INDEKSOWANIE DUŻYCH ZBIORÓW OBRAZÓW
|
|
- Bronisława Wójcik
- 9 lat temu
- Przeglądów:
Transkrypt
1 Paweł Forczmański, Przemysław Szeptycki INDEKSOWANIE DUŻYCH ZBIORÓW OBRAZÓW Streszczenie W artykule zaprezentowane zostały wybrane metody indeksowania dużych zbiorów obrazów statycznych bazujące na autorskich dokonaniach i na deskryptorach zdefiniowanych przez standard MPEG-7 (ISO/IEC 15938) Omawiane deskryptory opisują cechy niskopoziomowe związane przede wszystkim z kolorem i jego rozkładem na obrazie oraz cechy teksturalne Przeprowadzone badania doprowadziły do wyłonienia najbardziej użytecznych deskryptorów w zadaniach przeszukiwania graficznych baz danych i tworzenia foto-mozaik Wyniki pracy zostały zaimplementowane w formie programów komputerowych Słowa kluczowe: Indeksowanie, kolor, tekstura, histogram, MPEG-7,CBIR 1 Wstęp Poprzez indeksowanie dowolnego zbioru danych rozumie się proces tworzenia i utrzymywania indeksu umożliwiającego obniżenie czasu dostępu do danych Indeksem jest w tym przypadku obiekt o dużo mniejszej złożoności (wielkości) reprezentujący jednoznacznie element zbioru Dostęp do danych jest realizowany poprzez indeksy na zasadzie: zapytanie indeks1 wyszukiwanie indeks2 element(y) zbioru Indeksy, w zależności od zastosowania, są tworzone wprost z danych, np poprzez wybór ich fragmentów, przy użyciu matematycznych funkcji skrótu (MD5, SHA1) lub też za pomocą różnorakich transformat i redukcji wymiarowości (DCT [13], falki [12], KLT/PCA [3]) Często indeks zawiera informacje, które nie są wprost reprezentowane w danych Taki przypadek obejmuje zadania indeksowania zbiorów danych multimedialnych, które stanowią obszerne i złożone struktury Dla danych wizualnych (obrazy statyczne, sekwencje video) stosuje się dwa rodzaje indeksów: wysokopoziomowe (opisowe), które są nadawane arbitralnie w sposób manualny i mają charakter hasłowy dotyczący zawartości, autorstwa, czasu utworzenia i przynależności do odpowiedniej klasy danych, niskopoziomowe, które reprezentują informację o cechach fizycznych i percepcyjnych, np kolor, kształt, wzór (teksturę), ruch, aktywność itp Indeksy pierwszego rodzaju stosowane są w tradycyjnych systemach bazodanowych i wyszukiwarkach internetowych Indeksy drugiego rodzaju są wykorzystywane obecnie dość wąsko, głownie w systemach gromadzących materiały video i dużych bazach danych obrazów statycznych Większość z rozwiązań pozostaje niestety tylko na etapie zaawansowanych prac badawczych [7,9,11] i nie jest dostępna szerokiemu gronu użytkowników Znaczący krok w kierunku stworzenia w pełni automatycznych systemów indeksujących został poczyniony wraz z nadejściem standardu MPEG-7, który definiuje różnorakie indeksy (zwane deskryptorami) dla danych multimedialnych Najistotniejsze, z punktu widzenia problemu opisanego powyżej,
2 są deskryptory koloru i tekstury [2,5,6,8,9,10] W zadaniach, które ukierunkowane są na poszukiwanie obiektów wydzielonych ze sceny istotne są natomiast deskryptory kształtu [1] 2 Opis problemu System indeksujący obrazy można opisać jako magazynujący informacje o zawartości obrazów a następnie przeszukujący stworzoną bazę danych (poprzez porównywanie indeksów obrazów) W literaturze systemy tego typu zaliczane są do klasy CBIR (ang Content-Based Image Retrieval) Przykładowy schemat działania takiego systemu przedstawiony jest na rys 1 Szybkość jego działania zależy głównie od wydajności bloku ekstrakcji cech i porównywania O efektywności natomiast decyduje odpowiedni dobór cech obrazów Rys 1 Schemat działania systemu CBIR Specyfika dużych zbiorów obrazów (liczących kilka tysięcy lub więcej obiektów) polega na tym, iż istnieje duże prawdopodobieństwo, iż użycie jednego tylko indeksu (deskryptora) nie zagwarantuje poprawnego wyniku wyszukiwania Dlatego ważne jest łączenie deskryptorów w celu zwiększenia skuteczności tego procesu Idea łączenia deskryptorów w powiązane struktury nie jest nowa Jej zastosowanie jest szerokie i obejmuje między innymi złożone systemy identyfikacji biometrycznej [4] Łączenie deskryptorów może odbywać się w sposób kaskadowy lub równoległy[4] Pierwszy sposób (rys 2) polega na tym, że wyniki wyszukiwania dla pierwszego deskryptora (D 1 ) i całego dostępnego zbioru obrazów są sortowane i ograniczane (z całego zbioru wydzielany jest podzbiór PO 1 ) a następnie przekazywane do kolejnego przeszukiwania względem drugiego deskryptora (D 2 ) Proces sortowania i ograniczania zbioru jest powtarzany tyle razy, ile deskryptorów liczy kaskada Drugi sposób (rys 3) zakłada równoczesne wyszukiwanie względem każdego z deskryptorów Końcowy rezultat jest uzyskiwany za pomocą analizy wyników cząstkowych dla poszczególnych deskryptorów Odbywać się to może metodą głosowania lub nadawania wag poszczególnym wynikom
3 Zapytanie ( obraz I) D1 Podzbiór obrazów PO1 D2 Podzbiór obrazów POn-1 Dn Wynik ( obraz O ) Rys 2 Kaskadowy sposób łączenia deskryptorów D1 Obraz O1 Zapytanie ( obraz I) D2 Dn Obraz On Obraz O2 Decyzja Wynik ( obraz O) Rys 3 Równoległy sposób łączenia deskryptorów Każdy z powyższych schematów łączenia deskryptorów ma swoje zalety i wady Niewątpliwą przewagą schematu kaskadowego jest jego intuicyjność Z drugiej strony schemat równoległy pozwala na uniknięcie sytuacji, w której poprawnie wyszukany obraz (względem początkowego deskryptora) zostanie wyeliminowany w kolejnych etapach i nie zostanie uwzględniony w końcowym wyniku Przeprowadzona przez autorów analiza problemu spowodowała, że w opracowanym oprogramowaniu został wykorzystany kaskadowy schemat łączenia deskryptorów 21 y kolorowego obrazu statycznego Do przeprowadzenia badań wybrane zostały następujące deskryptory należące do standardu MPEG-7 [8, 9, 10]: Scalable Color (SCD), Dominant Color (DCD),
