Global Positioning System (GPS)
|
|
- Amelia Baranowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Global Positioning System (GPS) Ograniczenia dokładności odbiorników systemu GPS Satellite GPS Antenna Hard Surface 1
2 Błędy pozycji Niezależne od zasady działania systemu Metodyczne wynikające z zasady działania systemu Pomiaru powstające w urządzeniach odbiorczych Ograniczonego dostępu, celowo wprowadzane przez właściciela systemu 2
3 Błędy niezależne od działania systemu Wynikają z faktu propagacji w ośrodku materialnym, w którym zmienia się prędkość fali, częstotliwość i polaryzacja sygnału. Przyczyny błędu: Refrakcja (opóźnienie) jonosferyczne, Refrakcja (opóźnienie) troposferyczne, Efekty relatywistyczne, Wielotorowość i zanik sygnału ze względu na przeszkody terenowe. 3
4 Błędy wynikające z zasad działania systemu Błędy efemeryd (orbitalne), Błędy określenia czasu (zegarów) na satelitach, Błędy geometryczne wzajemnego ustawienia satelitów (DOP) 4
5 Błędy orbit satelitarnych (perturbacje satelitarne): pole grawitacyjne Ziemi, opór atmosfery, grawitacyjne oddziaływanie Słońca i Księżyca oraz innych ciał niebieskich, ciśnienie promieniowania słonecznego, pływy skorupy ziemskiej i pływy oceaniczne, oddziaływanie sił elektromagnetycznych, efekty relatywistyczne. 5
6 Zakłócenia propagacyjne refrakcja jonosferyczna i troposferyczna, szumy atmosfery i kosmiczne, interferencja fal wtórnych, 6
7 Aparatura odbiorcza niestabilność wzorców częstotliwości, szumy własne odbiornika, wariacje centrum fazowego anten GPS. 7
8 Błędy i nieznajomość modeli zjawisk geofizycznych krótko i długookresowych pływy skorupy ziemskiej, pływy oceaniczne, pływy atmosferyczne, model ruchu płyt kontynentalnych. 8
9 Intencjonalne ograniczenia dokładności i dostępu AS, Anti-Spoofing, system zapobiegania intencjonalnym próbom zakłócenia pracy systemu, SA, Selective Availability, system ograniczania dostępu. 9
10 Błędy systematyczne obserwacji fazowych nieoznaczoność fazy, nieciągłości fazy. 10
11 Offset zegara satelitarnego dt Offset zegara satelitarnego jest spowodowany niedokładną synchronizacją wzorców satelitarnych do czasu GPS. Poprawki zegarów satelitów GPS są wyznaczane przez segment kontrolny GPS na podstawie opracowania danych pochodzących ze stacji śledzących. Współczynniki wielomianu aproksymującego są retransmitowane przez satelity GPS do użytkowników w depeszy nawigacyjnej. Parametry te umożliwiają obliczenie wartości poprawki zegara satelitarnego z dokładnością do pojedynczych metrów. 11
12 Offset zegara satelitarnego dt Poprawka jest obliczana ze wzoru: dt a a ( t t ) a ( t t ) gdzie: a0,a1,a2 - współczynniki wielomianu transmitowane w depeszy satelitarnej. t - moment, na który wyznaczamy poprawkę, t0 - epoka poprawki. W obliczeniach poprawki zegara satelity uwzględniane są również efekty relatywistyczne wynikające z ruchu wzorca częstotliwości w polu grawitacyjnym Ziemi. Orbity satelitów GPS charakteryzują się niewielką ekscentrycznością, mimo to zmiany potencjału pola grawitacyjnego mają znaczenie dla wyznaczania poprawki zegara. Efekty relatywistyczne mogą osiągać wielkość rzędu kilku metrów. 12
13 Offset zegara satelitarnego dt Wynikiem ruchu satelity w zmiennym polu grawitacyjnym jest zmiana wskazań wzorca, będąca funkcją ekscentryczności jak i współrzędnych satelity. Poprawka ta obliczana jest ze wzoru: dt Fe gdzie: F stała systemowa (10) -10 [s m -1/2 ] e mimośród orbity satelity a promień dużej półosi orbity E anomalia mimośrodowa a sin E 13
14 Offset zegara odbiornika dt Offset skali czasu odbiornika dt wynika z braku synchronizacji zegara odbiornika do skali czasu GPS. Jest on zwykle traktowany jako dodatkowa niewiadoma i w procesie obliczeniowym prawie całkowicie usuwany. Fizyczna realizacja skali czasu odbiornika charakteryzuje się często dużym błędem, dochodzącym niekiedy do kilkudziesięciu milisekund. 14
15 Opóźnienie troposferyczne Opóźnienie troposferyczne wynika ze zmian prędkości sygnału przy przejściu przez troposferę - dolną warstwę atmosfery rozciągającą się od powierzchni Ziemi do wysokości około 10 km. Sygnały radiowe GPS, tak jak i inne sygnały radiowe o częstotliwościach poniżej 30 GHz, nie podlegają zjawisku dyspersji przy przejściu przez troposferę co oznacza, iż wielkość opóźnienia jest niezależna od częstotliwości fali radiowej. Troposfera powoduje opóźnienie sygnału i dlatego wyznaczona poprawka troposferyczna jest odejmowana od rejestrowanej pseudoodległości lub fazy. 15
