby obserwacji. Z tych względów szczególnie często bywa używana w chemometrii.

31 Regresja grzbietowa Inną próbą uniknięcia problemów ze zmiennymi skorelowanymi(lub ich dużą liczbą) jest regresja grzbietowa. Ponieważ problemy pojawiająsięwzwiązkuzniemożnościąodwróceniamacierzy X X, todojejprzekątnejdodajesiępewnąstałą λ 0.Dlatakiego zagadnienia otrzymuje się następujące rozwiązanie: ˆα = (X X +λi) 1 X Y. Tego samego typu metodą jest metoda LASSO. Obie metody redukują wariancję estymatorów, aczkolwiek kosztem obciążenia.

32 w R Odpowiednie procedury związane z metodami PCR i PLSR znajdują się w pakiecie pls. Możemy używać funkcji mvr lub (wygodniej) wrapperów na nią pcr oraz plsr. Funkcja vif pochodzi z pakietu DAAG i służy do wyznaczenia czynników rozdęcia wariancji. Omawiane metody mogą również zostać wykorzystane do redukcji wymiarowości danych i graficznego ich przedstawienia. Służą do tego funkcje scoreplot, loadingplot oraz corrplot. Regresja grzbietowa została zaimplementowana w pakiecie MASS(funkcja lm.ridge), a metoda lasso w pakiecie lars(funkcja lars).

33 wprowadzenie W wielu zagadnieniach model regresji liniowej nie wyraża dobrze zależności między zmiennymi. Musimy wówczas zrezygnować z funkcji liniowej i wykorzystać regresję nieliniową. Modele takie można podzielić na: modele nieliniowe względem zmiennych objaśniających, ale liniowe względem parametrów, modele nieliniowe zarówno względem zmiennych objaśniających jak i parametrów, dla których istnieje transformacja do modelu liniowego, modele ściśle nieliniowe, tzn. modele nieliniowe zarówno względem zmiennych objaśniających jak i parametrów, dla których nie istnieje transformacja do modelu liniowego.

34 przykład Model liniowy względem parametrów, ale nieliniowy względem zmiennych objaśniających. Y = α 0 +α 1 x 1 +α 2 x α 3 x 2 +ε Modele takie możemy w prosty sposób sprowadzić do modelu liniowego poprzez odpowiednie podstawienie: x 1 = x 1;x 2 = x2 1 ;x 3 = 1 x 2 otrzymując: Y = α 0 +α 1 x 1 +α 2 x 2 +α 3 x 3 +ε

35 przykład Model wykładniczo-hiperboliczny(nieliniowy zarówno względem zmiennych objaśniających jak i parametrów): Y = e α 0+ α 1 x 1 +ε. Modele takie sprowadzamy do modelu liniowego poprzez transformacje zarówno zmiennych objaśniających jak i zmiennej objaśnianej. Logarytmując obustronnie otrzymujemy: lny = α 0 + α 1 x 1 +ε. Y =lny;x 1 = 1 x 1 Y = α 0 +α 1 x 1 +ε.

36 przykład Model: Y = α 0 +α 1 e α 2x 1 +ε jest niesprowadzalny do modelu liniowego poprzez żadną transformację zarówno zmiennych objaśniających jak i zmiennej objaśnianej.

37 uwaga Jeśli tylko to możliwe zaleca się estymację parametrów regresji nieliniowej, a nie linearyzację modelu i estymację parametrów regresji liniowej.

38 w R Do wykonania regresji nieliniowej służy funkcja nls np. nls(y xˆa+b,start=list(a=2,b=3)), w której musimy podać punkty startowe. Wybór właściwych punktów startowych jest niezmiernie ważny, gdyż możemy utknąć w minimum lokalnym w przypadku startu w niewłaściwych punktach. W przypadku jeśli chcemy nałożyć ograniczenia na współczynniki określamy parametr algorithm na wartość port oraz parametry lower lub/i upper). Istnieje cała gama modeli, do których możemy próbować dopasować nasze dane, zaczynają się one od liter SS np. SSgompertz czy SSlogis. Mają one taką zaletę, że same określają wartości startowe parametrów.

