Lekcja Temat: graniastosłupy i ostrosłupy w architekturze mojego regionu. Wykonanie: Kujawa Mateusz Marciniak Patryk Banas Tomasz
|
|
- Edyta Władysława Krzemińska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Lekcja Temat: graniastosłupy i ostrosłupy w architekturze mojego regionu. Wykonanie: Kujawa Mateusz Marciniak Patryk Banas Tomasz
2 1. Co to jest graniastosłup? Graniastosłup- Wielościan, którego wszystkie wierzchołki są położone na dwóch równoległych płaszczyznach, zwanych podstawami graniastosłupa i którego wszystkie krawędzie leżące poza tymi podstawami są do siebie równoległe. Ostrosłup wielościan, którego ściany boczne są trójkątami o wspólnym wierzchołku a podstawa jest dowolnym wielokątem.
3 2.Typy graniastosłupów Graniastosłup prosty - graniastosłup w którym krawędzie boczne są prostopadłe do podstaw. Graniastosłup pochyły - graniastosłup w którym krawędzie boczne nie są prostopadłe do podstawy. Graniastosłup prawidłowy - graniastosłup prosty, którego podstawa jest wielokąt foremny. Wielokąt, który ma wszystkie kąty wewnętrzne równe i wszystkie boki równej długości.
4 3. Wyjaśnienia skrótów używanych we wzorach Pb - Pole powierzchni bocznej Pp - Pole podstawy Pc - Pole całkowite V - objętość h - wysokość 2p - długość obwodu podstawy graniastosłupa
5 4. Wzory Ostrosłup Wielościan, którego ściany boczne są trójkątami o wspólnym wierzchołku a podstawa jest dowolnym wielokątem.
6 Wzory c.d. Graniastosłup prosty
7 Wzory c.d. Sześcian Jego wszystkie ściany są kwadratami
8 5.Architektura zawierająca graniastosłupy. a)bydgoszcz Wieżowiec PROJPRZEM S.A Adres : ul. Bernardyńska 13 Graniastosłup prosty (o podstawie prostokąta) Jest to wieżowiec, pełniący funkcję siedziby firmy PROJPRZEM S.A.
9 Muzeum okręgowe Zbiory archeologiczne Adres : ul. Mennica 2 Graniastosłupy proste (o podstawach trójkąta i prostokąta) W przeszłości budynek pełnił funkcję spichrza przeładunkowego i magazynu zbóż dla pobliskich młynów. Po 1945 roku przeszedł na własność Skarbu Państwa. Teraz znajduje się tu muzeum ze zbiorami archeologicznymi.
10 Wyspa młyńska magazyn, młyn Graniastosłup prosty (o podstawie prostokąta) Budynek pełniący dawniej rolę magazynów zbożowych i młynu Rothera. Obecnie nie jest używany. Adres : ul. Mennica 10
11 Muzeum okręgowe - galeria sztuki nowoczesnej (Czerwony spichrz) W dawnych latach pełnił rolę młyna wodnego z trzema liniami przemiału mąki. Teraz znajduje się tu muzeum sztuki nowoczesnej. Budynek ten jest nazywany czerwonym spichrzem. Graniastosłupy proste (o podstawach prostokąta i trójkąta) Adres : ul. Mennica 8a
12 Kościół św. Andrzeja Boboli Kościół zbudowano w latach r. dla gminy ewangelickounijnej jako farę ewangelicką pw. Świętego Krzyża. Był on następcą poprzedniej świątyni w zbudowanej w Bydgoszczy w 1787 r. Adres : ul. Plac kościeleckich 7 Ostrosłup (o podstawie kwadratu)
13 ToiToi Jest to popularny w Polsce typ ubikacji publicznej. Najczęściej używany jest na budowach oraz podczas innych imprez masowych Adres : ul. Plac kościeleckich 7 Graniastosłup prosty (o podstawie prostokąta)
14 Cokół pomnika Cokół element budowlany. Najniższa nadziemna część budowli lub jej części (np. kolumny, filaru). Pełni on funkcję konstrukcyjną oraz ozdobną. Adres : ul. Plac kościeleckich 7 Graniastosłup prosty (o podstawie prostokąta lub kwadratu)
15 Kamienice Graniastosłupy proste (o podstawach prostokątów i trójkąta)
16 Ratusz zbudowano wkrótce po lokacji miasta przez Kazimierza Wielkiego w 1346 r. Wzniesiono go na środku rynku, jak w większości miast średniowiecznych. Pierwotny budynek ratusza był prawdopodobnie drewniany. Obecnie pod płytą Starego Rynku znajdują się jedynie fundamenty ratusza. W maju 2010 r. w związku z planowaną przebudową płyty rynku przeprowadzono badania archeologiczne. Podczas wykopalisk wykryto dobrze zachowane fundamenty ratusza, wieży oraz kramów kupieckich. Ostatnia przebudowa ratusza została zakończona w 1878 r. i budynek wygląda tak do dziś. Adres : ul. Jezuicka 1 Graniastosłupy proste (o podstawach prostokątów i trójkątów) Ratusz
17 Mostowa 2 Mostowa 2 to nowoczesna przestrzeń handlowo - usługowa, znajdująca się w centrum Bydgoszczy i jest obecnie najnowocześniejszym projektem architektonicznym w Bydgoszczy, położonym przy tętniącej życiem Starówce. Projekt budynku nawiązuje do dawnego, handlowego charakteru tego miejsca budynek ma ponad 3700 m2 powierzchni handlowo biurowych, przeszklony pasaż z restauracjami i punktami handlowymi oraz parking podziemny na 38 miejsc. Graniastosłupy proste (o podstawach kwadratu oraz prostokątów)
18 Muzeum Okręgowe im. Leona Wyczółkowskiego (Biały spichlerz) W 1964 r. Muzeum uzyskało 2 spichrze stojące przy ul. Grodzkiej. Magazyny zbożowe powstały w ostatniej dekadzie XVIII wieku. Są to budowle o tzw. konstrukcji szachulcowej, charakteryzującej się drewnianym szkieletem z ceglanymi wypełnieniami pól. Od początku swego istnienia pełniły one funkcje magazynowe. W lutym 1960 r. wybuchł pożar, który strawił dwa spichrze i oszczędził tylko trzy które są tu do dziś. Teraz znajdują się tu okresowe wystawy w których wyróżnia się: Dział Historii, Dział Grafiki, Dział Etnografii oraz Dział Muzyczny. Graniastosłupy proste (o podstawach prostokątów i trójkątów) Adres : ul. Grodzka 9-11
19 mbank Zespół budynków należących do mbanku w Bydgoszczy. Zwane są nowymi spichrzami lub szklanymi spichrzami i zaliczają się do najbardziej udanych realizacji architektonicznych w Polsce po 1990 r. Budynki powstały w latach , według, nagrodzonego I nagrodą w konkursie architektonicznym, projektu architektów Andrzeja Bulandy i Włodzimierza Muchy. Pomimo że zostały wykończone szkłem i cegłą klinkierową, swoim kształtem i stylem nawiązują do zabytkowych spichlerzy znajdujących się tuż obok i komponują z otoczeniem. Graniastosłup prosty i bryła obrotowa pół-walec (o podstawie prostokątu )
20 Makieta Zamku w Bydgoszczy Graniastosłupy proste (o podstawach prostokątów) Zamek w Bydgoszczy budowla obronna i administracyjna z czasów Kazimierza Wielkiego, istniejąca w latach (ruiny do 1895 r.) W latach był rezydencją Kazimierza Słupskiego (wnuka Kazimierza Wielkiego), później aż do potopu szwedzkiego - rezydencją starostów bydgoskich. Przebywali w nim prawie wszyscy królowie polscy, a szczególnie często Kazimierz Jagiellończyk (podczas wojny trzynastoletniej), zaś w 1577 roku przez trzy miesiące mieszkał w nim król Stefan Batory.
21 Słup Ogłoszeniowy Wywiesza się na nim ogłoszenia. Bryły obrotowe ( walec oraz półkula)
22 Kiosk Ruchu Graniastosłup prosty (o podstawie prostokąta)
23 Graniastosłup prosty (o podstawie kwadratu) Ławka
24 Hotel HolidayInn Sieć hoteli Holiday Inn została założona w 1952 roku w USA, w Memphis (stan Tenness ee) przez Kemmonsa Wilsona, w celu umożliwienia niedrogich noclegów rodzinnych w czasie podróży po Stanach Zjednoczonych. W 1988 sieć została zakupiona przez UK-based Bass Brewers. Ostatecznie w 1990 roku stała się częścią Inter Continental Hotels Group. Graniastosłup prosty (o podstawie prostokąta
25 Bazylika św.wincentego à Paulo W 1923 władze Bydgoszczy ofiarowały zgromadzeniu Księży Misjonarzy św. Wincentego à Paulo działkę pod budowę kościoła i szkoły. W marcu 1924 rozpoczęto prace przygotowawcze według projektu architekta Adama Ballenstaedta z Poznania. Bryła obrotowa (walec i półkula) oraz graniastosłup prosty (o podstawie trójkąta)
26 źródła matematyka.pisz.pl m.bydgoszcz.gazeta.pl muzeum.bydgoszcz.pl architektura.info pl.wikipedia.org mostowa2.pl
27 KONIEC
Stereometria bryły. Wielościany. Wielościany foremne
Stereometria bryły Stereometria - geometria przestrzeni trójwymiarowej. Przedmiotem jej badań są własności brył oraz przekształcenia izometryczne i afiniczne przestrzeni. Przyjęte oznaczenia: - Pole powierzchni
Geometria. Rodzaje i własności figur geometrycznych:
Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni
Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów.
GRANIASTOSŁUPY I OSTROSŁUPY Bryły czyli figury przestrzenne dzielimy na: graniastosłupy ostrosłupy bryły obrotowe Graniastosłupy i ostrosłupy nazywamy wielościanami Graniastosłupy mają dwie podstawy, a
XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY
pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa
GEOMETRIA PRZESTRZENNA (STEREOMETRIA)
GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy
GRANIASTOSŁUPY. Graniastosłupy dzielimy na proste i pochyłe. W graniastosłupach prostych krawędzie są prostopadłe do podstaw, w pochyłych nie są.
GRANIASTOSŁUPY Euklides (365-300 p.n.e.) słynny grecki matematyk i fizyk. Jego najwybitniejsze dzieło Elementy składało się z trzynastu ksiąg, z czego trzy ostatnie księgi dotyczą geometrii przestrzennej:
A. 4, 5, 6 B. 3, 4, 5 C. 6, 8, 12 D. 5, 12, 14
OSTROSŁUPY i GRANIASTOSŁUPY - test grupa A 1 Ile wynosi objętość ostrosłupa prawidłowego trójkątnego o = 27 cm 2 i wysokości 10 cm A 270 cm 3 B 27 cm 3 C 90 cm 3 D 81 cm 3 2 Ile wynosi powierzchnia całkowita
MAZOWIECKI PROGRAM STYPENDIALNY DLA UCZNIÓW SZCZEGÓLNIE UZDOLNIONYCH NAJLEPSZA INWESTYCJA W CZŁOWIEKA 2016/2017
MAZOWIECKI PROGRAM STYPENDIALNY DLA UCZNIÓW SZCZEGÓLNIE UZDOLNIONYCH NAJLEPSZA INWESTYCJA W CZŁOWIEKA 2016/2017 Nr z wniosku ID: 3313 Tytuł projektu edukacyjnego: Jakie bryły przestrzenne spotykamy na
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Prawdy i nieprawdy. Liczba graczy od 2 do 6 osób. Rekwizyty talia 50 kart (plus 4 do wariantu 2) Zasady gry. klasa II GRANIASTOSŁUPY
Prawdy i nieprawdy klasa II GRANIASTOSŁUPY Liczba graczy od 2 do 6 osób Rekwizyty talia 50 kart (plus 4 do wariantu 2) Zasady gry Wariant 1. Gracze układają karty w stos zdaniami do góry. W trakcie rozgrywki
1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach.
12 Ostrosłupy W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach Ostrosłup prosty to ostrosłup, który ma wszystkie krawędzie
Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska
Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska Redaktor serii: Marek Jannasz Ilustracje: Magdalena Wójcik Projekt okładki: Teresa Chylińska-Kur, KurkaStudio Projekt makiety
PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3
PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3 I. FUNKCJE grupuje elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowań
w jednym kwadrat ziemia powietrze równoboczny pięciobok
Wielościany Definicja 1: Wielościanem nazywamy zbiór skończonej ilości wielokątów płaskich spełniających następujące warunki: 1. każde dwa wielokąty mają bok lub wierzchołek wspólny albo nie mają żadnego
Grafika inżynierska geometria wykreślna. 4. Wielościany. Budowa. Przekroje.
Grafika inżynierska geometria wykreślna 4. Wielościany. Budowa. Przekroje. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. I. Podstawowe pojęcia statystyki. 1. Sposoby prezentowania danych, interpretacja wykresów. 2. Mediana i dominanta. 3. Średnia arytmetyczna
Czy pamiętasz? Zadanie 1. Rozpoznaj wśród poniższych brył ostrosłupy i graniastosłupy.
1. Bryły Tradycyjna futbolówka jest zszyta z 3232 kawałków. Gdybyśmy ją rozcięli, ujrzelibyśmy siatkę dwudziestościanu ściętego. Kulisty kształt piłka otrzymuje dzięki wypełnieniu sprężonym powietrzem.
Z przestrzeni na płaszczyznę
Z przestrzeni na płaszczyznę Wstęp W naszej pracy zajęłyśmy się nietypowymi parkietażami. Zwykle parkietaże związane są z wielokątami i innymi figurami płaskimi. Postanowiłyśmy zbadać jakie parkietaże
ZESPÓŁ SZKÓŁ W OBRZYCKU
Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne
SPIS TREŚCI. PIERWIASTKI 1. Pierwiastki Działania na pierwiastkach Działania na pierwiastkach (cd.) Zadania testowe...
SPIS TREŚCI POTĘGI 1. Potęga o wykładniku naturalnym................................. 7 2. Iloczyn i iloraz potęg o jednakowych podstawach................ 8 3. Potęgowanie potęgi................................................
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ I. Funkcja kwadratowa i wymierna 1. Funkcja kwadratowa i jej postacie. 2. Wykres funkcji kwadratowej. 3. Równania
Wymagania edukacyjne z matematyki dla klasy III gimnazjum
Wymagania edukacyjne z matematyki dla klasy III gimnazjum Poziomy wymagań edukacyjnych: K konieczny dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować każdy
Geometria wykreślna. 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury
Geometria wykreślna 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 3.
STEREOMETRIA. Poziom podstawowy
STEREOMETRIA Poziom podstawowy Zadanie ( 8 pkt ) W stożku tworząca o długości jest nachylona do powierzchni podstawy pod kątem, którego tangens jest równy Oblicz stosunek pola powierzchni bocznej do pola
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie
Remont konserwatorski i rozbudowa budynku Muzeum Okręgowego im. Leona Wyczółkowskiego w Bydgoszczy przy ul. Gdańskiej 4
Remont konserwatorski i rozbudowa budynku Muzeum Okręgowego im. Leona Wyczółkowskiego MOB, BYDGOSZCZ, 4 PAŹDZIERNIKA 2016 R. Działania zmierzające do przygotowania projektu Remont konserwatorski i rozbudowa
Temat lekcji Zakres treści Osiągnięcia uczeń: I. FUNKCJE 14
I. FUNKCJE 1 Podstawowe Ponadpodstawowe grupuje dane elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowa opisanych słownie lub za pomocą grafu
MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KLASA III GIMNAZJUM Wymagania konieczne (K) dotyczą zagadnień elementarnych, podstawowych; powinien je opanować każdy uczeń. Wymagania podstawowe
Przedmiotowe zasady oceniania i wymagania edukacyjne
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa 3 Przedmiotowe zasady oceniania i wymagania edukacyjne Przed przystąpieniem do omawiania zagadnień programowych i przed rozwiązywaniem
KLASA CZWARTA TECHNIKUM WYMAGANIA NA POSZCZEGÓLNE OCENY
KLASA CZWARTA TECHNIKUM WYMAGANIA NA POSZCZEGÓLNE OCENY Wymagania stawiane przed uczniem podzielone są na trzy grupy: Wymagania podstawowe ( zawierają wymagania koniczne ) Wymagania dopełniające ( zawierają
Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 13 Teoria stereometria
1 GRANIASTOSŁUPY i OSTROSŁUPY wiadomości ogólne Aby tworzyć wzory na OBJĘTOŚĆ i POLE CAŁKOWITE graniastosłupów musimy znać pola figur płaskich a następnie na ich bazie stosować się do zasady: Objętość
Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016
Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy IIIa i IIIb Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ 1. FUNKCJE (11h) Uczeń: poda definicję funkcji (2)
Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Gimnazjum, klasa 3 Rozkład materiału i plan wynikowy
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa Rozkład materiału i plan wynikowy I. FUNKCJE 1 1. Pojęcie funkcji zbiór i jego elementy pojęcie przyporządkowania pojęcie funkcji
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 4 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
ARKUSZ VIII
www.galileusz.com.pl ARKUSZ VIII W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Iloczyn liczb 2+ 3 i odwrotności liczby 2 3 jest równy A) 2 3 B) 1 C) 2 3 D) 2+
ZADANIE 1 (5 PKT) ZADANIE 2 (5 PKT) Oblicz objętość czworościanu foremnego o krawędzi a.
ZADANIE 1 (5 PKT) Czworościan foremny o krawędzi a rozcięto płaszczyzna prostopadła do jednej z krawędzi, przechodzac a w odległości 0, 25a od jednego końca tej krawędzi. Oblicz objętość otrzymanych brył.
przecięcie graniastosłupa płaszczyzną, przenikanie graniastosłupa z ostrosłupem
przebicie ostrosłupa prostą, przecięcie graniastosłupa płaszczyzną, przenikanie graniastosłupa z ostrosłupem WSA - wykład VII w dn. 12. I. 2014 r: Przenikanie wzajemne brył nieobrotowych (graniastosłupów,
SPRAWDZIAN NR 1. Suma długości krawędzi prostopadłościanu o wymiarach 4 cm x 6 cm x 10 cm jest równa. A. 20 cm B. 40 cm C. 60 cm D.
SPRAWDZIAN NR 1 ARTUR ANTAS IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz poprawną odpowiedź. Który wielokąt jest podstawą ostrosłupa o 6 wierzchołkach? A. Trójkąt. B. Czworokąt. C. Pięciokąt. D. Sześciokąt.
Skrypt 19. Bryły. 14. Zastosowanie twierdzenia Pitagorasa do obliczania pól powierzchni ostrosłupów
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 19 Bryły 11. Ostrosłupy - rozpoznawanie,
Plan wynikowy, klasa 3 ZSZ
Plan wynikowy, klasa 3 ZSZ Nazwa działu Temat Liczba godzin 1. Trójkąty prostokątne powtórzenie 1. Trygonometria (10 h) 2. Funkcje trygonometryczne kąta ostrego 3. 4. Trygonometria zastosowania 5. 6. Związki
Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)
Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.
ZABYTKI NIERUCHOME WPISANE DO REJESTRU ZABYTKÓW
POWIAT ŚWIECKI ZABYTKI NIERUCHOME WPISANE DO REJESTRU ZABYTKÓW GMINA MIEJSCOWOŚĆ ADRES OBIEKT DATA DECYZJI NR REJESTRU BUKOWIEC BUDYŃ Założenie pałacowoparkowe: 31.08.1995 A/1063 Pałac Ptaszarnia, ob.
MATEMATYKA KLASA II GIMNAZJUM - wymagania edukacyjne. DZIAŁ Potęgi
MATEMATYKA KLASA II GIMNAZJUM - wymagania edukacyjne. (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wymagań na wszystkie oceny niższe.) DZIAŁ Potęgi DOPUSZCZAJĄCY
WYMAGANIA EDUKACYJNE Z MATEMATYKI
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę w postaci potęgi o wykładniku ujemnym porządkuje
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6 Lang: Długość okręgu. pole pierścienia będę chciał znaleźć inne wyrażenie na pole pierścienia. oszacowanie
data powstania rejestru A-1328 połowa XIX w.
Obecnie na terenie miasta Słupska znajduje się 88 obiektów nieruchomych objętych ochroną prawną na podstawie decyzji o wpisie do zabytków województwa pomorskiego. 1 ul. rmii Krajowej Nr 1a 2 ul. rmii Krajowej
Kąty przyległe, wierzchołkowe i zewnętrzne
Kąty przyległe, wierzchołkowe i zewnętrzne 1. Ile wynosi miara kąta przyległego do kąta o mierze 135 o. 2. Wyznacz miary kątów α, β, γ, δ: 3. Z dwóch kątów przyległych, miara jednego jest dwa razy większa
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 13 Zadania stereometria
1 TEST WSTĘPNY 1. (1p) Graniastosłup ma 12 wierzchołków. Liczba krawędzi tego graniastosłupa to: A. 12 B. 18 C. 24 D. 36 2. (1p) Pole powierzchni jednej ściany sześcianu jest równe 9. Objętość tego sześcianu
KLASA II WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE MATEMATYKA. Wymagania edukacyjne. dostosowane są do programu MATEMATYKA Z PLUSEM DZIAŁ I
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE MATEMATYKA Wymagania edukacyjne dostosowane są do programu MATEMATYKA Z PLUSEM KLASA II DZIAŁ I POTĘGI I PIERWIASTKI Poziomy wymagań edukacyjnych: K - konieczny
Potęga o wykładniku naturalnym. Iloczyn i iloraz potęg o jednakowych podstawach. Potęgowanie potęgi. Potęgowanie iloczynu i ilorazu.
Klasa II: DZIAŁ 1. POTĘGI Lekcja organizacyjna. Potęga o wykładniku naturalnym. Iloczyn i iloraz potęg o jednakowych podstawach. Potęgowanie potęgi. Potęgowanie iloczynu i ilorazu. Działania na potęgach.
Matematyka z plusem Wymagania programowe na poszczególne oceny dla klasy II. Szczegółowe kryteria oceniania po pierwszym półroczu klasy I:
Matematyka z plusem Wymagania programowe na poszczególne oceny dla klasy II Szczegółowe kryteria oceniania po pierwszym półroczu klasy I: DZIAŁ 1. POTĘGI zna podręcznik i zeszyt ćwiczeń, z których będzie
Wyspa Młyńska w Bydgoszczy
Wyspa Młyńska w Bydgoszczy Rewitalizacja zasobów kulturowych i przyrodniczych Wyspy Młyńskiej oraz jej najbliższego otoczenia Program 2004-2012 9 listopada 2011, Bydgoszcz Wyspa Młyńska to obszar wielkości
WYMAGANIA EDUKACYJNE klasa II
Matematyka z plusem dla gimnazjum WYMAGANIA EDUKACYJNE klasa II POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4)
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 GIM
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 GIM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający
Geometria wykreślna. 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury
Geometria wykreślna 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 5. Obroty i
Szczegółowe wymagania edukacyjne z matematyki Klasa II. na ocenę dopuszczającą
Szczegółowe wymagania edukacyjne z matematyki Klasa II na ocenę dopuszczającą UCZEŃ zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki; W zakresie
Przedmiotowy system oceniania z matematyki kl.ii
DZIAŁ 1. POTĘGI Matematyka klasa II - wymagania programowe zna i rozumie pojęcie potęgi o wykładniku naturalnym (K) umie zapisać potęgę w postaci iloczynu (K) umie zapisać iloczyn jednakowych czynników
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Wymagania opracowano na podstawie programu: Matematyka z plusem zgodnie z obowiązującą w klasie drugiej gimnazjum podstawą programową. POZIOMY
DZIAŁ 1. POTĘGI (14 h)
DZIAŁ 1. POTĘGI (14 h) TEMAT ZAJĘĆ 1. Lekcja organizacyjna. 2-3. Potęga o wykładniku naturalnym. 4-5. Iloczyn i iloraz potęg o jednakowych podstawach. 6. Potęgowanie potęgi. 7-8. Potęgowanie iloczynu i
ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem
ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW 4014 180/99 Liczę z Pitagorasem Lp. Dział programu Tematyka jednostki metodycznej Uwagi 1 2 3 4 Lekcja organizacyjna I Działania
Wymagania z matematyki na poszczególne oceny II klasy gimnazjum
Wymagania z matematyki na poszczególne oceny II klasy gimnazjum Opracowano na podstawie planu realizacji materiału nauczania matematyki Matematyka Podręcznik do gimnazjum Nowa wersja Praca zbiorowa pod
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM 4 GODZ. TYGODNIOWO 125 GODZ. W CIĄGU
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM Wydawnictwo GWO 4 GODZ. TYGODNIOWO
KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII
KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII Na ocenę dopuszczającą uczeń powinien : Na ocenę dostateczną uczeń powinien: Na ocenę dobrą uczeń powinie: Na ocenę bardzo dobrą uczeń powinien: Na ocenę celującą
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej.
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające;
Spis treści. Wyrażenia wymierne. Prawdopodobieństwo. Stereometria
Spis treści Wyrażenia wymierne Przekształcanie wielomianów... 8 Równania wymierne... 12 Hiperbola. Przesuwanie hiperboli... 19 Powtórzenie... 26 Praca badawcza Hiperbola, elipsa, parabola... 28 Prawdopodobieństwo
PLAN NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY PODRĘCZNIK GWO Matematyka 2. Podręcznik
2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego
Wymagania dla kl. 3 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa
Semestr Pierwszy Potęgi
MATEMATYKA KL. II 1 Semestr Pierwszy Potęgi zna i rozumie pojęcie potęgi o wykładniku naturalnym, umie zapisać potęgę w postaci iloczynu, umie zapisać iloczyn jednakowych czynników w postaci potęgi, umie
PLAN WYNIKOWY DLA KLASY I GIMNAZJUM W OPARCIU O PROGRAM BŁĘKITNA MATEMATYKA DKW 4014/16/99
PLAN WYNIKOWY DLA KLASY I GIMNAZJUM W OPARCIU O PROGRAM BŁĘKITNA MATEMATYKA DKW 4014/16/99 Dla następujących działów: 1. Wyrażenia algebraiczne. 2. Mierzenie. 3. Bryły. 4. Przekształcenia geometryczne.
5. Oblicz pole powierzchni bocznej tego graniastosłupa.
11. STEREOMETRIA Zad.11.1. Oblicz pole powierzchni całkowitej sześcianu, wiedząc Ŝe jego objętość wynosi 16 cm. Zad.11.. Oblicz długość przekątnej sześcianu, jeśli jego pole powierzchni całkowitej wynosi
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2015/2016 w Zespole Szkół Ekonomicznych w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2015/2016 w Zespole Szkół Ekonomicznych w Zielonej Górze II. Logarytmy obliczać logarytmy korzystając z definicji
SPRAWDZIAN NR Oceń prawdziwość zdania. 2. Zaznacz poprawną odpowiedź. 3. Na rysunkach przedstawiono dwie bryły. Nazwij każdą z nich.
SPRAWDZIAN NR 1 WIESŁAWA MALINOWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Oceń prawdziwość zdania. Zaznacz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest fałszywe. A. Rysunek nie przedstawia siatki ostrosłupa
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopuszczająca (2); (3) - ocena dostateczna (3); (4) - ocena dobra (4); (5) - ocena bardzo dobra (5); (6)
DZIAŁ II: PIERWIASTKI
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z przedmiotu matematyka w II klasie gimnazjum w roku szkolnym 2016/2017 Wymagania edukacyjne dostosowane do obowiązującej
PYTANIA TEORETYCZNE Z MATEMATYKI
Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?
Grafika inżynierska geometria wykreślna. 5a. Obroty i kłady. Rozwinięcie wielościanu.
Grafika inżynierska geometria wykreślna 5a. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna,
SCENARIUSZ LEKCJI OTWARTEJ Z MATEMATYKI W KL.II gimnazjum
SCENARIUSZ LEKCJI OTWARTEJ Z MATEMATYKI W KL.II gimnazjum HASŁO PROGRAMU: Ostrosłupy TEMAT LEKCJI: Rodzaje ostrosłupów. CZAS TRWANIA: 45 minut CELE LEKCJI: a) szczegółowe: przypomnienie i utrwalenie wiadomości
Centrum miasta z lotu ptaka
2013-05-29 1 Centrum miasta z lotu ptaka Symbol miasta - Łuczniczka 2013-05-29 2 Wizytówka centrum Bydgoszczy - widok z mostu Jerzego Sulimy - Kamińskiego 2013-05-29 3 Bydgoszcz, pomimo iż jest jednym
Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem
Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem pojęcie potęgi o wykładniku naturalnym wzór na mnożenie i dzielenie potęg o tych samych podstawach wzór na potęgowanie
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM Opracowano na podstawie programu Matematyka z plusem dla III etapu edukacyjnego (klasy I III) dopuszczonego przez MEN do użytku szkolnego i
ZAKRES WYMAGAŃ EDUKACYJNYCH Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM
ZAKRES WYMAGAŃ EDUKACYJNYCH Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy
Katalog wymagań na poszczególne stopnie szkolne klasa 3
Katalog wymagań na poszczególne stopnie szkolne klasa 3 I. GRANIASTOSŁUPY I OSTROSŁUPY 6 5 4 3 2 Wskazuje wśród wielościanów graniastosłupy proste i pochyłe. Wskazuje na modelu lub rysunku krawędzie, wierzchołki,
WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II GIMNAZJUM( IIan1, IIan2, IIb) Na rok szkolny 2015/2016
WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II GIMNAZJUM( IIan1, IIan2, IIb) Na rok szkolny 2015/2016 OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/2/2010 POZIOMY WYMAGAŃ
I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI Wymagania na ocenę dopuszczającą I semestr Dział programu: Liczby naturalne Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM. rok szkolny 2016/2017
WYMAGANIA EDUKACYJNE Z MAYKI W KLASIE DRUGIEJ GIMNAZJUM rok szkolny 2016/2017 POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2) P podstawowy - ocena dostateczna (3) R rozszerzający -
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej
Przedmiotowy system oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki w kl.ii
Matematyka klasa II kryteria oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych opracowano na podstawie programu MATEMATYKA Z PLUSEM DZIAŁ 1. POTĘGI zna i rozumie pojęcie potęgi o wykładniku
Matematyczne słowa Autorki innowacji: Jolanta Wójcik Magda Kusyk
Szkoła Podstawowa im Kornela Makuszyńskiego w Łańcuchowie Krzyżówki matematyczne klasy V, które powstały jako efekt realizacji innowacji pedagogicznej Matematyczne słowa Autorki innowacji: Jolanta Wójcik
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY Potęgi i pierwiastki Uczeń: Zna i rozumie pojęcie potęgi o wykładniku naturalnym Umie
Matematyka z plusem dla gimnazjum
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ A,B,C,D,F WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Realizowany przez : mgr Emilię Wójcicką, mgr Małgorzatę Maniecką, mgr IzabellęKomperdę,
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW
Matematyka klasa 2 gimnazjum Wymagania edukacyjne na ocenę śródroczną.
Matematyka klasa 2 gimnazjum Wymagania edukacyjne na ocenę śródroczną. Każda wyższa ocena zawiera wymagania dotyczące ocen niższych. Wymagania na ocenę dopuszczającą obejmują wiadomości i umiejętności
WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA II GIMNAZJUM
WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA II GIMNAZJUM OCENA DOPUSZCZAJĄCA -pojęcie potęgi o wykładniku naturalnym, -wzór na mnożenie i dzielenie potęg o tych samych podstawach, -wzór na potęgowanie iloczynu
Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO
Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca
Urząd Miasta Bielsko-Biała - um.bielsko.pl Wygenerowano: 2016-06-12/16:51:26. Zabytki
Zabytki Grodzisko w Starym Bielsku -pochodzące z XII wieku, pozostałość obronnej osady rolniczo-produkcyjnej. Wielka platforma - łąka (ok.3,2 ha) o kształcie zbliżonym do koła, otoczona podwójnym wałem