16 Opóźnienie troposferyczne Znaczna część całkowitego opóźnienia, około 90%, jest spowodowana poprzez oddziaływanie fali elektromagnetycznej z suchym powietrzem, podczas gdy pozostałe 10% przez oddziaływanie z parą wodną. Część sucha opóźnienia może być oszacowana z błędem od 2-5 % za pomocą odpowiedniego modelu atmosfery. Część mokra opóźnienia troposferycznego może być wyznaczana przy pomocy radiometrów mikrofalowych WVR (Water Vapor Radiometer). Główną przeszkodą ich praktycznego wykorzystania jest ich wysoka cena oraz złożoność. Dlatego zazwyczaj błąd powodowany przez część mokrą atmosfery jest w praktyce pomijany. Modele pozwalające obliczyć wielkość opóźnienia troposferycznego uwzględniają wysokość satelity nad horyzontem, jak również od parametrów meteorologicznych w miejscu obserwacji - temperaturę, ciśnienie i wilgotność. W praktyce często zamiast wyników aktualnych pomiarów meteorologicznych używa się parametrów standardowych. 16
17 Błąd jonosferyczny Zmienność opóźnienia jonosferycznego jest jednym z najpoważniejszych obiektywnych źródeł błędu wyznaczania pozycji. Duża zmienność warunków jonosferycznych, zarówno dobowa jak i długookresowa, powoduje, iż model opóźnienia jonosferycznego transmitowany przez satelitę pozwala na redukcję odpowiedniego błędu co najwyżej w 50 procentach. Dokładniejszą wartość opóźnienia jonosferycznego obliczyć można w oparciu o rezultaty pomiarów wykonywanych jednocześnie na częstotliwościach L1 i L2. Wymaga to użycia odbiornika dwuczęstotliwościowego. 17
18 Błąd jonosferyczny Efekt jonosferyczny wynika z wpływu jonosfery, górnej warstwy atmosfery rozciągającej się od wysokości km nad powierzchnią Ziemi. Zjonizowane gazy w jonosferze, powstałe w wyniku ultrafioletowego promieniowania Słońca i oddziaływania wiatru słonecznego, powodują zmianę prędkości fal elektromagnetycznych. Ta zmiana prędkości jest zależna, przeciwnie niż w przypadku troposfery od częstotliwości fali elektromagnetycznej. Zjawisko zależności prędkości fali od częstotliwości jest nazywane dyspersją. W jonosferze, w przypadku fal elektromagnetycznych o częstotliwościach powyżej 30 MHz, czoło fali ulega opóźnieniu, podczas gdy faza fali przyspieszeniu. Konsekwencją tego zjawiska są zmiany rejestrowanej fazy i pseudoodległości. Efekty przyspieszenia fazy i opóźnienia czoła fali mają w takim środowisku zbliżoną wielkość lecz przeciwny znak. Wielkość efektu jonosferycznego jest proporcjonalna do liczby swobodnych elektronów TEC (ang. Total Electron Content), mieszczących się w jednostkowym prostopadłościanie od odbiornika do satelity. 18
19 Błąd jonosferyczny TEC jest funkcją wielu zmiennych czynników: pory dnia, aktywności słonecznej, położenia geograficznego wysokości zenitalnej satelity. Efekt jonosferyczny przybiera największą wartość w strefie równika magnetycznego. Obszar ten nie obejmuje Polski. Typowa wielkość efektu jonosferycznego dla satelity GPS w zenicie osiąga 5 m lecz może dochodzić nawet do 100m w okresach wzmożonej aktywności słonecznej lub burz jonosferycznych. Wielkość efektu jonosferycznego jest odwrotnie proporcjonalna do kwadratu częstotliwości fali. Taka zależność umożliwia wykorzystanie odbiorników dwuczęstotliwościowych do eliminacji opóźnienia poprzez porównanie pseudoodległości PL1 i PL2, zmierzonych odpowiednio w pasmach L1 i L2. 19
20 Błąd jonosferyczny W przypadku obserwacji fazowych eliminacja wpływu jonosfery jest możliwa zarówno za pomocą odbiorników dwuczęstotliwościowych korzystających z kodu P jak i bezkodowych. W odbiornikach jednoczęstotliwościowych przybliżona poprawka obliczona jest za pomocą modelu, którego parametry transmitowane są przez satelitę. 20
21 Błąd orbitalny Błąd orbitalny, występujący w postaci niejawnej w odległości d pomiędzy antena satelity a anteną stacją odbiorczej, jest rezultatem dwóch czynników: Po pierwsze, wyznaczenie i predykcja orbit satelitów przez segment kontrolny są obarczone błędem. Po drugie, właściciel systemu wprowadza celową degradację informacji orbitalnej transmitowanej w depeszy satelitarnej. Zniekształcenie informacji orbitalnej jest jednym z narzędzi polityki Ograniczonego Dostępu S.A. Błąd współrzędnych satelitów GPS, obliczonych z użyciem danych z efemerydy pokładowej może dochodzić do 50m. Wpływ błędu orbity jest znacząco redukowany w metodach różnicowych wyznaczania pozycji. Jednak przy większych odległościach pomiędzy punktami pomiarowymi - rzędu setek kilometrów - wpływ nie wyeliminowanych błędów orbitalnych zaczyna wzrastać. W przypadku precyzyjnych opracowań należy korzystać z efemeryd precyzyjnych, które są dostępne już po około 12 godzinach po zakończeniu obserwacji i są udostępniane przez różne placówki naukowe. 21
22 Nieoznaczoność fazy Nieoznaczoność pomiaru fazy N jest arbitralną liczbą całkowitą. Wielkość ta może być interpretowana jako różnica wielkości początkowej zintegrowanej fazy i odległości. Jest to wielkość różna dla każdego obserwowanego satelity. Nieoznaczoność N zachowuje stałą wartość podczas pomiarów, jeżeli nie nastąpi zaburzenie procesu śledzenia sygnału satelitarnego. Wystąpienie takiego zaburzenia powoduje powstanie nieciągłości fazy (ang. Cycle Slip), czyli skokowej zmiany rejestrowanej fazy o całkowitą liczbę cykli. Wykrycie i poprawienie nieciągłości fazy jest krytyczne dla precyzyjnych pomiarów geodezyjnych z wykorzystaniem obserwacji fazowych, w tym szczególnie techniki RTK. 22