39 w R Funkcja Równanie SSasymp y = a+(b a)e ec x SSasympOff y = a(1 e eb (x c) ) SSasympOrig y = a(1 e ebx ) SSbiexp SSfol y = ae ebx +ce ed x y = x 1e a+b c e a e b ( SSfpl y = a+ b a 1+e (c x)/d SSgompertz y = ae bcx SSlogis y = a 1+e (b x)/c SSmicmen y = ax b+x SSweibull y = a be ec x d e ea x 2 e eb x 2 )

40 w R Jeśli posiadamy już model, to powinniśmy zastanowić się czy spełnione są założenia dotyczące tego modelu. Bardzo pomocne są w tym przypadku funkcje nlsresiduals oraz test.nlsresiduals z pakietu nlstools. Pierwsza z nich przygotowuje dane do wykresów diagnostycznych, które możemy wyświetlić funkcją plot. Druga natomiast funkcja testuje czy rezydua mają rozkład normalny i czy są losowe.

41 Regresja nieparametryczna Czasami nie jesteśmy w stanie zaproponować żadnej sensownej funkcji regresji lub też interesuje nas jedynie wygląd. W takiej sytuacji możemy wyznaczyć pewną linię trendu stosując nieparametryczne metody regresji: Lokalne wygładzanie wielomianami niskiego stopnia. Dzielimy zbiór wartości funkcji na rozłączne przedziały i na każdym kawałku dopasowujemy regresję wielomianową(najczęściej trzeciego stopnia). Wygładzanie jądrowe. Regresja najbliższych sąsiadów. Wybierany jest parametr k, który wskazuje jaka część danych ma posłużyć do budowy modeluregresjiliniowej.wceluocenywartości x i używanesą obserwacje x i k/2,...,x i,...,x i+k/2. Ważona regresja lokalnie wielomianowa. Obserwacje otrzymująwagi(bliższewiększe,dalszemniejsze),aocena x i otrzymywana jest za pomocą odpornej regresji ważonej.

42 Regresja nieparametryczna w R W R metody lokalne można uzyskać za pomocą funkcji: smooth.spline(sześcienne funkcje sklejane, jest to wygładzona wersja funkcji spline); supsmu(regresja najbliższych sąsiadów); lowess(ważona regresja lokalnie wielomianowa); scatter.smooth (punkty oraz trend, modyfikacja funkcji lowess); ksmooth (wygładzanie jądrowe)

43 Regresja logistyczna wprowadzenie W wielu sytuacjach nie możemy założyć, że zmienna objaśniana jest ciągła. W takiej sytuacji powinniśmy wykorzystać uogólnione modele liniowe, w których na zmienną zależną nakłada się rozkład (dopuszczalne są rozkłady pochodzące z tzw. wykładniczej rodziny rozkładów: np. rozkład normalny, wykładniczy, gamma, Poissona, dwumianowy, geometryczny oraz wielomianowy). Poza tym, aby uwzględnić również nieliniowy charakter zależności wprowadza się tzw. funkcję wiążącą h, która ma następującą własność: h(e(y X)) = Xβ. Zauważmy, że jeśli funkcja wiążąca jest identycznością(h(x) = x), a zmienna objaśniana ma rozkład normalny, to model ten sprowadza się do modelu regresji liniowej. Szczególnym i bardzo ważnym przykładem uogólnionego modelu liniowego jest regresja logistyczna.

44 Regresja logistyczna wprowadzenie Formalnie w tym przypadku zakładamy, że Y b(p). Oznacza, to, że zmienna objaśniana przyjmuje tylko dwie wartości(najczęściej jest to zmienna binarna). Modelujemy prawdopodobieństwo wystąpienia sukcesu p. Jako funkcja wiążąca używana jest funkcja logitowa: logit(p) = ln p 1 p = Xβ. Prawdopodobieństwo p jest następnie szacowane jako: p = exp(xβ) 1+exp(Xβ).

45 Regresja logistyczna iloraz szans Wartości oszacowanych współczynników nie podlegają interpretacji. Interpretacji podlega natomiast iloraz szans, który można wyrazić jako OR = e β 0+β 1 X β k X k. Jeżeli e β j >1,tozmienna X j działastymulująconamożliwość wystąpienia badanego zjawiska, w przeciwnym razie działa ograniczająco(jeżeli e β j =1,tozmienna X j niemawpływuna badane zjawisko). Jakość dopasowania można jak poprzednio zbadać za pomocą kryterium informacyjnych, jednak w przypadku regresji logistycznej bardziej efektywne są inne kryteria.