4 Color Layout (CLD), Edge Histogram (EHD), oraz opracowane deskryptory bazujące na standardowych własnościach obrazu cyfrowego: histogram kolorów RGB (HIST), miniaturę obrazu o wymiarach 8 x 8 pikseli w odcieniach szarości (IBOX8), złożone trzy miniatury obrazu o wymiarach 8 x 8 pikseli dla przestrzeni RGB (RGBBOX8), wektor zawierający średnią wartość koloru RGB i dodatkowo średnią jasność (szarość) w obrazie (RGBI), wektor zawierający dominującą barwę (H) w modelu koloru HSV i dominującą jasność (V) (DHV) Wszystkie deskryptory zostały zaimplementowane w prototypowych programach, które posłużyły do przeprowadzenia badań (nad wyszukiwaniem obrazów podobnych i tworzeniem foto-mozaik) Scalable Color Jest to jeden z deskryptorów zaproponowanych przez standard MPEG-7 Bazuje na przestrzeni barw HSV i transformacji Haara zastosowanej na wartościach histogramu koloru Wartości histogramu są normalizowane a następnie wykonana jest na nich transformacja Haara Proces tworzenia deskryptora składa się z następujących kroków [6, 8, 9]: zamiana przestrzeni kolorów obrazu RGB na model HSV, obliczenie znormalizowanego histogramu składowej H, transformata Haara na wektorze histogramu, zapis wartości transformaty do wektora cech Dominant Color Wyznaczenie kolorów dominujących w obrazie dostarcza zwięzłego i prostego w implementacji wektora cech Wykorzystany w badaniach uproszczony deskryptor oznaczony jako F opisany jest w sposób następujący: F ={{c i, p i }, i=1,, N }, gdzie: N jest ilością kolorów, c i jest trójelementowym wektorem koloru RGB, p i reprezentuje N udział koloru i w obrazie ( p i =1 ) i=1 Wyznaczanie 8 kolorów dominujących dla obrazu odbywa się za pomocą algorytmu K-Średnich Tworzenie deskryptora realizowane jest w następujących krokach [6, 9]: wyznaczenie kolorów dominujących (przypisanie wszystkich elementów obrazu do jednego z ośmiu podzbiorów), obliczenie procentowego udziału dla każdego koloru dominującego, zapis do wektora cech wszystkich kolorów dominujących oraz ich procentowego udziału
5 Color Layout CLD został zaprojektowany, by uchwycić rozkład przestrzenny kolorów w obrazie sprawdza się bardzo dobrze w bazach danych zawierających szkice W standardzie MPEG-7 sugerowane jest użycie 64-kolorowej reprezentacji obrazu w celu uproszczenia obliczeń ten jest niewrażliwy na zmiany rozdzielczości i pozwala na bardzo szybkie wyszukiwanie obrazów Wektor wynikowy składa się z próbek transformaty DCT dla poszczególnych składowych przestrzeni Yc b C r Budowanie deskryptora odbywa się w następujących krokach [6, 8, 9]: podział obrazu na 64 równe bloki niezależnie od jego rozdzielczości, znalezienie dla każdego bloku koloru reprezentatywnego i przedstawienie obrazu jako 64 elementy o reprezentatywnych kolorach, zamiana przestrzeni barw na YC b C r, obliczenie współczynników DCT niezależnie dla każdej składowej Y, C b, C r, uporządkowanie współczynników zgodnie z algorytmem zig-zag zdefiniowanym w standardzie JPEG, kwantyzacja współczynników DCT(Y) do 64 poziomów, DCT(C b ) i DCT(C r ) do 32 poziomów, zapis współczynników do wektora cech Edge Histogram ten opisuje rozkład i kierunkowość krawędzi w podobszarach obrazu Zakłada się, że rozróżniane są cztery rodzaje krawędzi kierunkowych: pionowa, pozioma, nachylona pod kątem 45 stopni, nachylona pod katem 135 stopni oraz krawędź bezkierunkowa Tworzenie deskryptora przebiega następująco [6, 8, 9]: przekształcenie obrazu do odcieni szarości, podział obrazu na 16 bloków o równej wielkości, podział każdego z bloków na 4 subbloki, przefiltrowanie subbloków filtrami krawędziowymi w celu wykrycia krawędzi, obliczenie dla każdego z bloku mocy każdej z krawędzi, zapisanie częstości występowania krawędzi w obrazie w formie histogramu, zapis histogramu do wektora cech Znormalizowany histogram RGB (HIST) Tradycyjny histogram kolorów w przestrzeni RGB jest bardzo często używany w systemach indeksowania obrazów Jest prosty w implementacji i w bardzo zwięzły sposób reprezentuje zawartość obrazu Tworzenie deskryptora odbywa się w następujących krokach: niezależne obliczenie histogramu dla każdego z kanałów RGB, podział każdego z histogramów na przedziały, obliczenie procentowego udziału pikseli w obrazie dla każdego z przedziałów w histogramach (normalizacja histogramu), zapisanie procentowego udziału pikseli dla każdego przedziału z każdego kanału y typu BOX8 y IBOX8 i RGBBOX8 są rozwiniętymi w wektory miniaturami obrazu o wymiarach 8 x 8 pikseli Pomimo tego, iż są proste w implementacji, dają zaskakująco dobre