23 Błędy pomiarowe pseudoodległości i fazy Błędy pomiaru pseudoodległości są zależne od odbiornika i wahają się w przedziałach od 1 do 3m dla kodu C/A i od 10 do 30 cm dla kodu P. Błąd pomiaru fazy jest zazwyczaj nie większy niż kilka milimetrów. Wysoka dokładność pomiaru fazowego może być wykorzystana do filtrowania szumu pomiarowego pseudoodległości, jeżeli są dostępne oba rodzaje obserwacji. 23
24 Interferencja fal wtórnych Interferencja fal wtórnych, powstałych na skutek odbić (ang. multipath), powoduje zmianę rejestrowanej fazy i pseudoodległości. Wpływ interferencji fal wtórnych jest szczególnie groźny dla pomiaru pseudoodległości. Błąd powodowany tym zjawiskiem może osiągnąć w skrajnych przypadkach wielkość długości chipu kodu, czyli 293m dla kodu C/A i 29.3m dla kodu P. Teoretyczna wielkość błędu fazy spowodowanego interferencją nie przekracza pojedynczej długości fali, jednak już wielkości centymetrowe mogą całkowicie uniemożliwić wyznaczenie nieoznaczoności. W takim przypadku nie otrzymamy żadnego rozwiązania. Skonstruowanie anten i układów elektronicznych które byłyby odporne na interferencję jest obecnie jednym z głównych problemów stojących przed konstruktorami sprzętu GPS. 24
25 Zmienność i niejednoznaczność centrów fazowych anten GPS Odpowiednie poprawki uzyskuje się podczas procedur kalibracyjnych, a następnie po sprawdzeniu wprowadza się do opracowanych wyników pomiaru. Złożoność problemu ukazała się w całej okazałości, gdy przeprowadzono i opracowano precyzyjne pomiary GPS na długich cięciwach odbiornikami różnych producentów. W skrajnych wypadkach, stosując anteny różnych typów na końcach mierzonego wektora o długości kilku tysięcy kilometrów możemy się spodziewać wystąpienia błędu systematycznego rzędu 10 cm. 25
26 Zmienność i niejednoznaczność centrów fazowych anten GPS Okazało się, że wszystkie anteny GPS wykazują zmienność położenia centrum fazowego w zależności od kierunku z jakiego dociera do nich sygnał satelitarny, czyli od jego azymutu i wysokości. Wykazano również, że położenie centrum fazowego przemieszcza się różnie dla częstotliwości L1 i L2 tej samej anteny. Dla najlepszych anten wartości przemieszczenia pionowego są rzędu 11 mm dla L1 i 8 mm dla L2. Poziome przemieszczenia są na poziomie 1 mm i można je pominąć. Obecnie większość dobrych programów służących do opracowania obserwacji geodezyjnych zawiera wbudowane modele powierzchni stałej fazy dla anten różnych producentów. 26
27 Parametry charakteryzujące błąd pozycji Parametrami używanymi przy charakteryzowaniu błędu pozycji wyznaczonej przez odbiornik są: SEP (Spherical Error Probable) - 50% pozycji wyznaczanych trójwymiarowo znajduje się w sferze o promieniu SEP, CEP (Circular Error Probable) - 50% pozycji wyznaczanych dwuwymiarowo znajduje się wewnątrz okręgu o promieniu CEP. 27
28 Parametry charakteryzujące błąd pozycji Ocena przewidywanej dokładności dokonywana jest zazwyczaj poprzez znajomość: UERE (User Estimate Range Error)- estymowane odchylenie standardowe pomiaru odległości satelita-odbiornik, parametr ten jest transmitowany przez satelitę, DOP - współczynników wiążących błąd pomiaru odległości do satelity z błędem wyznaczenia pozycji, wielkości DOP są pochodną konfiguracji geometrycznej układu satelityodbiornik. 28
29 Parametry charakteryzujące błąd pozycji Spośród współczynników DOP wyróżnić należy: GDOP - Geometrical Dilution of Precision, geometryczne rozmycie dokładności, współczynnik ten jest odwrotnie proporcjonalny do objętości bryły, której wierzchołkami są pozycje obserwowanych satelitów i odbiornika, PDOP - Position Dilution of Precision, trójwymiarowe rozmycie dokładności, w pierwszym przybliżeniu wielkość PDOP jest nieco mniejsza od GDOP, HDOP - Horizontal Dilution of Precision, poziome rozmycie dokładności, VDOP - Vertical Dilution of Precision, pionowe rozmycie dokładności, TDOP - Time Dilution of Precision, rozmycie dokładności czasu. 29
30 Parametry charakteryzujące błąd pozycji Good DOP 30
31 QUALITY Parametry charakteryzujące błąd pozycji DOP Very Good 1-3 Good 4-5 Fair 6 Suspect >6 Poor DOP 31
32 Dokładność gps PPS CEP/50 % DRMS 2DRMS/95% Position Horizontal 8 m 10.5 m 21 m Vertical 9 m 14 m 28 m Spherical 16 m 18 m 36 m Velocity Any Axis 0.07 m/sec 0.1 m/sec 0.2 m/sec Time GPS 17 nsec 26 nsec 52 nsec UTC 68 nsec 100 nsec 200 nsec 32
33 Dokładność gps SPS (C/A Code Only) S/A On: Horizontal: 100 meters radial Vertical: 156 meters Time: 340 nanoseconds S/A Off: Horizontal: 22 meters radial Vertical: 28 meters Time: 200 nanoseconds 33
SATELITARNE TECHNIKI POMIAROWE WYKŁAD 4