46 Regresja logistyczna iloraz szans Pierwszym z nich są krzywe charakterystyczne. Na model regresji logistycznej można spojrzeć jak na model, który służy do zdiagnozowania dwóch stanów: dobry/zły. Model liczy prawdopodobieństwa stanu dobry. Wybieramy pewien próg 0 < t <1,jeżeliprawdopodobieństwouzyskanezmodelujest powyżej t diagnozujemy stan jako dobry, w przeciwnym razie jest zły. Mamy zatem cztery możliwości: TP(ang. true positive) model przewidział dobry oraz zaobserwowano dobry, TN(ang. true negative) model przewidział zły oraz zaobserwowano zły, FP(ang. false positive) model przewidział dobry oraz zaobserwowano zły, FN(ang. false negative) model przewidział zły oraz zaobserwowano dobry.

47 Regresja logistyczna iloraz szans Przewidziano Zaobserwowano dobry zły dobry TP FP zły FN TN

48 Regresja logistyczna iloraz szans Jeśliterazprzez n g oznaczymyliczbęzaobserwowanych dobry,a przez n b zły,totpr =TP/n g,tnr =TN/n b,fpr=1 TNR oraz FNR= 1 TPR. Krzywa ROC jest to wykres współczynnika TPR, na osi pionowej przeciwko współczynnikowi FPR na osi poziomej dla wszystkich wartości progowych t. Krzywa ROC jest to zatem rodzina punktów(fpr, TPR) obrazująca zależność między zdolnością wyróżniania przypadków pozytywnych i negatywnych dla różnych parametrów modelu. Aby teraz zmierzyć jakość modeluliczysiępolepodkrzywąroc.imwielkośćtegopola bliższa 1 tym zdolność modelu do przewidywania stanu dobry lepsza, pole bliskie 0,5 oznacza model bardzo słaby(losowy).

49 Regresja logistyczna w R Uogólnione modele liniowe analizujemy za pomocą funkcji glm, w której możemy poprzez parametr family określić rodzinę rozkładów oraz funkcję wiążącą. Aby wykonać regresję logistyczną, należy w funkcji glm określić parametr family jako binomial, natomiast aby wykonać regresję Poissona należy określić go jako poisson. Do analizy krzywych charakterystycznych wykorzystujemy pakiet ROCR.

Regresja, a współliniowość zmiennych

Regresja, a współliniowość zmiennych Regresja, a współliniowość zmiennych W przypadku gdy zmienne są ze sobą mocno skorelowane nie można użyć metody regresji wielorakiej. Ponieważ analiza jedynie korelacji zmiennych nie wskaże na związki

Bardziej szczegółowo

Data Science. Regresja liniowa Regresja wielokrotna Regresja krokowa Regresja kwantylowa. Tomasz Górecki Analiza danych(w4)

Data Science. Regresja liniowa Regresja wielokrotna Regresja krokowa Regresja kwantylowa. Tomasz Górecki Analiza danych(w4) Data Science Data Science Prawo Twymana(ang. Twyman s law) Any figure that looks interesting or different is usually wrong. Any statistics that appears interesting is almost certainly a mistake(double

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

WERYFIKACJA MODELI MODELE LINIOWE. Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno

WERYFIKACJA MODELI MODELE LINIOWE. Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno WERYFIKACJA MODELI MODELE LINIOWE Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno ANALIZA KORELACJI LINIOWEJ to NIE JEST badanie związku przyczynowo-skutkowego, Badanie współwystępowania cech (czy istnieje

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

Rozdział 8. Regresja. Definiowanie modelu

Rozdział 8. Regresja. Definiowanie modelu Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność

Bardziej szczegółowo

Analiza składowych głównych. Wprowadzenie

Analiza składowych głównych. Wprowadzenie Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących

Bardziej szczegółowo

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,

Bardziej szczegółowo

Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).

Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y). Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

Zmienne zależne i niezależne

Zmienne zależne i niezależne Analiza kanoniczna Motywacja (1) 2 Często w badaniach spotykamy problemy badawcze, w których szukamy zakresu i kierunku zależności pomiędzy zbiorami zmiennych: { X i Jak oceniać takie 1, X 2,..., X p }

Bardziej szczegółowo

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Analiza regresji - weryfikacja założeń

Analiza regresji - weryfikacja założeń Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.