6 wyniki W odróżnieniu od histogramu RGB, deskryptory te biorą pod uwagę informacje przez histogram nieuwzględnione, a mianowicie strukturę przestrzenną koloru w badanym obrazie y te są niewrażliwe na zmiany rozdzielczości obrazu i obecność niewielkiego zaszumienia Wspólny schemat tworzenia deskryptora polega na: przeskalowaniu obrazu wejściowego do rozmiarów 8 x 8 (z uwzględnieniem interpolacji dwuliniowej), zapisanie 3x64 wartości (dla każdego z kanałów RGB) dla deskryptora RGBBOX8 i 64 wartości (jasności) dla IBOX8 RGBI ten jest w formie wektora zawierającego średnią wartość koloru RGB i dodatkowo średni poziom jasności w obrazie Jest to prosty deskryptor pełniący rolę filtra wstępnie odrzucającego obrazy na początkowym etapie wyszukiwania DHV DHV różni się znacząco od RGBI, ponieważ zawiera dominującą (a nie średnią) barwę (H) w modelu koloru HSV i dominującą jasność (V) (DHV) Pełni rolę podobną do RGBI 3 Oprogramowanie do indeksowania obrazów statycznych W ramach badań stworzono oprogramowanie Fast Image Finder przeznaczone do wyszukiwania obrazów podobnych do wzorca z uwzględnieniem wybranych przez użytkownika deskryptorów (rys 4) y są wyliczane na podstawie informacji o kolorach i teksturze Użytkownik może ingerować w parametry wyszukiwania poprzez ustawienie maksymalnej dopuszczalnej odległości pomiędzy deskryptorami Na wejściu do programu użytkownik zadaje przykładowy (wzorcowy) obraz Wynikiem jest zbiór obrazów posortowanych od najbardziej do najmniej podobnego Program działa na zasadzie analogicznej do znanych systemów CBIR takich jak VisualSeek i QBIC [7,11] Zaimplementowano w nim kaskadowy sposób łączenia deskryptorów, który pozwala na intuicyjne tworzenie różnorakich schematów wyszukiwania W programie dostępne są deskryptory: SCD, DCD, CLD, EHD, HIST i RGBBOX8 Rys 4 Główne okno programu Fast Image Finder
7 Opracowany program został przetestowany na zbiorze 5300 obrazów o różnorakiej tematyce i charakterze Strategia badawcza polegała na wyszukiwaniu obrazów na podstawie wzorca Ocenie podlegała ilość zwróconych obrazów zgodnych z oczekiwaniami użytkownika w stosunku do wszystkich obrazów wynikowych (metoda ground truth ) Oprócz pierwszego zwróconego obrazu, pod uwagę brany był podzbiór pierwszych 2, 5 i 10 obrazów Poniżej (rys 5 i 6) przedstawiono przykładowe wyniki dla dwóch obrazów wzorcowych: dino (dominująca informacja o krawędziach) i kwiat (dominująca informacja o kolorze) RGBBOX8 EHD Rys 5 Wyniki wyszukiwania dla obrazu wzorcowego dino Poniżej (Tabela 1) zaprezentowano porównanie skuteczności wyszukiwania dla obrazu wzorcowego dino Zauważalna jest wysoka skuteczność prawie wszystkich badanych deskryptorów, za wyjątkiem EHD Spowodowane jest to obecnością podobnych krawędzi we wszystkich zwróconych obrazach Dodanie do niego, jako drugiego w kaskadzie, DCD, który uwzględnia informację o kolorze, poprawia znacząco skuteczność wyszukiwania Tab 1 Skuteczność wyszukiwania dla obrazu dino / / ilość obrazów branych pod uwagę RGBBOX8 100% 100% 100% 100% RGBBOX8+DCD 100% 100% 100% 100% HIST 100% 100% 100% 100% SCD 100% 100% 100% 100% DCD 100% 100% 100% 100% CLD 100% 100% 100% 100% EHD 100% 100% 40% 30% EHD+DCD 100% 100% 100% 100% Wyniki dla wyszukiwania obrazów podobnych do wzorcowego obrazu kwiat (Tabela 2) potwierdzają wysoką skuteczność prawie wszystkich badanych deskryptorów Z uwagi na fakt, iż w bazie znajdują się obrazy o podobnej kolorystyce, skuteczność dla deskryptorów
8 uwzględniających wyłącznie tę informację jest niższa Najwyższą skutecznością wykazał się deskryptor RGBBOX8, gdyż jedynie on uwzględnia informację zarówno o kolorze, jak i jego rozkładzie przestrzennym Najniższa skuteczność została zarejestrowana dla deskryptora HIST Niewielka poprawa nastąpiła po połączeniu z nim EHD RGBBOX8 HIST Rys 6 Wyniki wyszukiwania dla obrazu wzorcowego kwiat Tab 2 Skuteczność wyszukiwania dla obrazu kwiat / / ilość obrazów branych pod uwagę RGBBOX8 100% 100% 100% 100% HIST 100% 100% 60% 30% EHD+HIST 100% 100% 80% 40% SCD 100% 100% 60% 70% SCD+EHD 100% 100% 60% 70% DCD 100% 100% 40% 50% CLD 100% 100% 100% 80% CLD+EHD 100% 100% 100% 90% Nawet pobieżna analiza wyników pokazuje, że skuteczność wyszukiwania maleje wraz ze wzrostem ilości branych pod uwagę obrazów Przyczyną takiego stanu rzeczy jest to, że w bazie znajduje się wiele obrazów o podobnych cechach niskopoziomowych (kolor i tekstura), natomiast żadna z metod nie odzwierciedla całkowicie percepcji człowieka Każda z nich reaguje wyłącznie na wybrany zakres cech obrazu Dlatego też najwyższą skutecznością charakteryzowały się deskryptory wiążące kolor i wzór (RGBBOX8) lub kaskady (CLD+EHD, EHD+ECD) Nie zawsze jednak użycie deskryptorów typu RGBBOX8 jest możliwe Często pojawia się problem wyszukiwania obrazu nie na podstawie przykładu, ale na podstawie opisu, charakterystyki, cechy typu kolor lub złożoność obrazu (tekstura) W takim przypadku jedynym dopuszczalnym scenariuszem jest użycie deskryptorów typu SCD, DCD i EHD Poza tym deskryptory te są wyjątkowo kompaktowe, w przeciwieństwie do miniatur obrazu
9 4 Oprogramowanie tworzące foto-mozaiki Innym zastosowaniem indeksacji obrazów przy użyciu omawianych deskryptorów jest tworzenie foto-mozaik, czyli obrazów stworzonych z innych, mniejszych, obrazów Ogólna zasada ich tworzenia mówi, że obraz bazowy o stosunkowo dużych rozmiarach składa się z relatywnie małych kafelków (ang tiles) Kafelki pochodzą z dużego zbioru obrazów o możliwie szerokim spektrum zmian koloru i tekstury Przy założeniu, że obraz bazowy ma wymiar 2048 x 1536 pikseli, rozmiar pojedynczego kafelka to 16 x 16 lub 32 x 32 piksele Proces tworzenia mozaiki składa się z dwóch operacji powtarzanych cyklicznie dla każdego fragmentu obrazu: wyszukanie w bazie obrazów elementu o możliwie największym podobieństwie do wybranego fragmentu, zastąpienie w obrazie docelowym fragmentu wejściowego przez wybrany z bazy obraz W ramach badań stworzono w środowisku MATLAB prototypowe oprogramowanie do tworzenia mozaik Z uwagi na odmienny od poprzedniego charakter zadania zaimplementowano w nim następujące deskryptory: HIST, IBOX8, RGBI i DHV Przykładowy wynik tworzenia foto-mozaiki przedstawiony został na rys 7 Badania pokazały, że przy tworzeniu mozaik najistotniejsze są informacje dotyczące koloru obrazu Mniej istotne są natomiast informacje o teksturze, gdyż stworzony obraz (mozaika) oglądany jest z reguły z dużej odległości i informacja o szczegółach jest w tej skali utracona Z powodów wydajnościowych do końcowej implementacji wykorzystano deskryptory IBOX8 i RGBI ułożone w dwustopniową kaskadę Rys 7 Wybrany powiększony fragment (z lewej) utworzonej mozaiki (z prawej) 5 Podsumowanie Zaprezentowane w pracy deskryptory w efektywny sposób opisują kolorowe obrazy statyczne Ich charakter pozwala na szeroki zakres zastosowań, który nie jest ograniczony wyłącznie do standardowego indeksowania i wyszukiwania obrazów w dużych zbiorach Zrealizowane badania potwierdziły, że opis uwzględniający informację o kolorze obrazu nie jest wystarczający do skutecznego rozwiązania problemu indeksowania i tworzenia mozaik Dlatego zaproponowano uzupełnienie opisu treści obrazu za pomocą uproszczonej informacji o strukturze kolorów w obrazie (lub jego krawędziach), co zwiększyło znacząco użyteczność opracowanego oprogramowania
10 Optymalnym, z punktu widzenia zadania indeksowania dużych zbiorów obrazów, jest użycie deskryptorów złożonych (RGBBOX8) lub kaskady deskryptorów (CLD+EHD) Odzwierciedla to w dużym stopniu proces wyszukiwania przez człowieka obrazów na podstawie przykładów Natomiast w zadaniach tworzenia mozaik najważniejszy jest dobór fragmentu o podobnym charakterze, a nie treści, tak więc tutaj najlepiej sprawdzają się deskryptory uproszczone (IBOX8 i RGBI) Literatura 1 Bober M, MPEG-7 Visual Shape Descriptors, IEEE Transactions on Circuits and Systems for Video Technology, vol 11, no 6, Deng Y, Manjunath B S, Kenney C, Moore M S, Shin H, An Efficient Color Representation for Image Retrieval, IEEE Transactions on Image Processing,vol 10, no 1, Kukharev G, Forczmański P Hierarchical Method of Reduction of Features Dimensionality For Image Recognition And Graphical Data Retrieval, Pattern Recognition and Information Processing" Proceedings of Sixth International Conference PRIP'2001, Minsk, Republic of Belarus, V Kukharev G, Kuźminski A, Nowosielski A, Structure and Characteristics of Face Recognition Systems, "Computing, Multimedia and Intelligent Techniques", vol 1 pp , Institute of Computer and Information Sciences, Czestochowa University of Technology, Manjunath B S, Ohm J-R, Vasudevan V V, Yamada A, Color and Texture Descriptors, IEEE Transactions on Circuits and Systems for Video Technology, vol 11, no 6, Martínez J M, Overview of the MPEG-7 Standard ISO/IEC JTC1/SC29/WG11 N4980, (Klagenfurt Meeting), 7/mpeg-7html Niblack W, Barber R, Equitz W, Flickner M, Glasman E, Petkovic D, Yanker P, Faloutsos P, Taubin G, The qbic project: Quering images by content using color, texture, and shape, Poceedings of the SPIE Conference on Storage and Retrieval for Image and Video Databases, 2-3 II 1993, San Jose, CA, pp , Sikora T, The MPEG-7 Visual Standard for Content Description An Overview, IEEE Transactions on Circuits and Systems for Video Technology, Vol 11, No 6, Skarbek W, MPEG-7, IX Konferencja PLOUG, Kościelisko, X Snitkowska E, y tekstury w standardzie MPEG-7, IX Międzynarodowe Sympozjum Inżynierii i Reżyserii Dźwięku ISSET 2001, Warszawa, X Smith J R, Chang S-F, VisualSeek: a fully automated content-based image query system, Department of Electrical Engineering and Center for Image Technology for New Media,Columbia University, New York, Volmer S, Tracing images in large databases by comparison of wavelet fingerprints, Proceedings of the 2nd International Conference on Visual Information Systems, San Diego, XII 1997, pp , Wu Y-G, Liu J-H, Image Indexing in DCT Domain, pp , Third International Conference on Information Technology and Applications (ICITA'05) vol 2, 2005
Wyszukiwanie informacji w dużych zbiorach obrazów
informacji w dużych zbiorach obrazów Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie 1 Wprowadzenie Obraz i dźwięk są
Rozpoznawanie obrazów na przykładzie rozpoznawania twarzy
Rozpoznawanie obrazów na przykładzie rozpoznawania twarzy Wykorzystane materiały: Zadanie W dalszej części prezentacji będzie omawiane zagadnienie rozpoznawania twarzy Problem ten można jednak uogólnić
dr inż. Jacek Naruniec email: J.Naruniec@ire.pw.edu.pl
dr inż. Jacek Naruniec email: J.Naruniec@ire.pw.edu.pl Coraz większa ilość danych obrazowych How much information, University of California Berkeley, 2002: przyrost zdjęć rentgenowskich to 17,2 PB rocznie
Przetwarzanie obrazu
Przetwarzanie obrazu Przegląd z uwzględnieniem obrazowej bazy danych Tatiana Jaworska Jaworska@ibspan.waw.pl www.ibspan.waw.pl/~jaworska Umiejscowienie przetwarzania obrazu Plan prezentacji Pojęcia podstawowe
MODEL EKSPERYMENTALNY OPISU TREŚCI WIZYJNYCH
Piotr Owczarek Tomasz Rosiński Instytut Elektroniki i Telekomunikacji Politechnika Poznańska ul. Piotrowo 3A, 60-965 Poznań powczarek@et.put.poznan.pl trosins@et.put.poznan.pl MODEL EKSPERYMENTALNY OPISU
W poszukiwaniu sensu w świecie widzialnym
W poszukiwaniu sensu w świecie widzialnym Andrzej Śluzek Nanyang Technological University Singapore Uniwersytet Mikołaja Kopernika Toruń AGH, Kraków, 28 maja 2010 1 Podziękowania Przedstawione wyniki powstały
Implementacja filtru Canny ego
ANALIZA I PRZETWARZANIE OBRAZÓW Implementacja filtru Canny ego Autor: Katarzyna Piotrowicz Kraków,2015-06-11 Spis treści 1. Wstęp... 1 2. Implementacja... 2 3. Przykłady... 3 Porównanie wykrytych krawędzi
Przetwarzanie obrazu
Przetwarzanie obrazu Przegląd z uwzględnieniem obrazowej bazy danych Tatiana Jaworska Jaworska@ibspan.waw.pl www.ibspan.waw.pl/~jaworska Umiejscowienie przetwarzania obrazu Plan prezentacji Pojęcia podstawowe
Samochodowy system detekcji i rozpoznawania znaków drogowych. Sensory w budowie maszyn i pojazdów Maciej Śmigielski
Samochodowy system detekcji i rozpoznawania znaków drogowych Sensory w budowie maszyn i pojazdów Maciej Śmigielski Rozpoznawanie obrazów Rozpoznawaniem obrazów możemy nazwać proces przetwarzania i analizowania
Wyszukiwanie obrazów 1
Wyszukiwanie obrazów 1 Wyszukiwanie według zawartości Wyszukiwanie wg zawartości jest procesem wyszukiwania w bazach danych (zbiorach dokumentów ) obiektów o treści najbardziej zbliżonej do zadanego wzorca.
Filtrowanie tekstur. Kinga Laurowska
Filtrowanie tekstur Kinga Laurowska Wprowadzenie Filtrowanie tekstur (inaczej wygładzanie) technika polegająca na 'rozmywaniu' sąsiadujących ze sobą tekseli (pikseli tekstury). Istnieje wiele metod filtrowania,
Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny.
Filtracja nieliniowa może być bardzo skuteczną metodą polepszania jakości obrazów Filtry nieliniowe Filtr medianowy Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy
Grafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38
Wykład 2 Przetwarzanie obrazów mgr inż. 1/38 Przetwarzanie obrazów rastrowych Jedna z dziedzin cyfrowego obrazów rastrowych. Celem przetworzenia obrazów rastrowych jest użycie edytujących piksele w celu
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
SYSTEM BIOMETRYCZNY IDENTYFIKUJĄCY OSOBY NA PODSTAWIE CECH OSOBNICZYCH TWARZY. Autorzy: M. Lewicka, K. Stańczyk
SYSTEM BIOMETRYCZNY IDENTYFIKUJĄCY OSOBY NA PODSTAWIE CECH OSOBNICZYCH TWARZY Autorzy: M. Lewicka, K. Stańczyk Kraków 2008 Cel pracy projekt i implementacja systemu rozpoznawania twarzy, który na podstawie
Przetwarzanie obrazów wykład 4
Przetwarzanie obrazów wykład 4 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Filtry nieliniowe Filtry nieliniowe (kombinowane)
Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 9. Przetwarzanie sygnałów wizyjnych. Politechnika Świętokrzyska.
Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 9 Przetwarzanie sygnałów wizyjnych. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z funkcjami pozwalającymi na
Histogram obrazu, modyfikacje histogramu
March 15, 2013 Histogram Jeden z graficznych sposobów przedstawiania rozkładu cechy. Składa się z szeregu prostokatów umieszczonych na osi współrzędnych. Prostokaty te sa z jednej strony wyznaczone przez
Według raportu ISO z 1988 roku algorytm JPEG składa się z następujących kroków: 0.5, = V i, j. /Q i, j
Kompresja transformacyjna. Opis standardu JPEG. Algorytm JPEG powstał w wyniku prac prowadzonych przez grupę ekspertów (ang. Joint Photographic Expert Group). Prace te zakończyły się w 1991 roku, kiedy
10. Redukcja wymiaru - metoda PCA
Algorytmy rozpoznawania obrazów 10. Redukcja wymiaru - metoda PCA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. PCA Analiza składowych głównych: w skrócie nazywana PCA (od ang. Principle Component
Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner
Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Elementy nieprzystające Definicja odrzucania Klasyfikacja
System wizyjny OMRON Xpectia FZx
Ogólna charakterystyka systemu w wersji FZ3 w zależności od modelu można dołączyć od 1 do 4 kamer z interfejsem CameraLink kamery o rozdzielczościach od 300k do 5M pikseli możliwość integracji oświetlacza
Analiza obrazów. Segmentacja i indeksacja obiektów
Analiza obrazów. Segmentacja i indeksacja obiektów Wykorzystane materiały: R. Tadeusiewicz, P. Korohoda, Komputerowa analiza i przetwarzanie obrazów, Wyd. FPT, Kraków, 1997 Analiza obrazu Analiza obrazu
Wprowadzenie do multimedialnych baz danych. Opracował: dr inż. Piotr Suchomski
Wprowadzenie do multimedialnych baz danych Opracował: dr inż. Piotr Suchomski Wprowadzenie bazy danych Multimedialne bazy danych to takie bazy danych, w których danymi mogą być tekst, zdjęcia, grafika,
Wykład XII. optymalizacja w relacyjnych bazach danych
Optymalizacja wyznaczenie spośród dopuszczalnych rozwiązań danego problemu, rozwiązania najlepszego ze względu na przyjęte kryterium jakości ( np. koszt, zysk, niezawodność ) optymalizacja w relacyjnych
Cyfrowe przetwarzanie i kompresja danych. dr inż.. Wojciech Zając
Cyfrowe przetwarzanie i kompresja danych dr inż.. Wojciech Zając Wykład 7. Standardy kompresji obrazów nieruchomych Obraz cyfrowy co to takiego? OBRAZ ANALOGOWY OBRAZ CYFROWY PRÓBKOWANY 8x8 Kompresja danych
Detekcja punktów zainteresowania
Informatyka, S2 sem. Letni, 2013/2014, wykład#8 Detekcja punktów zainteresowania dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Proces przetwarzania obrazów
Ćwiczenia z grafiki komputerowej 4 PRACA NA WARSTWACH. Miłosz Michalski. Institute of Physics Nicolaus Copernicus University.
Ćwiczenia z grafiki komputerowej 4 PRACA NA WARSTWACH Miłosz Michalski Institute of Physics Nicolaus Copernicus University Październik 2015 1 / 14 Wykorzystanie warstw Opis zadania Obrazy do ćwiczeń Zadania
Parametryzacja obrazu na potrzeby algorytmów decyzyjnych
Parametryzacja obrazu na potrzeby algorytmów decyzyjnych Piotr Dalka Wprowadzenie Z reguły nie stosuje się podawania na wejście algorytmów decyzyjnych bezpośrednio wartości pikseli obrazu Obraz jest przekształcany
Założenia i obszar zastosowań. JPEG - algorytm kodowania obrazu. Geneza algorytmu KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG
Założenia i obszar zastosowań KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Plan wykładu: Geneza algorytmu Założenia i obszar zastosowań JPEG kroki algorytmu kodowania obrazu Założenia: Obraz monochromatyczny
EKSPLORACJA ZASOBÓW INTERNETU LABORATORIUM VIII WYSZUKIWANIE OBRAZÓW
EKSPLORACJA ZASOBÓW INTERNETU LABORATORIUM VIII WYSZUKIWANIE OBRAZÓW 1. Motywacja Strony internetowe zawierają 70% multimediów Tradycyjne wyszukiwarki wspierają wyszukiwanie tekstu Kolekcje obrazów: Dwie
Metody kodowania wybranych cech biometrycznych na przykładzie wzoru naczyń krwionośnych dłoni i przedramienia. Mgr inż.
Metody kodowania wybranych cech biometrycznych na przykładzie wzoru naczyń krwionośnych dłoni i przedramienia Mgr inż. Dorota Smorawa Plan prezentacji 1. Wprowadzenie do zagadnienia 2. Opis urządzeń badawczych
Rozpoznawanie obiektów z użyciem znaczników
Rozpoznawanie obiektów z użyciem znaczników Sztuczne znaczniki w lokalizacji obiektów (robotów) Aktywne znaczniki LED do lokalizacji w przestrzeni 2D (do 32): Znaczniki z biblioteki AruCo (do 1024) Id
Zastosowanie stereowizji do śledzenia trajektorii obiektów w przestrzeni 3D
Zastosowanie stereowizji do śledzenia trajektorii obiektów w przestrzeni 3D autorzy: Michał Dajda, Łojek Grzegorz opiekun naukowy: dr inż. Paweł Rotter I. O projekcie. 1. Celem projektu było stworzenie
METODY INŻYNIERII WIEDZY
METODY INŻYNIERII WIEDZY WALIDACJA KRZYŻOWA dla ZAAWANSOWANEGO KLASYFIKATORA KNN ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
MPEG Wstęp. Multimedia Content Description Interface Oficjalna nazwa: (zwarty zapis) obiektów w multimedialnych.
MPEG-7 1. Wstęp Oficjalna nazwa: Multimedia Content Description Interface - 2001 Język opisu zawartości obiektów w multimedialnych MPEG-1, MPEG-2, MPEG- 4 - normowały y reprezentację (zwarty zapis) obiektów
WYKŁAD 12. Analiza obrazu Wyznaczanie parametrów ruchu obiektów
WYKŁAD 1 Analiza obrazu Wyznaczanie parametrów ruchu obiektów Cel analizy obrazu: przedstawienie każdego z poszczególnych obiektów danego obrazu w postaci wektora cech dla przeprowadzenia procesu rozpoznania
Zastosowanie kompresji w kryptografii Piotr Piotrowski
Zastosowanie kompresji w kryptografii Piotr Piotrowski 1 Plan prezentacji I. Wstęp II. Kryteria oceny algorytmów III. Główne klasy algorytmów IV. Przykłady algorytmów selektywnego szyfrowania V. Podsumowanie
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)
FORMATY PLIKÓW GRAFICZNYCH
FORMATY PLIKÓW GRAFICZNYCH Różnice między nimi. Ich wady i zalety. Marta Łukasik Plan prezentacji Formaty plików graficznych Grafika wektorowa Grafika rastrowa GIF PNG JPG SAV FORMATY PLIKÓW GRAFICZNYCH
S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor
S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.
Kompresja obrazów w statycznych - algorytm JPEG
Kompresja obrazów w statycznych - algorytm JPEG Joint Photographic Expert Group - 986 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie et Télégraphie Standard
27 stycznia 2009
SM@KRS 27 stycznia 2009 1 Advanced Video Coding H.264/AVC jest na dzień dzisiejszy najbardziej zaawansowanym standardem kompresji sekwencji wizyjnych. W stosunku do wykorzystywanego obecnie w telewizji
Akwizycja obrazów. Zagadnienia wstępne
Akwizycja obrazów. Zagadnienia wstępne Wykorzystane materiały: R. Tadeusiewicz, P. Korohoda, Komputerowa analiza i przetwarzanie obrazów, Wyd. FPT, Kraków, 1997 A. Przelaskowski, Techniki Multimedialne,
Cyfrowe przetwarzanie obrazów i sygnałów Wykład 9 AiR III
1 Na podstawie materiałów autorstwa dra inż. Marka Wnuka. Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania
Grafika Komputerowa Wykład 6. Teksturowanie. mgr inż. Michał Chwesiuk 1/23
Wykład 6 mgr inż. 1/23 jest to technika w grafice komputerowej, której celem jest zwiększenie szczegółowości renderowanych powierzchni za pomocą tekstur. jest to pewna funkcja (najczęściej w formie bitmapy)
KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG
KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Joint Photographic Expert Group - 1986 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie et Télégraphie Standard
Python: JPEG. Zadanie. 1. Wczytanie obrazka
Python: JPEG Witajcie! Jest to kolejny z serii tutoriali uczący Pythona, a w przyszłości być może nawet Cythona i Numby Jeśli chcesz nauczyć się nowych, zaawansowanych konstrukcji to spróbuj rozwiązać
EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ
Janusz Bobulski Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska ul. Dąbrowskiego 73 42-200 Częstochowa januszb@icis.pcz.pl EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ
P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H
W O J S K O W A A K A D E M I A T E C H N I C Z N A W Y D Z I A Ł E L E K T R O N I K I Drukować dwustronnie P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H Grupa... Data wykonania
Pozyskiwanie informacji multimedialnych bieżące podejścia i zastosowanie
Łukasz Mazurowski Zachodniopomorska Szkoła Biznesu w Szczecinie Pozyskiwanie informacji multimedialnych bieżące podejścia i zastosowanie Streszczenie W pracy przybliżono problematykę związaną z pozyskiwaniem
Zastosowania obliczeń inteligentnych do wyszukiwania w obrazowych bazach danych
Zastosowania obliczeń inteligentnych do wyszukiwania w obrazowych bazach danych Tatiana Jaworska Jaworska@ibspan.waw.pl www.ibspan.waw.pl/~jaworska Istniejące systemy - Google Istniejące systemy - Google
Analiza obrazów - sprawozdanie nr 2
Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która
Metody indeksowania dokumentów tekstowych
Metody indeksowania dokumentów tekstowych Paweł Szołtysek 21maja2009 Metody indeksowania dokumentów tekstowych 1/ 19 Metody indeksowania dokumentów tekstowych 2/ 19 Czym jest wyszukiwanie informacji? Wyszukiwanie
Politechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 8. Filtracja uśredniająca i statystyczna.
Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 8 Filtracja uśredniająca i statystyczna. Cel ćwiczenia Celem ćwiczenia jest zdobycie umiejętności tworzenia i wykorzystywania
KORELACJA MIĘDZY OBIEKTAMI GRAFICZNYMI JAKO ASPEKT WYSZUKIWANIA ICH W OBRAZOWEJ BAZIE DANYCH
KORELACJA MIĘDZY OBIEKTAMI GRAFICZNYMI JAKO ASPEKT WYSZUKIWANIA ICH W OBRAZOWEJ BAZIE DANYCH Tatiana Jaworska e-mail: Tatiana.Jaworska@ibspan.waw.pl Instytut Badań Systemowych, Polska Akademia Nauk, ul.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
Struktury Danych i Złożoność Obliczeniowa
Struktury Danych i Złożoność Obliczeniowa Zajęcia 1 Podstawowe struktury danych Tablica Najprostsza metoda przechowywania serii danych, zalety: prostota, wady: musimy wiedzieć, ile elementów chcemy przechowywać
6. Algorytmy ochrony przed zagłodzeniem dla systemów Linux i Windows NT.
WYDZIAŁ: GEOLOGII, GEOFIZYKI I OCHRONY ŚRODOWISKA KIERUNEK STUDIÓW: INFORMATYKA STOSOWANA RODZAJ STUDIÓW: STACJONARNE I STOPNIA ROK AKADEMICKI 2014/2015 WYKAZ PRZEDMIOTÓW EGZAMINACYJNYCH: I. Systemy operacyjne
Algorytmy graficzne. Charakterystyki oraz wyszukiwanie obrazów cyfrowych
Algorytmy graficzne Charakterystyki oraz wyszukiwanie obrazów cyfrowych 1 Pojęcie i reprezentacje obrazu Obraz cyfrowy, I, definiuje się jako odwzorowanie z przestrzeni pikseli P do przestrzeni kolorów
składa się z m + 1 uporządkowanych niemalejąco liczb nieujemnych. Pomiędzy p, n i m zachodzi następująca zależność:
TEMATYKA: Krzywe typu Splajn (Krzywe B sklejane) Ćwiczenia nr 8 Krzywe Bezier a mają istotne ograniczenie. Aby uzyskać kształt zawierający wiele punktów przegięcia niezbędna jest krzywa wysokiego stopnia.
Akademia Górniczo-Hutnicza
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Wyznaczanie dysparycji z użyciem pakietu Matlab Kraków, 2012 1. Mapa dysparycji W wizyjnych metodach odwzorowania, cyfrowa reprezentacja sceny
Transformata Fouriera
Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli
Odciski palców ekstrakcja cech
Kolasa Natalia Odciski palców ekstrakcja cech Biometria sprawozdanie z laboratorium 4 1. Wstęp Biometria zajmuje się rozpoznawaniem człowieka na podstawie jego cech biometrycznych. Jest to możliwe ponieważ
i ruchów użytkownika komputera za i pozycjonujący oczy cyberagenta internetowego na oczach i akcjach użytkownika Promotor: dr Adrian Horzyk
System śledzenia oczu, twarzy i ruchów użytkownika komputera za pośrednictwem kamery internetowej i pozycjonujący oczy cyberagenta internetowego na oczach i akcjach użytkownika Mirosław ł Słysz Promotor:
Dwufazowy system monitorowania obiektów. Karina Murawko, Michał Wiśniewski
Dwufazowy system monitorowania obiektów Karina Murawko, Michał Wiśniewski Instytut Grafiki Komputerowej i Systemów Multimedialnych Wydziału Informatyki Politechniki Szczecińskiej Streszczenie W artykule
Analiza składowych głównych. Wprowadzenie
Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących
Sortowanie Shella Shell Sort
Sortowanie Shella Shell Sort W latach 50-tych ubiegłego wieku informatyk Donald Shell zauważył, iż algorytm sortowania przez wstawianie pracuje bardzo efektywnie w przypadku gdy zbiór jest w dużym stopniu
Detekcja twarzy w obrazie
Detekcja twarzy w obrazie Metoda na kanałach RGB 1. Należy utworzyć nowy obrazek o wymiarach analizowanego obrazka. 2. Dla każdego piksela oryginalnego obrazka pobiera się informację o wartości kanałów
Pattern Classification
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors
Wykrywanie twarzy ludzkich na kolorowych obrazach ze złożonym tłem
Wykrywanie ludzkich na kolorowych obrazach ze złożonym tłem Lech Baczyński www.baczynski.com Na podstawie artykułu panów: Yanjiang Wang, Baozong Yuan i in. Do czego przydatne jest wykrywanie (detekcja)?
Cyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Proste metody przetwarzania obrazu
Operacje na pikselach obrazu (operacje punktowe, bezkontekstowe) Operacje arytmetyczne Dodanie (odjęcie) do obrazu stałej 1 Mnożenie (dzielenie) obrazu przez stałą Operacje dodawania i mnożenia są operacjami
Technologie Informacyjne
Grafika komputerowa Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności December 12, 2016 1 Wprowadzenie 2 Optyka 3 Geometria 4 Grafika rastrowa i wektorowa 5 Kompresja danych Wprowadzenie
KP, Tele i foto, wykład 3 1
Krystian Pyka Teledetekcja i fotogrametria sem. 4 2007/08 Wykład 3 Promieniowanie elektromagnetyczne padające na obiekt jest w części: odbijane refleksja R rozpraszane S przepuszczane transmisja T pochłaniane
Szacowanie wartości monet na obrazach.
Marcin Nieściur projekt AiPO Szacowanie wartości monet na obrazach. 1. Wstęp. Celem projektu było stworzenie pluginu do programu ImageJ pozwalającego na szacowanie wartości monet znajdujących się na obrazach
3.1. Na dobry początek
Klasa I 3.1. Na dobry początek Regulamin pracowni i przepisy BHP podczas pracy przy komputerze Wykorzystanie komputera we współczesnym świecie Zna regulamin pracowni i przestrzega go. Potrafi poprawnie
BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat
BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,
Kompresja danych Streszczenie Studia Dzienne Wykład 10,
1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, 28.04.2006 Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny
Wykrywanie twarzy na zdjęciach przy pomocy kaskad
Wykrywanie twarzy na zdjęciach przy pomocy kaskad Analiza i przetwarzanie obrazów Sebastian Lipnicki Informatyka Stosowana,WFIIS Spis treści 1. Wstęp... 3 2. Struktura i funkcjonalnośd... 4 3. Wyniki...
Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych
Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych autor: Robert Drab opiekun naukowy: dr inż. Paweł Rotter 1. Wstęp Zagadnienie generowania trójwymiarowego
6. Organizacja dostępu do danych przestrzennych
6. Organizacja dostępu do danych przestrzennych Duża liczba danych przestrzennych oraz ich specyficzny charakter sprawiają, że do sprawnego funkcjonowania systemu, przetwarzania zgromadzonych w nim danych,
Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (3)
Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (3) Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna
Grafika komputerowa. Zajęcia IX
Grafika komputerowa Zajęcia IX Ćwiczenie 1 Usuwanie efektu czerwonych oczu Celem ćwiczenia jest usunięcie efektu czerwonych oczu u osób występujących na zdjęciu tak, aby plik wynikowy wyglądał jak wzor_1.jpg
Adam Korzeniewski p Katedra Systemów Multimedialnych
Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych camera obscura to pierwowzór aparatu fotograficznego Aparaty cyfrowe to urządzenia optoelektroniczne, które służą
Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski
Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera
Laboratorium Cyfrowego Przetwarzania Obrazów
Laboratorium Cyfrowego Przetwarzania Obrazów Ćwiczenie 2 Histogram i arytmetyka obrazów Opracowali: - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej, Instytut
Sortowanie. Bartman Jacek Algorytmy i struktury
Sortowanie Bartman Jacek jbartman@univ.rzeszow.pl Algorytmy i struktury danych Sortowanie przez proste wstawianie przykład 41 56 17 39 88 24 03 72 41 56 17 39 88 24 03 72 17 41 56 39 88 24 03 72 17 39
Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32
Analiza i projektowanie oprogramowania Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania 2/32 Cel analizy Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie:
Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka
Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej
Animowana grafika 3D. Opracowanie: J. Kęsik.
Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Powierzchnia obiektu 3D jest renderowana jako czarna jeżeli nie jest oświetlana żadnym światłem (wyjątkiem są obiekty samoświecące) Oświetlenie
Przetwarzanie obrazu
Przetwarzanie obrazu Przekształcenia kontekstowe Liniowe Nieliniowe - filtry Przekształcenia kontekstowe dokonują transformacji poziomów jasności pikseli analizując za każdym razem nie tylko jasność danego
Zbigniew JERZAK Adam KOTLIŃSKI. Studenci kierunku Informatyka na Politechnice Śląskiej w Gliwicach
Studenci kierunku Informatyka na Politechnice Śląskiej w Gliwicach Program zrealizowany na potrzeby Pracowni Komputerowej Analizy Obrazu i Mikroskopii Konfokalnej w Centrum Onkologii w Gliwicach Gliwice,
Zastosowanie symulacji Monte Carlo do zarządzania ryzykiem przedsięwzięcia z wykorzystaniem metod sieciowych PERT i CPM
SZKOŁA GŁÓWNA HANDLOWA w Warszawie STUDIUM MAGISTERSKIE Kierunek: Metody ilościowe w ekonomii i systemy informacyjne Karol Walędzik Nr albumu: 26353 Zastosowanie symulacji Monte Carlo do zarządzania ryzykiem
Techniki wizualizacji. Ćwiczenie 2. Obraz cyfrowy w komputerze
Doc. dr inż. Jacek Jarnicki Instytut Informatyki, Automatyki i Robotyki Politechniki Wrocławskiej jacek.jarnicki@pwr.wroc.pl Techniki wizualizacji Ćwiczenie 2 Obraz cyfrowy w komputerze Celem ćwiczenia
Indeksy w bazach danych. Motywacje. Techniki indeksowania w eksploracji danych. Plan prezentacji. Dotychczasowe prace badawcze skupiały się na
Techniki indeksowania w eksploracji danych Maciej Zakrzewicz Instytut Informatyki Politechnika Poznańska Plan prezentacji Zastosowania indeksów w systemach baz danych Wprowadzenie do metod eksploracji
Wydział Elektrotechniki, Informatyki i Telekomunikacji. Instytut Informatyki i Elektroniki. Instrukcja do zajęć laboratoryjnych
Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Informatyki i Elektroniki Instrukcja do zajęć laboratoryjnych wersja: 1.0 Nr ćwiczenia: 12, 13 Temat: Cel ćwiczenia: Wymagane przygotowanie
Transformaty. Kodowanie transformujace
Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0
Przekształcenia punktowe
Przekształcenia punktowe Przekształcenia punktowe realizowane sa w taki sposób, że wymagane operacje wykonuje sie na poszczególnych pojedynczych punktach źródłowego obrazu, otrzymujac w efekcie pojedyncze