SATELITARNE TECHNIKI POMIAROWE WYKŁAD 4 1 K. Czarnecki, Geodezja współczesna w zarysie, Wiedza i Życie/Gall, Warszawa 2000/Katowice 2010. 2 Można skorzystać z niepełnej analogii do pomiarów naziemnymi
Differential GPS. Zasada działania. dr inż. Stefan Jankowski
Differential GPS Zasada działania dr inż. Stefan Jankowski s.jankowski@am.szczecin.pl DGPS koncepcja Podczas testów GPS na początku lat 80-tych wykazano, że błędy pozycji w dwóch blisko odbiornikach były
WYBRANE ELEMENTY GEOFIZYKI
WYBRANE ELEMENTY GEOFIZYKI Ćwiczenie 3: Wyznaczanie współczynników TEC (Total Electron Content) i ZTD (Zenith Total Delay) z obserwacji GNSS. prof. dr hab. inż. Janusz Bogusz Zakład Geodezji Satelitarnej
Źródła błędów w pomiarach GNSS (na podstawie Bosy J., 2005) dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Źródła błędów w pomiarach GNSS (na podstawie Bosy J., 2005) dr inż. Paweł Zalewski Akademia Morska w Szczecinie Źródła błędów w pomiarach GNSS: Błędy wyznaczania pozycji w systemach zaliczanych do GNSS
Dokładność pozycji. dr inż. Stefan Jankowski
Dokładność pozycji dr inż. Stefan Jankowski s.jankowski@am.szczecin.pl Nawigacja Nawigacja jest gałęzią nauki zajmującą się prowadzeniem statku bezpieczną i optymalną drogą. Znajomość nawigacji umożliwia
4π 2 M = E e sin E G neu = sin z. i cos A i sin z i sin A i cos z i 1
1 Z jaką prędkością porusza się satelita na orbicie geostacjonarnej? 2 Wiedząc, że doba gwiazdowa na planecie X (stała grawitacyjna µ = 500 000 km 3 /s 2 ) trwa 24 godziny, oblicz promień orbity satelity
Globalny Nawigacyjny System Satelitarny GLONASS. dr inż. Paweł Zalewski
Globalny Nawigacyjny System Satelitarny GLONASS dr inż. Paweł Zalewski Wprowadzenie System GLONASS (Global Navigation Satellite System lub Globalnaja Nawigacjonnaja Sputnikowaja Sistiema) został zaprojektowany
WSPÓŁCZESNE TECHNIKI I DANE OBSERWACYJNE
WSPÓŁCZESNE TECHNIKI I DANE OBSERWACYJNE TECHNIKI OBSERWACYJNE Obserwacje: - kierunkowe - odległości - prędkości OBSERWACJE KIERUNKOWE FOTOGRAFIA Metody fotograficzne używane były w 1964 do 1975. Dzięki
SATELITARNE TECHNIKI POMIAROWE WYKŁAD 6
SATELITARNE TECHNIKI POMIAROWE WYKŁAD 6 1 K. Czarnecki, Geodezja współczesna w zarysie, Wiedza i Życie/Gall, Warszawa 2000/Katowice 2010. 2 Równanie pseudoodległości odległość geometryczna satelity s s
Wykład 14. Technika GPS
Wykład 14 Technika GPS Historia GPS Z teoretycznego punktu widzenia 1. W roku 1964, I. Smith opatentował pracę: Satelity emitują kod czasowy i fale radiowe, Na powierzchni ziemi odbiornik odbiera opóźnienie
Przegląd metod zwiększania precyzji danych GPS. Mariusz Kacprzak
Przegląd metod zwiększania precyzji danych GPS Mariusz Kacprzak Plan prezentacji: 1) Omówienie podstaw funkcjonowania GPS 2) Zasada wyznaczenie pozycji w GPS 3) Błędy wyznaczania pozycji 4) Sposoby korekcji
SATELITARNE TECHNIKI POMIAROWE WYKŁAD 5
SATELITARNE TECHNIKI POMIAROWE WYKŁAD 5 1 K. Czarnecki, Geodezja współczesna w zarysie, Wiedza i Życie/Gall, Warszawa 2000/Katowice 2010. 2 Obserwacje fazowe satelitów GPS są tym rodzajem pomiarów, który
Systemy nawigacji satelitarnej. Przemysław Bartczak
Systemy nawigacji satelitarnej Przemysław Bartczak Systemy nawigacji satelitarnej powinny spełniać następujące wymagania: system umożliwia określenie pozycji naziemnego użytkownika w każdym momencie, w
Ultra szybkie pozycjonowanie GNSS z zastosowaniem systemów GPS, GALILEO, EGNOS i WAAS
Ultra szybkie pozycjonowanie GNSS z zastosowaniem systemów GPS, GALILEO, EGNOS i WAAS Jacek Paziewski Paweł Wielgosz Katarzyna Stępniak Katedra Astronomii i Geodynamiki Uniwersytet Warmińsko Mazurski w
Systemy nawigacji satelitarnej. Przemysław Bartczak
Systemy nawigacji satelitarnej Przemysław Bartczak Zniekształcenia i zakłócenia Założenia twórców systemu GPS było, żeby pozycja użytkownika była z dokładnością 400-500 m. Tymczasem po uruchomieniu systemu
GEOMATYKA program podstawowy. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu
GEOMATYKA program podstawowy 2017 dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu Wyznaczenie pozycji anteny odbiornika może odbywać się w dwojaki sposób: na zasadzie pomiarów
Laboratorium z Miernictwa Górniczego
Laboratorium z Miernictwa Górniczego Materiały pomocnicze I Planowanie warunków obserwacji satelitów GPS/GLONASS Opracował dr inż. Jan Blachowski jan.blachowski@pwr.wroc.pl, pok. 505, bud. K-1, tel. 320
ZAŁOŻENIA I STAN AKTUALNY REALIZACJI
ZAŁOŻENIA I STAN AKTUALNY REALIZACJI PROJEKTU ASG+ Figurski M., Bosy J., Krankowski A., Bogusz J., Kontny B., Wielgosz P. Realizacja grantu badawczo-rozwojowego własnego pt.: "Budowa modułów wspomagania
SATELITARNE TECHNIKI POMIAROWE WYKŁAD 10
SATELITARNE TECHNIKI POMIAROWE WYKŁAD 10 1 Źródła błędów w pomiarach GNSS Błędy wyznaczania pozycji w systemach zaliczanych do GNSS można podzielić na następujące grupy: 1. Błędy pozycji satelitów. 2.
Podstawowe pojęcia związane z pomiarami satelitarnymi w systemie ASG-EUPOS
GŁÓWNY URZĄD GEODEZJI I KARTOGRAFII Departament Geodezji, Kartografii i Systemów Informacji Geograficznej Podstawowe pojęcia związane z pomiarami satelitarnymi w systemie ASG-EUPOS Szymon Wajda główny
GNSS ROZWÓJ SATELITARNYCH METOD OBSERWACJI W GEODEZJI
GNSS ROZWÓJ SATELITARNYCH METOD OBSERWACJI W GEODEZJI Dr inż. Marcin Szołucha Historia nawigacji satelitarnej 1940 W USA rozpoczęto prace nad systemem nawigacji dalekiego zasięgu- LORAN (Long Range Navigation);
O technologii pomiarów GPS RTK (Real Time Kinematic)
1. Wstęp O technologii pomiarów GPS RTK (Real Time Kinematic) Pomiar RTK to na dzień dzisiejszy najnowocześniejsza na świecie technologia dokładnych pomiarów uzyskiwanych w czasie rzeczywistym bez wykonywania
Propagacja fal radiowych
Propagacja fal radiowych Parametry fali radiowej Podstawowym parametrem fali jest jej częstotliwość czyli liczba pełnych cykli w ciągu 1 sekundy, wyrażany jest w Hz Widmo (spektrum) fal elektromagnetycznych
Precyzyjne pozycjonowanie w oparciu o GNSS
Precyzyjne pozycjonowanie w oparciu o GNSS Załącznik nr 2 Rozdział 1 Techniki precyzyjnego pozycjonowania w oparciu o GNSS 1. Podczas wykonywania pomiarów geodezyjnych metodą precyzyjnego pozycjonowania
Systemy i Sieci Radiowe
Systemy i Sieci Radiowe Wykład 4 Media transmisyjne część Program wykładu Widmo sygnałów w. cz. Modele i tryby propagacji Anteny Charakterystyka kanału radiowego zjawiska propagacyjne 1 Transmisja radiowa
Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym
Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu
Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO...
Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO....................... XI 1. WPROWADZENIE DO GEODEZJI WYŻSZEJ..................... 1 Z historii geodezji........................................ 1 1.1. Kształt
Wizualizacja i analiza danych lokalizacyjnych odbiorników GPS
ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM Lokalizacji i zarządzania środkami transportu INSTRUKCJA DO ĆWICZENIA
GPS Global Positioning System budowa systemu
GPS Global Positioning System budowa systemu 1 Budowa systemu System GPS tworzą trzy segmenty: Kosmiczny konstelacja sztucznych satelitów Ziemi nadających informacje nawigacyjne, Kontrolny stacje nadzorujące
OPRACOWANIE DANYCH GPS CZĘŚĆ I WPROWADZENIE DO GPS
OPRACOWANIE DANYCH GPS CZĘŚĆ I WPROWADZENIE DO GPS Bernard Kontny Katedra Geodezji i Fotogrametrii Akademia Rolnicza we Wrocławiu ZAGADNIENIA Ogólny opis systemu GPS Struktura sygnału Pomiar kodowy i fazowy
AKTUALNY STAN REALIZACJI PROJEKTU ASG+
AKTUALNY STAN REALIZACJI PROJEKTU ASG+ Figurski Mariusz Centrum Geomatyki Stosowanej WAT Wydział Inżynierii Lądowej i Geodezji WAT Realizacja grantu badawczo-rozwojowego własnego pt.: "Budowa modułów wspomagania
1. Wstęp. 2. Budowa i zasada działania Łukasz Kowalewski
01.06.2012 Łukasz Kowalewski 1. Wstęp GPS NAVSTAR (ang. Global Positioning System NAVigation Signal Timing And Ranging) Układ Nawigacji Satelitarnej Określania Czasu i Odległości. Zaprojektowany i stworzony
Janusz Śledziński. Technologie pomiarów GPS
Janusz Śledziński Technologie pomiarów GPS GPS jest globalnym wojskowym systemem satelitarnym, a jego głównym użytkownikiem są siły zbrojne USA. Udostępniono go również cywilom, ale z pewnymi dość istotnymi
Nawigacja satelitarna
Paweł Kułakowski Nawigacja satelitarna Nawigacja satelitarna Plan wykładu : 1. Zadania systemów nawigacyjnych. Zasady wyznaczania pozycji 3. System GPS Navstar - architektura - zasady działania - dokładność
Ograniczenia GPS. błędy spowodowane zmiennością opóźnień: jonosferycznego i troposferycznego, niedokładności efemeryd, błędy zegara satelity,
DGPS 1 Ograniczenia GPS Wiele ograniczeń występujących przy stosowaniu odbiorników GPS usuniętych może być poprzez wykonywanie pomiarów metodami różnicowymi. Ich realizacja może polegać na: wprowadzaniu
Wykorzystanie nowoczesnych technologii w zarządzaniu drogami wojewódzkimi na przykładzie systemu zarządzania opartego na technologii GPS-GPRS.
Planowanie inwestycji drogowych w Małopolsce w latach 2007-2013 Wykorzystanie nowoczesnych technologii w zarządzaniu drogami wojewódzkimi na przykładzie systemu zarządzania opartego na technologii GPS-GPRS.
SATELITARNE TECHNIKI POMIAROWE WYKŁAD 8
SATELITARNE TECHNIKI POMIAROWE WYKŁAD 8 1 J. Lamparski, Navstar GPS: od teorii do praktyki, Wyd. UW-M, Olsztyn 2001. K. Czarnecki, Geodezja współczesna w zarysie, Wiedza i Życie/Gall, Warszawa 2000/Katowice
PODSTAWOWE DANE SYSTEMU GPS
NAWIGACJA GNSS NAWIGACJA GNSS GNSS Global Navigation Satellite System jest to PODSTAWOWY sensor nawigacji obszarowej. Pojęcie to obejmuje nie tylko GPS NAVSTAR (pierwszy w pełni funkcjonujący globalny
Widmo fal elektromagnetycznych
Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą
Moduły ultraszybkiego pozycjonowania GNSS
BUDOWA MODUŁÓW WSPOMAGANIA SERWISÓW CZASU RZECZYWISTEGO SYSTEMU ASG-EUPOS Projekt rozwojowy MNiSW nr NR09-0010-10/2010 Moduły ultraszybkiego pozycjonowania GNSS Paweł Wielgosz Jacek Paziewski Katarzyna
1.1. Kształt Ziemi. Powierzchnie odniesienia. Naukowe i praktyczne zadania geodezji. Podział geodezji wyższej... 18
: Przedmowa...... 11 1. WPROWADZENIE DO GEODEZJI WYŻSZEJ Z historii geodezji... 13 1.1. Kształt Ziemi. Powierzchnie odniesienia. Naukowe i praktyczne zadania geodezji. Podział geodezji wyższej... 18 1.2.
BADANIE WPŁ YWU GEOMETRII SYSTEMU NA DOKŁ ADNOŚĆ OKREŚ LANIA POZYCJI ZA POMOCĄ ODBIORNIKA GPS
ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK XLIX NR 4 (175) 2008 Andrzej Banachowicz Akademia Marynarki Wojennej Ryszard Bober, Tomasz Szewczuk, Adam Wolski Akademia Morska w Szczecinie BADANIE WPŁ
Analiza współrzędnych środka mas Ziemi wyznaczanych technikami GNSS, SLR i DORIS oraz wpływ zmian tych współrzędnych na zmiany poziomu oceanu
Analiza współrzędnych środka mas Ziemi wyznaczanych technikami GNSS, SLR i DORIS oraz wpływ zmian tych współrzędnych na zmiany poziomu oceanu Agnieszka Wnęk 1, Maria Zbylut 1, Wiesław Kosek 1,2 1 Wydział
Geodezja i Kartografia I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Systemy pozycjonowania i nawigacji Nazwa modułu w języku angielskim Navigation
Wydział Chemii Uniwersytet Łódzki ul. Tamka 12, Łódź
Wydział Chemii Uniwersytet Łódzki ul. Tamka 12, 91-403 Łódź Rozporządzenie Ministra Środowiska z dnia 30.10.2003r. W sprawie dopuszczalnych poziomów pól elektromagnetycznych w środowisku oraz sposobów
ODORYMETRIA. Joanna Kośmider. Ćwiczenia laboratoryjne i obliczenia. Część I ĆWICZENIA LABORATORYJNE. Ćwiczenie 1 POMIARY EMISJI ODORANTÓW
Joanna Kośmider ODORYMETRIA Ćwiczenia laboratoryjne i obliczenia Część I ĆWICZENIA LABORATORYJNE Ćwiczenie 1 POMIARY EMISJI ODORANTÓW Ćwiczenie 2 PROGNOZOWANIE ZASIĘGU ZAPACHOWEJ UCIĄŻLIWOŚCI EMITORÓW
SATELITARNE TECHNIKI POMIAROWE WYKŁAD 12
SATELITARNE TECHNIKI POMIAROWE WYKŁAD 12 1 Redukcje obserwacji GPS i zaawansowane pakiety programów redukcyjnych Etapy procesu redukcji obserwacji GPS Procesy obliczeniowe prowadzące od zbiorów obserwacji
Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
Wykorzystanie serwisu ASG-EUPOS do badania i modyfikacji poprawek EGNOS na obszarze Polski
Wykorzystanie serwisu ASG-EUPOS do badania i modyfikacji poprawek EGNOS na obszarze Polski Leszek Jaworski Anna Świątek Łukasz Tomasik Ryszard Zdunek Wstęp Od końca 2009 roku w Centrum Badań Kosmicznych
Wyznaczenie masy optycznej atmosfery Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski
Wyznaczenie masy optycznej atmosfery Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Czas trwania: 30 minut Czas obserwacji: dowolny w ciągu dnia Wymagane warunki meteorologiczne:
Ocena wpływu zagłuszeń celowych na jakość pozycjonowania pojazdów techniką GNSS
WRONA Maciej 1 ANESZKO Aneta Ocena wpływu zagłuszeń celowych na jakość pozycjonowania pojazdów techniką GNSS WSTĘP Wraz ze wzrostem aplikacji wykorzystujących Globalny System Nawigacji Satelitarnej na
Wyznaczanie prędkości dźwięku w powietrzu
Imię i Nazwisko... Wyznaczanie prędkości dźwięku w powietrzu Opracowanie: Piotr Wróbel 1. Cel ćwiczenia. Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu, metodą różnicy czasu przelotu. Drgania
System 1200 Newsletter Nr 54 Sieci RTK - Przykłady studialne
NEWSLETTERY SIECI RTK - PRZYPOMNIENIE Niniejszy numer Newslettera kończy trzyczęściową serię dotyczącą sieci RTK. Zanim zagłębimy się w szczegóły tego numeru przypomnimy tematy dwóch poprzednich numerów.
TEMATYKA PRAC DYPLOMOWYCH MAGISTERSKICH STUDIA STACJONARNE DRUGIEGO STOPNIA ROK AKADEMICKI 2012/2013
STUDIA STACJONARNE DRUGIEGO STOPNIA ROK AKADEMICKI 2012/2013 Instytut Geodezji GEODEZJA GOSPODARCZA PROMOTOR Dr hab. Zofia Rzepecka, prof. UWM Dr inż. Dariusz Gościewski Analiza możliwości wyznaczenia
Recenzja Rozprawy doktorskiej mgr int Pawła Przestrzelskiego pt.: Sieciowe pozycjonowanie różnicowe z wykorzystaniem obserwacji GPS i GLONASS"
*jp"
RADIONAMIARY. zasady, sposoby, kalibracja, błędy i ograniczenia
RADIONAMIARY zasady, sposoby, kalibracja, błędy i ograniczenia 1 Radionamierzanie jest to: Określenie kąta, zawartego między północną częścią lokalnego południka geograficznego a kierunkiem na dany obiekt,
Pomiary różnicowe GNSS i serwisy czasu rzeczywistego: NAWGEO, KODGIS, NAWGIS
Pomiary różnicowe GNSS i serwisy czasu rzeczywistego: NAWGEO, KODGIS, NAWGIS Artur Oruba specjalista administrator systemu ASG-EUPOS Plan prezentacji Techniki DGNSS/ RTK/RTN Przygotowanie do pomiarów Specyfikacja
Niepewność pomiaru. Wynik pomiaru X jest znany z możliwa do określenia niepewnością. jest bledem bezwzględnym pomiaru
iepewność pomiaru dokładność pomiaru Wynik pomiaru X jest znany z możliwa do określenia niepewnością X p X X X X X jest bledem bezwzględnym pomiaru [ X, X X ] p Przedział p p nazywany jest przedziałem
PRZETWARZANIE TRIMBLE HD-GNSS
PRZETWARZANIE TRIMBLE HD-GNSS BIAŁA KSIĘGA TRIMBLE SURVEY DIVISION WESTMINSTER, COLORADO, USA Wrzesień 2012 STRESZCZENIE Przetwarzanie kodowe GNSS uległo znacznej poprawie w porównaniu z pierwszymi algorytmami
Korzyści wynikające ze wspólnego opracowania. z wynikami uzyskanymi techniką GNSS
Korzyści wynikające ze wspólnego opracowania wyników pomiarów PSInSAR z wynikami uzyskanymi techniką GNSS Łukasz Żak, Jan Kryński, Dariusz Ziółkowski, Jan Cisak, Magdalena Łągiewska Instytut Geodezji i
Zasady oceniania karta pracy
Zadanie 1.1. 5) stosuje zasadę zachowania energii oraz zasadę zachowania pędu do opisu zderzeń sprężystych i niesprężystych. Zderzenie, podczas którego wózki łączą się ze sobą, jest zderzeniem niesprężystym.
Fala elektromagnetyczna. i propagacja fal radiowych. dr inż. Paweł Zalewski
Fala elektromagnetyczna i propagacja fal radiowych dr inż. Paweł Zalewski Fala radiowa jest jedną z wielu form promieniowania elektromagnetycznego. Oscylacje obu pól magnetycznego i elektrycznego są ze
Powierzchniowe systemy GNSS
Systemy GNSS w pomiarach geodezyjnych 1/58 Powierzchniowe systemy GNSS Jarosław Bosy Instytut Geodezji i Geoinformatyki Uniwersytet Przyrodniczy we Wrocławiu e-mail: jaroslaw.bosy@up.wroc.pl Systemy GNSS
Systemy pozycjonowania i nawigacji Navigation and positioning systems
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2015/2016 Systemy pozycjonowania i nawigacji Navigation and positioning systems
Anomalie gradientu pionowego przyspieszenia siły ciężkości jako narzędzie do badania zmian o charakterze hydrologicznym
Anomalie gradientu pionowego przyspieszenia siły ciężkości jako narzędzie do badania zmian o charakterze hydrologicznym Dawid Pruchnik Politechnika Warszawska 16 września 2016 Cel pracy Zbadanie możliwości
Linia pozycyjna. dr inż. Paweł Zalewski. w radionawigacji
Linia pozycyjna dr inż. Paweł Zalewski w radionawigacji Wprowadzenie Jednym z zadań nawigacji jest określenie pozycji jednostki ruchomej - człowieka, pojazdu, statku czy samolotu. Pozycję ustala się przez
Kinematyka relatywistyczna
Kinematyka relatywistyczna Fizyka I (B+C) Wykład V: Prędkość światła historia pomiarów doświadczenie Michelsona-Morleya prędkość graniczna Teoria względności Einsteina Dylatacja czasu Prędkość światła
Metody badania kosmosu
Metody badania kosmosu Zakres widzialny Fale radiowe i mikrofale Promieniowanie wysokoenergetyczne Detektory cząstek Pomiar sił grawitacyjnych Obserwacje prehistoryczne Obserwatorium słoneczne w Goseck
Pomiary różnicowe GNSS i serwisy czasu rzeczywistego: NAWGEO, KODGIS, NAWGIS
GŁÓWNY URZĄD GEODEZJI I KARTOGRAFII Departament Geodezji, Kartografii i Systemów Informacji Geograficznej Pomiary różnicowe GNSS i serwisy czasu rzeczywistego: NAWGEO, KODGIS, NAWGIS Szymon Wajda główny
WYZNACZANIE WYSOKOŚCI Z WYKORZYSTANIEM NIWELACJI SATELITARNEJ
WYZNACZANIE WYSOKOŚCI Z WYKORZYSTANIEM NIWELACJI SATELITARNEJ Karol DAWIDOWICZ Jacek LAMPARSKI Krzysztof ŚWIĄTEK Instytut Geodezji UWM w Olsztynie XX Jubileuszowa Jesienna Szkoła Geodezji, 16-18.09.2007
Globalny Nawigacyjny System Satelitarny GPS. dr inż. Paweł Zalewski
Globalny Nawigacyjny System Satelitarny GPS dr inż. Paweł Zalewski Wprowadzenie GPS jest nawigacyjnym systemem satelitarnym zaprojektowanym w celu dostarczenia bieżącej informacji o pozycji, prędkości
Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy
Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy 14. Kule (3 pkt) Dwie małe jednorodne kule A i B o jednakowych masach umieszczono w odległości 10 cm od siebie. Kule te oddziaływały wówczas
Problem testowania/wzorcowania instrumentów geodezyjnych
Problem testowania/wzorcowania instrumentów geodezyjnych Realizacja Osnów Geodezyjnych a Problemy Geodynamiki Grybów, 25-27 września 2014 Ryszard Szpunar, Dominik Próchniewicz, Janusz Walo Politechnika
SATELITARNE TECHNIKI POMIAROWE WYKŁAD 7
SATELITARNE TECHNIKI POMIAROWE WYKŁAD 7 1 K. Czarnecki, Geodezja współczesna w zarysie, Wiedza i Życie/Gall, Warszawa 2000/Katowice 2010. 2 Niektóre z błędów uwzględnianych w pomiarach satelitarnych GNSS
SERWIS INTERAKTYWNEGO MONITOROWANIA WSPÓŁRZĘDNYCH STACJI SIECI ASG-EUPOS
II Konferencja Użytkowników ASG-EUPOS Katowice 2012 SERWIS INTERAKTYWNEGO MONITOROWANIA WSPÓŁRZĘDNYCH STACJI SIECI ASG-EUPOS K. Szafranek, A. Araszkiewicz, J. Bogusz, M. Figurski Realizacja grantu badawczo-rozwojowego
OCENA PORÓWNAWCZA STANDARDÓW SPS SYSTEMU GPS W ASPEKCIE DOKŁ ADNOŚ CI OKREŚ LENIA POZYCJI
ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK LII NR 3 (186) 2011 Piotr Grall Cezary Specht Akademia Marynarki Wojennej OCENA PORÓWNAWCZA STANDARDÓW SPS SYSTEMU GPS W ASPEKCIE DOKŁ ADNOŚ CI OKREŚ LENIA
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i
Grawitacja - powtórka
Grawitacja - powtórka 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Jednorodne pole grawitacyjne istniejące w obszarze sali lekcyjnej jest wycinkiem centralnego
Pomiary całkowitej zawartości pary wodnej w pionowej kolumnie atmosfery Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski
Pomiary całkowitej zawartości pary wodnej w pionowej kolumnie atmosfery Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Czas trwania: 10 minut Czas obserwacji: tuż przed
Patrycja Kryj Ogólne zasady funkcjonowania Globalnego Systemu Pozycyjnego GPS. Acta Scientifica Academiae Ostroviensis nr 30, 19-32
Patrycja Kryj Ogólne zasady funkcjonowania Globalnego Systemu Pozycyjnego GPS Acta Scientifica Academiae Ostroviensis nr 30, 19-32 2008 Ogólne Zasady Funkcjonowania Globalnego Systemu Pozycyjnego GPS 19
Aplikacje Systemów. Nawigacja inercyjna. Gdańsk, 2016
Aplikacje Systemów Wbudowanych Nawigacja inercyjna Gdańsk, 2016 Klasyfikacja systemów inercyjnych 2 Nawigacja inercyjna Podstawowymi blokami, wchodzącymi w skład systemów nawigacji inercyjnej (INS ang.
Kinematyka relatywistyczna
Kinematyka relatywistyczna Fizyka I (B+C) Wykład VI: Prędkość światła historia pomiarów doświadczenie Michelsona-Morleya prędkość graniczna Teoria względności Einsteina Dylatacja czasu Prędkość światła
Menu. Badania temperatury i wilgotności atmosfery
Menu Badania temperatury i wilgotności atmosfery Wilgotność W powietrzu atmosferycznym podstawową rolę odgrywa woda w postaci pary wodnej. Przedostaje się ona do atmosfery w wyniku parowania z powieszchni
Zasada pracy różnicowego GPS - DGPS. dr inż. Paweł Zalewski
Zasada pracy różnicowego GPS - DGPS dr inż. Paweł Zalewski Sformułowanie problemu W systemie GPS wykorzystywane są sygnały pomiaru czasu (timing signals) przynajmniej z trzech satelitów w celu ustalenia
Zakresy częstotliwości radiofonicznych i propagacja fal
Wa-wa, dn. 26.02.2007 Zakresy częstotliwości radiofonicznych i propagacja fal Wszelkie przesyłanie, nadawanie lub odbiór znaków, sygnałów, pisma, obrazów i dźwięków lub wszelkiego rodzaju informacji drogą
WYBRANE ELEMENTY GEOFIZYKI
YBRANE ELEMENTY GEOFIZYKI Ćwiczenie 4: Grawimetria poszukiwawcza. Badanie zaburzenia grawitacyjnego oraz zmian drugich pochodnych gradientowych. prof. dr hab. inż. Janusz Bogusz Zakład Geodezji Satelitarnej
TABLICE PSYCHROMETRYCZNE PSYCHROMETRU ASPIRACYJNEGO. Do pomiarów wilgotności z największą dokładnością 1 % wilgotności względnej
TABLICE PSYCHROMETRYCZNE PSYCHROMETRU ASPIRACYJNEGO Do pomiarów wilgotności z największą dokładnością 1 % wilgotności względnej Wstęp Tablice niniejsze zawierają wartości wilgotności względnej (f), w procentach,
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo Oświatowe
Pomiary GPS RTK (Real Time Kinematic)
Geomatyka RTK Pomiary GPS RTK (Real Time Kinematic) Metoda pomiaru kinetycznego RTK jest metodą różnicową stosującą poprawkę na przesunięcie fazowe GPS do wyliczenia współrzędnych z centymetrową dokładnością.
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Lnie pozycyjne w nawigacji technicznej
Lnie pozycyjne w nawigacji technicznej Nawigacja Nawigacja jest gałęzią nauki, zajmującą się prowadzeniem statku bezpieczną i optymalną drogą. Znajomość nawigacji umożliwia określanie pozycji własnej oraz
Warunki uzyskania oceny wyższej niż przewidywana ocena końcowa.
NAUCZYCIEL FIZYKI mgr Beata Wasiak KARTY INFORMACYJNE Z FIZYKI DLA POSZCZEGÓLNYCH KLAS GIMNAZJUM KLASA I semestr I DZIAŁ I: KINEMATYKA 1. Pomiary w fizyce. Umiejętność dokonywania pomiarów: długości, masy,
(c) KSIS Politechnika Poznanska
Wykład 5 Lokalizacja satelitarna 1 1 Katedra Sterowania i Inżynierii Systemów, Politechnika Poznańska 6 listopada 2011 Satelitarny system pozycjonowania wprowadzenie Charakterystyka systemu GPS NAVSTAR
Systemy satelitarne wykorzystywane w nawigacji
Systemy satelitarne wykorzystywane w nawigacji Transit System TRANSIT był pierwszym systemem satelitarnym o zasięgu globalnym. Navy Navigation Satellite System NNSS, stworzony i rozwijany w latach 1958-1962
LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO
POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW
Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne
Analiza dokładności modeli centrów fazowych anten odbiorników GPS dla potrzeb niwelacji satelitarnej
Analiza dokładności modeli centrów fazowych anten odbiorników GPS dla potrzeb niwelacji satelitarnej Konferencja Komisji Geodezji Satelitarnej Komitetu Badań Kosmicznych i Satelitarnych PAN Satelitarne
Podstawy transmisji sygnałów
Podstawy transmisji sygnałów 1 Sygnał elektromagnetyczny Jest funkcją czasu Może być również wyrażony jako funkcja częstotliwości Sygnał składa się ze składowych o róznych częstotliwościach 2 Koncepcja
41R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do końca)
Włodzimierz Wolczyński 41R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do końca) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania
ROZDZIAŁ 1. NAWIGACJA MORSKA, WSPÓŁRZĘDNE GEOGRAFICZNE, ZBOCZENIE NAWIGACYJNE. KIERUNEK NA MORZU.
SPIS TREŚCI Przedmowa ROZDZIAŁ 1. NAWIGACJA MORSKA, WSPÓŁRZĘDNE GEOGRAFICZNE, ZBOCZENIE NAWIGACYJNE. KIERUNEK NA MORZU. 1.1. Szerokość i długość geograficzna. Różnica długości. Różnica szerokości. 1.1.1.