Bardziej szczegółowo

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34 Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 11-12

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 11-12 Stanisław Cichocki Natalia Nehrebecka Zajęcia 11-12 1. Zmienne pominięte 2. Zmienne nieistotne 3. Obserwacje nietypowe i błędne 4. Współliniowość - Mamy 2 modele: y X u 1 1 (1) y X X 1 1 2 2 (2) - Potencjalnie

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile

Bardziej szczegółowo

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Regresja wielokrotna Model dla zależności liniowej: Y=a+b 1 X 1 +b 2 X 2 +...+b n X n Cząstkowe współczynniki regresji wielokrotnej: b 1,..., b n Zmienne niezależne (przyczynowe): X 1,..., X n Zmienna

Bardziej szczegółowo

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:

Bardziej szczegółowo

Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31

Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31 Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna),

Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna Korelacja brak korelacji korelacja krzywoliniowa korelacja dodatnia korelacja ujemna Szereg korelacyjny numer

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Statystyka opisowa. Wykład V. Regresja liniowa wieloraka

Statystyka opisowa. Wykład V. Regresja liniowa wieloraka Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +

Bardziej szczegółowo

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb Współzależność Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb (x i, y i ). Geometrycznie taką parę

Bardziej szczegółowo

ANALIZA REGRESJI WIELOKROTNEJ. Zastosowanie statystyki w bioinżynierii Ćwiczenia 8

ANALIZA REGRESJI WIELOKROTNEJ. Zastosowanie statystyki w bioinżynierii Ćwiczenia 8 ANALIZA REGRESJI WIELOKROTNEJ Zastosowanie statystyki w bioinżynierii Ćwiczenia 8 ZADANIE 1A 1. Irysy: Sprawdź zależność długości płatków korony od ich szerokości Utwórz wykres punktowy Wyznacz współczynnik

Bardziej szczegółowo

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Regresja i Korelacja

Regresja i Korelacja Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Badanie współzależności zmiennych Uwzględniając ilość zmiennych otrzymamy 4 odmiany zależności: Zmienna zależna jednowymiarowa oraz jedna

Bardziej szczegółowo

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Natalia Neherbecka. 11 czerwca 2010

Natalia Neherbecka. 11 czerwca 2010 Natalia Neherbecka 11 czerwca 2010 1 1. Konsekwencje heteroskedastyczności i autokorelacji 2. Uogólniona MNK 3. Stosowalna Uogólniona MNK 4. Odporne macierze wariancji i kowariancji b 2 1. Konsekwencje

Bardziej szczegółowo

Ćwiczenia IV

Ćwiczenia IV Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

Analiza współzależności zjawisk

Analiza współzależności zjawisk Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania wybranych technik regresyjnych do modelowania współzależności zjawisk Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń 1. Problem ozwaŝamy zjawisko (model): Y = β 1 X 1 X +...+ β k X k +Z Ηβ = w r Hipoteza alternatywna: Ηβ w r

Bardziej szczegółowo

ANALIZA REGRESJI SPSS

ANALIZA REGRESJI SPSS NLIZ REGRESJI SPSS Metody badań geografii społeczno-ekonomicznej KORELCJ REGRESJ O ile celem korelacji jest zmierzenie siły związku liniowego między (najczęściej dwoma) zmiennymi, o tyle w regresji związek

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Estymacja parametrów w modelu normalnym

Estymacja parametrów w modelu normalnym Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia

Bardziej szczegółowo

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 9 marca 2007

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 9 marca 2007 , transformacja liniowa i estymacja modelu KMNK Paweł Cibis pawel@cibis.pl 9 marca 2007 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności Skorygowany R

Bardziej szczegółowo

Regresja logistyczna (LOGISTIC)

Regresja logistyczna (LOGISTIC) Zmienna zależna: Wybór opcji zachodniej w polityce zagranicznej (kodowana jako tak, 0 nie) Zmienne niezależne: wiedza o Unii Europejskiej (WIEDZA), zamieszkiwanie w regionie zachodnim (ZACH) lub wschodnim

Bardziej szczegółowo

Ćwiczenia 10. Analiza regresji. Część I.

Ćwiczenia 10. Analiza regresji. Część I. Ćwiczenia 10. Analiza regresji. Część I. Zadania obowiązkowe UWAGA! Elementy zadań oznaczone kolorem czerwonym należy przygotować lub wypełnić. Zadanie 10.1. (R/STATISTICA) Twoim zadaniem jest możliwie

Bardziej szczegółowo

Wprowadzenie do technik analitycznych Metoda najmniejszych kwadratów

Wprowadzenie do technik analitycznych Metoda najmniejszych kwadratów Wprowadzenie do technik analitycznych Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wykład 2 Korelacja i regresja Przykład: Temperatura latem średnia liczba napojów sprzedawanych

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę

Bardziej szczegółowo

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13 Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych

Bardziej szczegółowo

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres

Bardziej szczegółowo

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze

Bardziej szczegółowo

Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH

Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego Łukasz Kończyk WMS AGH Plan prezentacji Model regresji liniowej Uogólniony model liniowy (GLM) Ryzyko ubezpieczeniowe Przykład

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 9

Stanisław Cichocki. Natalia Nehrebecka. Wykład 9 Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności

Bardziej szczegółowo

Wykład 4 Związki i zależności

Wykład 4 Związki i zależności Wykład 4 Związki i zależności Rozważmy: Dane z dwiema lub więcej zmiennymi Zagadnienia do omówienia: Zmienne objaśniające i zmienne odpowiedzi Wykres punktowy Korelacja Prosta regresji Słownictwo: Zmienna

Bardziej szczegółowo

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Paweł Cibis pawel@cibis.pl 23 lutego 2007 1 Regresja liniowa 2 wzory funkcje 3 Korelacja liniowa

Bardziej szczegółowo

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model

Bardziej szczegółowo

Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, Spis treści

Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, Spis treści Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, 2018 Spis treści Przedmowa 13 O Autorach 15 Przedmowa od Tłumacza 17 1. Wprowadzenie i statystyka opisowa 19 1.1.

Bardziej szczegółowo

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE

Bardziej szczegółowo

Zawartość. Zawartość

Zawartość. Zawartość Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami

Bardziej szczegółowo

Ekonometria. Zajęcia

Ekonometria. Zajęcia Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)

Bardziej szczegółowo

R-PEARSONA Zależność liniowa

R-PEARSONA Zależność liniowa R-PEARSONA Zależność liniowa Interpretacja wyników: wraz ze wzrostem wartości jednej zmiennej (np. zarobków) liniowo rosną wartości drugiej zmiennej (np. kwoty przeznaczanej na wakacje) czyli np. im wyższe

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8 Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów

Bardziej szczegółowo

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów Przykład wstępny. W ekonomicznej teorii produkcji rozważa się funkcję produkcji Cobba Douglasa: z = AL α K β gdzie z oznacza wielkość produkcji, L jest nakładem pracy, K

Bardziej szczegółowo

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

Bardziej szczegółowo

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania

Bardziej szczegółowo

Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego

Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Współczynnik korelacji opisuje siłę i kierunek związku. Jest miarą symetryczną. Im wyższa korelacja tym lepiej potrafimy

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Wprowadzenie. { 1, jeżeli ˆr(x) > 0, pozatym. Regresja liniowa Regresja logistyczne Jądrowe estymatory gęstości. Metody regresyjne

Wprowadzenie. { 1, jeżeli ˆr(x) > 0, pozatym. Regresja liniowa Regresja logistyczne Jądrowe estymatory gęstości. Metody regresyjne Wprowadzenie Prostym podejściem do klasyfikacji jest estymacja funkcji regresji r(x) =E(Y X =x)zpominięciemestymacjigęstościf k. Zacznijmyodprzypadkudwóchgrup,tj.gdy Y = {1,0}. Wówczasr(x) =P(Y =1 X =x)ipouzyskaniuestymatora

Bardziej szczegółowo

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe

Bardziej szczegółowo

Regresja liniowa wprowadzenie

Regresja liniowa wprowadzenie Regresja liniowa wprowadzenie a) Model regresji liniowej ma postać: gdzie jest zmienną objaśnianą (zależną); są zmiennymi objaśniającymi (niezależnymi); natomiast są parametrami modelu. jest składnikiem

Bardziej szczegółowo

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N = HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych

Bardziej szczegółowo

WYKŁAD 8 ANALIZA REGRESJI

WYKŁAD 8 ANALIZA REGRESJI WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej

Bardziej szczegółowo

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności: Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności

Bardziej szczegółowo

TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.

TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo