MATLAB jako narzędzie do obliczeń numerycznych
|
|
- Dominika Sobczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 MATLAB jako narzędzie do obliczeń numerycznych Pakiet MATLAB jest to potężne narzędzie stosowane do przeprowadzania obliczeń i symulacji w wielu dziedzinach nauki. Głównym przeznaczeniem pakietu są obliczenia nauko-techniczne, inżynierskie oraz wizualizacje dwu i trójwymiarowe. Program ten pozwala na wykonywanie skomplikowanych obliczeń numerycznych z końcową wizualizacją otrzymanych wyników. Cel ćwiczenia: Zapoznanie się z pakietem MATLAB wstęp. Samodzielne rozwiązanie wybranych problemów matematycznych przy użyciu pakietu. Przebieg ćwiczenia: I. Uruchomienie pakietu MATLAB (ikona na pulpicie). - po uruchomieniu dostępne jest okno komend MATLAB a, w którym wprowadzane są wszystkie polecenia, II. W otwartym oknie napisz help (po znakach >> ) i naciśnij ENTER. - efektem tej komendy będzie wyświetlenie nazw wszystkich dostępnych w pakiecie toolbox ów. W Dodatku przedstawiono listę wybranych toolbox ów wraz z krótkim opisem. - napisz help nazwa_toolbox u wyświetlenie listy funkcji dostępnych w danym toolbox ie. III. Nadawanie wartości zmiennym. Podstawowym typem danych wykorzystywanych w MATLAB-ie są macierze. W pamięci przechowywane są w dwojaki sposób: gęsty przechowuje całą macierz i x j w pamięci albo rzadkizapamiętywane są tylko wartości niezerowe wraz z ich położeniami. Należy pamiętać, że MATLAB traktuje liczby i wektory jako macierze, tzn. liczby są traktowane jak macierze x, a wektory jak macierze xn. Macierze dwuwymiarowe (w pakiecie dostępne są również macierze wielowymiarowe) Tworząc macierz należy pamiętać o tym że: elementy w wierszu macierzy muszą być oddzielane spacją lub przecinkami średnik kończy wiersz macierzy i powoduje przejście do następnego cała lista elementów musi być ujęta w nawiasy kwadratowe. obowiązuje zasada indeksowania macierzy począwszy od Najprostszą macierz tworzy się wymieniając jej elementy w nawiasach kwadratowych. Napisz: >>M=[ ; ]; Następnie napisz: >>M W efekcie otrzymamy macierz następującej postaci: M= Napisanie: >>M=[ ; ] Powoduje natychmiastowe wyświetlenie macierzy. Odwołania do macierzy oraz kilka podstawowych komend umieszczono w Dodatku 2. IV. Podstawowe operatory arytmetyczne Operatory: +,-,*,/,^ to odpowiednio: dodawanie, odejmowanie, mnożenie, dzielenie i potęgowanie (wymiary macierzy muszą umożliwiać wykonanie danej operacji).
2 Wykonaj przykład (napisz): >>a=[,,;2,2,2;3,3,3] >>b=[0,0,;0,,0;,,] >>a+b >>c=a+b >>a-b >>d=a*b >>e=a/b (jeżeli chcesz wiedzieć w jaki sposób wykonywane jest to działanie, to napisz :) >>help / >>f=a^2 >>g=exp(a) (operacja bardzo często wykonywana przy rozwiązywaniu zadań z automatyki) V. Skrypty Skrypt jest plikiem tekstowym o rozszerzeniu.m (m-plikiem), zawierającym polecenia i instrukcje Matlaba. Polecenia w pliku muszą być zgodne z semantyką MATLABA. Skrypty nie pobierają żadnych argumentów wejściowych ani nie zwracają argumentów wyjściowych mogą tylko operować na zmiennych dostępnych w przestrzeni roboczej MATLAB-a. Umieszczanie komentarza w pliku skryptu (pierwsze 3 linie) daje nam możliwość uzyskania pomocy na temat skryptu. Wywołujemy: help nazwa skryptu. Funkcje obsługi wejścia skryptu:. x=input(tekst) - wyświetla łańcuch tekst, oczekuje na wpisanie przez użytkownika danej liczbowej i przypisuje ją zmiennej liczbowej x, zamiast danej liczbowej można wpisać wyrażenie MATLAB-a, 2. x=input(tekst,s) - wyświetla łańcuch tekst, oczekuje na wpisanie przez użytkownika łańcucha znakowego i przypisuje go zmiennej x, 3. pause - zatrzymuje wykonywanie skryptu do momentu naciśnięcia dowolnego klawisza, 4. pause(n) - zastępuje wykonywanie skryptu na n sekund. Przykład : W oknie komend MATLAB-a, na pasku narzędzi (na górze ikona z biała kartką) wybierz ikonę New M-FILE (w ten sposób otworzysz okno edytora). Napisz w edytorze: %To jest skrypt %Dodaje dwie macierze aa=input('wprowadź macierz A: ') bb=input('wprowadź macierz B: \n') cc=aa+bb; cc Zapamiętaj utworzony skrypt pod nazwą naszskrypt.m tzn. na pasku w edytorze wybierz ikonę z dyskietką i zamiast untitle wpisz naszskrypt. Następnie w oknie komend MATLAB-a uruchom skrypt pisząc: >>naszskrypt Nie zapomnij poprawnie wprowadzić dwie macierze A i B. 2
3 VI. Wizualizacja wyników. MATLAB udostępnia liczne metody wizualizacji otrzymanych wyników obliczeń. Funkcje graficzne można podzielić na cztery podstawowe grupy:. przeznaczone do tworzenia wykresów dwu- i trójwymiarowych, 2. prezentujące wykresy ciągłe i dyskretne, 3. umożliwiające tworzenie grafiki wektorowej i rastrowej, 4. wysokiego i niskiego poziomu. Bliżej zajmiemy się grafiką dwuwymiarową 2D w układzie kartezjańskim. Przykład 5.: Dane są dwie funkcje: 2x f ( x) = oraz g( x) = sin( x) x Znajdź graficznie współrzędne wszystkich punktów z przedziału <-0; 0> dla których funkcje te przyjmują te same wartości. Funkcję f(x) wykreśl zieloną, a g(x) czerwoną linią ciągłą. Napisz odpowiedni skrypt. Po otwarciu czystego dokumentu w edytorze należy napisać: fplot( -sin(.2*x),[-0,0],'r') hold on fplot( (-2*x)/(x^2+),[-0,0],'g') grid hold off ginput (3) Skrypt zapamiętać pod dowolną nazwą np. wykresy i uruchomić w oknie komend MATLAB-a. - komenda hold on powoduje, że następny wykres będzie rysowany bez niszczenia poprzedniego, hold off wyłącza ten tryb; - ginput (n) pozwala odczytać współrzędne n punktów na wykresie (klikając na nie). Przykład 5.2: Napisz odpowiedni skrypt i rozwiąż graficznie następujący układ równań (wykresy mają być wykreślone w nowym oknie w tym celu należy użyć funkcji figure): y = ( x 0.3) + 0.0) ( x 0.9) ) 2 2 y + x = 4 W edytorze napisz: figure ezplot('./((x - 0.3).^ ) +./((x - 0.9).^ )-y-6',[-0,0]) hold on ezplot('y^2+x^2-',[-0,0]) grid hold off 3
4 Zapamiętaj i nazwij utworzony skrypt, a następnie uruchom go w oknie komend MATLAB-a pisząc jego nazwę. Przeskaluj współrzędne, aby dokładniej odczytać rozwiązania (użyj funkcji axis([xmin,xmax,ymin,ymax]). Napisz w oknie komend MATLAB-a : axis([-3,3,-3,3]) Zobacz ile jest rozwiązań podanego układu równań i używając funkcję ginput (n) odczytaj te rozwiązania. Przykład 5.3 Po jakim torze przemieszcza się punkt, jeżeli wiadomo, że w czasie t jedna współrzędna zmienia się wg funkcji x=sin(t), a druga y=cos(t). Wykreśl tor dla czasu t z przedziału [0,0Π]. Napisz skrypt lub bezpośrednio w oknie komend MATLAB-a : >>t = 0:pi/50:0*pi; >>plot3(sin(t),cos(t),t) >>grid Operacja t = 0:pi/50:0*pi tworzy wektor t 50-elementowy (sprawdź używając length(t)) o wartościach od 0 do 0*Π co Π. 50 Dodatek Poniżej przedstawiono listę wybranych TOOLBOX-ów z krótkim opisem: Chemometrix Toolbox przeznaczony do opracowywania danych chemicznych, Financial Toolbox przeznaczony do analiz i obliczeń finansowych (planowanie stałych przychodów, badanie wydajności obligacji, kalkulacja przepływu gotówki, obliczanie stóp procentowych etc.). Fuzzy Logic Toolbox środowisko do projektowania i diagnostyki inteligentnych układów sterowania wykorzystujących metody logiki rozmytej i uczenie adaptacyjne, Image Processing Toolbox programowe narzędzia do przetwarzania obrazów, Mapping Toolbox przeznaczony do analizy informacji geograficznych i wyświetlania map, z możliwością dostępu do zewnętrznych źródeł geograficznych, Neural Network Toolbox zbiór funkcji do projektowania i symulacji sieci neuronowych, Higher-Order Spectral Analisis Toolbox przeznaczony do analizy sygnałów zakłóconych szumem niegaussowskim lub sygnałami generowanymi przez procesy nieliniowe. Biblioteka ta znajduje zastosowanie w biomedycynie, akustyce, ekonometrii, oceanografii, przetwarzaniu sygnałów mowy, technice radarowej i sonarowej, Symbolic Math Toolbox zestaw funkcji do obliczeń symbolicznych - rozszerza możliwości Matlaba o możliwość wykonywania obliczeń symbolicznych, Parial Differential Equation Toolbox zestaw funkcji do numerycznego rozwiązywania równań różniczkowych cząstkowych metodą elementów skończonych, Simulink pakiet służący do modelowania, symulacji i analizy układów dynamicznych. Simulink dostarcza także graficzny interfejs użytkownika umożliwiający konstruowanie modeli w postaci diagramów blokowych, Spline Toolbox zestaw bibliotek do aproksymacji i interpolacji funkcjami sklejanymi, 4
5 Wavelet Toolbox biblioteka do analizy sygnałów oraz usuwania szumów. Dodatek 2 Odwołania do macierzy i kilka podstawowych komend (obliczanie rzędu macierzy, wektrów wasnych ipt.): x(j:k)- elementy wektora wierszowego x o numerach od j do k A(i,:)- wszystkie elementy w wierszu i macierzy A A(i,j:l)- wszystkie elementy w wierszu i macierzy A o numerach od j do l A(i:k,j:l)- wszystkie elementy w kolumnach od j do l wierszy od i do l A(x,j:l)- wszystkie elementy w kolumnach od j do l w wierszach macierzy A o numerach określonych przez elementy wektora x A(:,:)- cała dwuwymiarowa macierz A A(:)- cała macierz A w postaci wektora kolumnowego. disp(a)- wyświetla zawartość macierzy A w oknie poleceń size(a)- wyświetla rozmiar dwuwymiarowej macierzy A (liczbę wierszy i kolumn) w postaci dwuelementowego wektora wierszowego; [n m]=size(a) - przypisuje zmiennej n liczbę wierszy, a zmiennej m liczbe kolumn; n=size(a,)- przypisuje zmiennej n liczbę wierszy macierzy A. m=size(a,2) przypisuje zmiennej m liczbę kolumn macierzy A. length(x)- zwraca długość wektora x lub dłuższy z wymiarów macierzy det(a)- zwraca wyznacznik macierzy kwadratowej A. inv(a)- zwraca macierz odwrotną do macierzy A. eye(n)- tworzy macierz jednostkową nxn tril(a)- utworzenie z macierzy A macierzy trójktnej dolnej. triu(a)- utworzenie z macierzy A macierzy trójkątnej górnej. Dodatek 3 Do rysowania prostych wykresów służy funkcja: plot. W zależności od podanych parametrów wywołania: plot(x,y) - rysuje wykres elementów wektora y względem elementów wektora x, plot(y) - rysuje wykres elementów wektora y, przyjmując x =, plot(x,y,s) - rysuje wykres y(x) z określeniem dokładnego wyglądu linii; s łańcuch zawierający kody, plot(x,y,x2,y2,...) - rysuje w jednym oknie wiele wykresów:y(x), y2(x2),..., plot(x,y,s,x2,y2,s2,..) - rysuje w jednym oknie wiele wykresów z określeniem dokładnego wyglądu linii każdego z nich. ezplot(f,[a,b]) rysuje wykres f=f(x,y)=0 w przedziale [a,b]. plot3(x,y,z) - rysuje wykres trójwymiarowy, Funkcja linspace pomaga w tworzeniu danych do wykresu: linspace(x,x2,n) - generuje wierszowy wektor N liczb rozłożonych równomiernie wprzedziale od x do x2, linspace(x,x2) - generuje domyślnie 00 liczb z przedziału x dox2, fplot(f,[x0,xk]) - f-łańcuch znaków zawierających nazwę funkcji x0,xk-poczatek i koniec przedziału rysowania funkcji, [x,y]=fplot(...) - nie powoduje narysowania wykresu, tylko zwraca wektor argumentów x i wektor wartoci funkcji y. Wykres uzyskanych danych można narysować za pomocą polecenia plot(x,y) W celu dokładniejszych informacji o funkcji plot, fplot, ezplot skorzystaj z np. help plot. 5
6 Funkcje wykorzystywane do opisu wykresów: Aby zwiększyć czytelność i zrozumienie wykresów warto je opisywać. Można to zrealizować korzystają z jednej z funkcji: title(txt) - tekst opisujący dany wykres, text(x,y,txt) - umieszczenie tekstu w podanych współrzędnych x i y, xlabel(txt), ylabel(txt) - opis tekstowy osi układu, gird - bezparametrowe wywołanie, nakładamy siatkę na układ współrzędnych. 6
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 1. WSTĘP DO
Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych
Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych Wszystko proszę zapisywać komendą diary do pliku o nazwie: imie_ nazwisko 1. Definiowanie macierzy i odwoływanie się do elementów:
Wprowadzenie do środowiska
Wprowadzenie do środowiska www.mathworks.com Piotr Wróbel piotr.wrobel@igf.fuw.edu.pl Pok. B 4.22 Metody numeryczne w optyce 2017 Czym jest Matlab Matlab (matrix laboratory) środowisko obliczeniowe oraz
MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY
MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY Poszukiwanie znaczeń funkcji i skryptów funkcja help >> help % wypisuje linki do wszystkich plików pomocy >> help plot % wypisuje pomoc dotyczą funkcji plot Znaczenie
MATLAB wprowadzenie śycie jest zbyt krótkie, aby tracić czas na pisanie pętli!
Modele układów dynamicznych - laboratorium MATLAB wprowadzenie śycie jest zbyt krótkie, aby tracić czas na pisanie pętli! 1 2 MATLAB MATLAB (ang. matrix laboratory) to pakiet przeznaczony do wykonywania
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH II rok Kierunek Logistyka Temat: Zajęcia wprowadzające. BHP stanowisk
Podstawy Automatyki ćwiczenia Cz.1. Środowisko Matlab
Podstawy Automatyki ćwiczenia Cz.1 Środowisko Matlab Podstawową jednostką obliczeniową w programie Matlab jest macierz. Wektory i skalary mogą być tutaj rozpatrywane jako specjalne typy macierzy. Elementy
PODSTAWY INFORMATYKI 1 MATLAB CZ. 3
PODSTAWY INFORMATYKI 1 MATLAB CZ. 3 TEMAT: Program Matlab: Instrukcje sterujące, grafika. Wyrażenia logiczne Wyrażenia logiczne służą do porównania wartości zmiennych o tych samych rozmiarach. W wyrażeniach
Matlab MATrix LABoratory Mathworks Inc.
Małgorzata Jakubowska Matlab MATrix LABoratory Mathworks Inc. MATLAB pakiet oprogramowania matematycznego firmy MathWorks Inc. (www.mathworks.com) rozwijany od roku 1984 język programowania i środowisko
Metody i analiza danych
2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach
Komputerowe Wspomaganie Obliczeń. dr Robert Kowalczyk
Komputerowe Wspomaganie Obliczeń dr Robert Kowalczyk Komputerowe Wspomaganie Obliczeń Programy Komputerowego Wspomagania Obliczeń to programy komputerowe wspomagające obliczenia numeryczne lub symboliczne
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje
Pakiety matematyczne. Matematyka Stosowana. dr inż. Krzysztof Burnecki
Pakiety matematyczne Matematyka Stosowana dr inż. Krzysztof Burnecki 20.02.2013 Podstawowe informacje Krzysztof Burnecki C-11, pok. 5.14 Krzysztof.Burnecki@pwr.wroc.pl Konsultacje: poniedziałek 11-13,
Podstawy MATLABA, cd.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA, cd. 1. Wielomiany 1.1. Definiowanie
Matlab Składnia + podstawy programowania
Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe
Podstawowe operacje graficzne.
Podstawowe operacje graficzne. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z możliwościami graficznymi środowiska GNU octave, w tym celu: narzędziami graficznymi, sposobami konstruowania wykresów
Diary przydatne polecenie. Korzystanie z funkcji wbudowanych i systemu pomocy on-line. Najczęstsze typy plików. diary nazwa_pliku
Diary przydatne polecenie diary nazwa_pliku Polecenie to powoduje, że od tego momentu sesja MATLAB-a, tj. polecenia i teksty wysyłane na ekran (nie dotyczy grafiki) będą zapisywane w pliku o podanej nazwie.
Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych
Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl tel. 022
Metody Numeryczne. Laboratorium 1. Wstęp do programu Matlab
Metody Numeryczne Laboratorium 1 Wstęp do programu Matlab 1. Wiadomości wstępne liczby, format Program Matlab używa konwencjonalną notację dziesiętną, z kropka dziesiętną. W przypadku notacji naukowej
WPROWADZENIE DO ŚRODOWISKA SCILAB
Politechnika Gdańska Wydział Elektrotechniki i Automatyki WPROWADZENIE DO ŚRODOWISKA SCILAB Materiały pomocnicze do ćwiczeń laboratoryjnych Opracowanie: Paweł Lieder Gdańsk, 007 Podstawy pracy z Scilab.
Obliczenia w programie MATLAB
Obliczenia w programie MATLAB Na zajęciach korzystamy z programu MATLAB, w którym wykonywać będziemy większość obliczeń. Po uruchomieniu programu w zależności od wersji i konfiguracji może pojawić się
Zakaz rozpowszechniania w sieci, tylko na użytek studentów informatyki UwB. WYKŁAD 1- Matlab
Zakaz rozpowszechniania w sieci, tylko na użytek studentów informatyki UwB. WYKŁAD 1- Matlab 1. Wprowadzenie do Matlaba. Języki programowania takie jak np. C++ umożliwiają tworzenie programu realizującego
1 Programowanie w matlabie - skrypty i funkcje
1 Programowanie w matlabie - skrypty i funkcje 1.1 Skrypty Skrypt jest plikiem tekstowym z rozszerzeniem *.m zawierającym listę poleceń do wykonania. Aby utworzyć skrypt w matlabie wybierz File New Script,
MATLAB - laboratorium nr 1 wektory i macierze
MATLAB - laboratorium nr 1 wektory i macierze 1. a. Małe i wielkie litery nie są równoważne (MATLAB rozróżnia wielkość liter). b. Wpisanie nazwy zmiennej spowoduje wyświetlenie jej aktualnej wartości na
Wykorzystanie programów komputerowych do obliczeń matematycznych
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy Przykłady: Programy wykorzystywane
Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi
. Cele ćwiczenia Laboratorium nr Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi zapoznanie się z metodami symbolicznego i numerycznego rozwiązywania równań różniczkowych w Matlabie,
Laboratorium Algorytmy Obliczeniowe. Lab. 9 Prezentacja wyników w Matlabie
Laboratorium Algorytmy Obliczeniowe Lab. 9 Prezentacja wyników w Matlabie 1. Wyświetlanie wyników na ekranie: W Matlabie możliwe są następujące sposoby wyświetlania wartości zmiennych: a. wpisując w programie
Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII
Spis treści Od autora..................................................... Obliczenia inżynierskie i naukowe.................................. X XII Ostrzeżenia...................................................XVII
MATLAB - podstawy użytkowania
MATLAB - podstawy użytkowania Zbigniew Rudnicki (dr inż) MATLAB (MATrix LABoratory) - pakiet oprogramowania matematycznego firmy MathWorks Inc. (od roku 1984) to język i środowisko programowania do obliczeń
Matlab Składnia + podstawy programowania
Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe
Graficzna prezentacja wyników
Graficzna prezentacja wyników Wykonał: ŁUKASZ BURDACH ETI 9.3 Przy pierwszym wywołaniu funkcji rysującej wykres otwarte zostaje okno graficzne, które jest potem wykorzystywane domyślnie (jest tzw. oknem
Wprowadzenie do pakietów MATLAB/GNU Octave
Wprowadzenie do pakietów MATLAB/GNU Octave Ireneusz Czajka wersja poprawiona z 2017 Chociaż dla ścisłości należałoby używać zapisu MATLAB/GNU Octave, w niniejszym opracowaniu używana jest nazwa Matlab,
MATLAB PROJEKTOWANIE GRAFICZNE. Maciej Ulman ETI 9.2. Funkcje graficzne moŝna podzielić na cztery podstawowe grupy:
MATLAB PROJEKTOWANIE GRAFICZNE Maciej Ulman ETI 9.2 Funkcje graficzne moŝna podzielić na cztery podstawowe grupy: przeznaczone do tworzenia wykresów dwu- i trójwymiarowych, prezentujące wykresy ciągłe
Wprowadzenie do Mathcada 1
Wprowadzenie do Mathcada Ćwiczenie. - Badanie zmienności funkcji kwadratowej Ćwiczenie. pokazuje krok po kroku tworzenie prostego dokumentu w Mathcadzie. Dokument ten składa się z następujących elementów:.
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA MATLAB jest zintegrowanym środowiskiem
Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Metod Numerycznych Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne 1 Zadania 1. Obliczyć numerycznie
ANALIZA DANYCH I PROCESÓW. Mgr inż. Paweł Wojciech Herbin
ANALIZA DANYCH I PROCESÓW Mgr inż. Paweł Wojciech Herbin SZCZECIN 29 LUTEGO 2016 Spis treści 1. Wprowadzenie... 4 2. MATLAB wprowadzenie do interfejsu... 5 3. Praca w trybie bezpośrednim... 6 3.1. Wprowadzanie
Metody i analiza danych
2015/2016 Metody i analiza danych Funkcje, pętle i grafika Laboratorium komputerowe 3 Anna Kiełbus Zakres tematyczny 1. Funkcje i skrypty Pętle i instrukcje sterujące 2. Grafika dwuwymiarowa 3. Grafika
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje
Ćwiczenie 3. Iteracja, proste metody obliczeniowe
Ćwiczenie 3. Iteracja, proste metody obliczeniowe Instrukcja iteracyjna ( pętla liczona ) Pętla pozwala na wielokrotne powtarzanie bloku instrukcji. Liczba powtórzeń wynika z definicji modyfikowanej wartości
Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy MATLABA, cz2.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II Podstawy MATLABA, cz2. 1. Wielomiany
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje
Wprowadzenie do programu Mathcad 15 cz. 1
Wpisywanie tekstu Wprowadzenie do programu Mathcad 15 cz. 1 Domyślnie, Mathcad traktuje wpisywany tekst jako wyrażenia matematyczne. Do trybu tekstowego można przejść na dwa sposoby: Zaczynając wpisywanie
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Teoria sterowania MATLAB komputerowe środowisko obliczeń naukowoinżynierskich podstawowe informacje Materiały
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Teoria sterowania MATLAB funkcje zewnętrzne (m-pliki, funkcje) Materiały pomocnicze do ćwiczeń laboratoryjnych
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH ĆWICZENIE NR 1 WPROWADZENIE DO PROGRAMU KOMPUTEROWEGO MATLAB Dr inż. Sergiusz Sienkowski ĆWICZENIE NR 1 Wprowadzenie do programu komputerowego Matlab 1.1.
Podstawowe operacje na macierzach
Podstawowe operacje na macierzach w pakiecie GNU octave. (wspomaganie obliczeń inżynierskich) Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem macierzy i wektorów w programie GNU octave.
Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab
Zygmunt Wróbel i Robert Koprowski Praktyka przetwarzania obrazów w programie Matlab EXIT 2004 Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja obrazu
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH ĆWICZENIE NR 1 WPROWADZENIE DO PROGRAMU KOMPUTEROWEGO MATLAB Dr inż. Sergiusz Sienkowski ĆWICZENIE NR 1 Wprowadzenie do programu komputerowego Matlab 1.1.
1) Podstawowe obliczenia. PODSTAWY AUTOMATYKI I ROBOTYKI Laboratorium. Wykonał: Łukasz Konopacki Sala 125. Grupa: poniedziałek/p,
PODSTAWY AUTOMATYKI I ROBOTYKI Laboratorium Wykonał: Sala 125 Łukasz Konopacki 155796 Grupa: poniedziałek/p, 16.10 18.10 Prowadzący: Dr.inż.Ewa Szlachcic Termin oddania sprawozdania: Ocena: Matlab - firmy
Przetwarzanie sygnałów
Spis treści Przetwarzanie sygnałów Ćwiczenie 1 Wprowadzenie do programu Octave 1 Operatory 1 1.1 Operatory arytmetyczne...................... 1 1.2 Operatory relacji.......................... 1 1.3 Operatory
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem
Matlab II skrypty, funkcje, wizualizacja danych. Piotr Wróbel Pok. B 4.22
Matlab II skrypty, funkcje, wizualizacja danych Piotr Wróbel piotr.wrobel@igf.fuw.edu.pl Pok. B 4.22 Metody numeryczne w optyce 2017 Skrypty Pierwszy skrypt: Home->NewScript Home -> New->NewScript Zakładka
Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne
Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne Obliczenia z wykorzystaniem tzw. funkcji anonimowej Składnia funkcji anonimowej: nazwa_funkcji=@(lista_argumentów)(wyrażenie) gdzie: -
Operatory arytmetyczne
Operatory arytmetyczne Działanie Znak Dodawanie + Odejmowanie - Mnożenie macierzowe * Mnożenie tablicowe.* Dzielenie macierzowe / Dzielenie tablicowe./ Potęgowanie macierzowe ^ Potęgowanie tablicowe.^
Metody numeryczne Laboratorium 2
Metody numeryczne Laboratorium 2 1. Tworzenie i uruchamianie skryptów Środowisko MATLAB/GNU Octave daje nam możliwość tworzenia skryptów czyli zapisywania grup poleceń czy funkcji w osobnym pliku i uruchamiania
Elementy metod numerycznych - zajęcia 9
Poniższy dokument zawiera informacje na temat zadań rozwiązanych w trakcie laboratoriów. Elementy metod numerycznych - zajęcia 9 Tematyka - Scilab 1. Labolatoria Zajęcia za 34 punktów. Proszę wysłać krótkie
Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki. Podstawy Informatyki i algorytmizacji
Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki Podstawy Informatyki i algorytmizacji wykład 1 dr inż. Maria Lachowicz Wprowadzenie Dlaczego arkusz
Programowanie: grafika w SciLab Slajd 1. Programowanie: grafika w SciLab
Programowanie: grafika w SciLab Slajd 1 Programowanie: grafika w SciLab Programowanie: grafika w SciLab Slajd 2 Plan zajęć 1. Wprowadzenie 2. Wykresy 2-D 3. Wykresy 3-D 4. Rysowanie figur geometrycznych
PODSTAWY INŻYNIERII SYSTEMÓW TECHNICZNYCH
PODSTAWY INŻYNIERII SYSTEMÓW TECHNICZNYCH Charakterystyka programu MATLAB Dzadz Łukasz pok. 114 lukasz.dzadz@uwm.edu.pl Tel. 523-49-40 Katedra Inżynierii Systemów WNT UWM w Olsztynie TEMATYKA ĆWICZEŃ Charakterystyka
Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad
Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia
Różniczkowanie numeryczne
Różniczkowanie numeryczne Przyjmijmy, że funkcja ciągła y = f(x) = 4sin(3x)e -x/2, gdzie x 0,2π, dana jest w postaci dyskretnej jako ciąg wartości y odpowiadających zmiennej niezależnej x, również danej
MATLAB Podstawowe polecenia
MATLAB Podstawowe polecenia W MATLABie możliwe jest wykonywanie prostych obliczeń matematycznych. Działania (np. +) należy wpisać w okienku poleceń na końcu naciskając klawisz enter. Program MATLAB wydrukuje
Pakiety matematyczne INP2708W,L
Pakiety matematyczne INP2708W,L dr inż. Marek Teuerle Katedra Matematyki Stosowanej Centrum im. Hugona Steinhausa Wydział Matematyki PWr Wrocław, 23 lutego 2016 r. Informacje Marek Teuerle - bud. C-11,
Laboratorium Cel ćwiczenia Ćwiczenie ma na celu praktyczne przedstawienie grafiki 3D.
Podstawy Informatyki 1 Laboratorium 10 1. Cel ćwiczenia Ćwiczenie ma na celu praktyczne przedstawienie grafiki 3D. 2. Wprowadzenie Grafika trójwymiarowa jest to przedstawienie na płaszczyźnie ekranu monitora
Ćwiczenie 0 : Wprowadzenie do cyfrowego przetwarzania sygnałów. wyświetla listę tematów pomocy. wyświetla okno pomocy (Help / Product Help)
Wybr ane za gadnienia elektr oniki współczesnej Ćwiczenie 0 : Wprowadzenie do cyfrowego przetwarzania sygnałów. 1 Cel ćwiczenia Pierwsze zajęcia laboratoryjne z zakresu przetwarzania sygnałów mają na celu
Laboratorium 1. Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi
Laboratorium 1 1. Cel ćwiczenia Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi Zapoznanie się z metodami symbolicznego i numerycznego rozwiązywania równań różniczkowych w Matlabie,
Wartości x-ów : Wartości x ów można w Scilabie zdefiniować na kilka sposobów, wpisując odpowiednie polecenie na konsoli.
Notatki z sesji Scilaba Istnieje możliwość dokładnego zapisu przebiegu aktualnej sesji pracy ze Scilabem: polecenie diary('nazwa_pliku.txt') powoduje zapis do podanego pliku tekstowego wszystkich wpisywanych
Laboratorium Komputerowego Wspomagania Analizy i Projektowania
Laboratorium Komputerowego Wspomagania Analizy i Projektowania Ćwiczenie 2. Podstawowe operacje macierzowe. Opracował: dr inż. Sebastian Dudzik 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem
TWORZENIE WYKRESÓW (1)
TWORZENIE WYKRESÓW (1) Pewne wykresy można wygenerować za pomocą jednego polecenia, np.: graf2d, graf2d2, peaks, membrane, penny, earthmap, xfourier, xpklein, Lorenz, graf3d. Okno graficzne można wyczyścić
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzę dzia Informatyki Magdalena Deckert Izabela Szczę ch Barbara Wołyń ska Bartłomiej Prę dki Politechnika Poznań ska Instytut Informatyki Agenda Definiowanie macierzy
Robert Barański, AGH, KMIW MathScript and Formula Nodes v1.0
MathScript i Formula Nodes (MathScript and Formula Nodes) Formula Node w oprogramowaniu LabVIEW jest wygodnym, tekstowym węzłem, który można użyć do wykonywania skomplikowanych operacji matematycznych
Materiały do Laboratorium Programowania Obliczeń Komputerowych MATLAB
MATLAB Matlab jest językiem programowania, w którym zasadniczo występuje jeden typ danej liczbowej, a jest to macierz liczb zespolonych (szczególnym przypadkiem takiej macierzy jest liczba rzeczywista
WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.
Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego
Zakłócenia w układach elektroenergetycznych LABORATORIUM
Zakłócenia w układach elektroenergetycznych LABORATORIUM Obliczenia w programie MATLAB Na zajęciach korzystamy z programu MATLAB, w którym wykonywać będziemy większość obliczeń. Po uruchomieniu programu
Ćwiczenie 1. Matlab podstawy (1) Matlab firmy MathWorks to uniwersalny pakiet do obliczeń naukowych i inżynierskich, analiz układów statycznych
1. Matlab podstawy (1) Matlab firmy MathWorks to uniwersalny pakiet do obliczeń naukowych i inżynierskich, analiz układów statycznych i dynamicznych, symulacji procesów, przekształceń i obliczeń symbolicznych
ARKUSZ KALKULACYJNY komórka
ARKUSZ KALKULACYJNY Arkusz kalkulacyjny program służący do obliczeń, kalkulacji i ich interpretacji graficznej w postaci wykresów. Przykłady programów typu Arkusz Kalkulacyjny: - Ms Excel (*.xls; *.xlsx)
1 Podstawy c++ w pigułce.
1 Podstawy c++ w pigułce. 1.1 Struktura dokumentu. Kod programu c++ jest zwykłym tekstem napisanym w dowolnym edytorze. Plikowi takiemu nadaje się zwykle rozszerzenie.cpp i kompiluje za pomocą kompilatora,
Wizualizacja funkcji w programie MATLAB
Instytut Informatyki Uniwersytetu Śląskiego 15 listopada 2008 Funckja plot Funkcja plot3 Wizualizacja funkcji jednej zmiennej Do wizualizacji funkcji jednej zmiennej w programie MATLAB wykorzystywana jest
Ćwiczenie 1. Wprowadzenie do programu Octave
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 1. Wprowadzenie do programu Octave Mimo że program Octave został stworzony do
Wprowadzenie do systemu Scilab
Wprowadzenie do systemu Scilab Instrukcja 0 Wersja robocza 1 System Scilab Scilab jest wysokopoziomowym obiektowym językiem programowania, którego celem jest numeryczne wsparcie badań naukowych i inżynierskich.
Ćwiczenia nr 4. Arkusz kalkulacyjny i programy do obliczeń statystycznych
Ćwiczenia nr 4 Arkusz kalkulacyjny i programy do obliczeń statystycznych Arkusz kalkulacyjny składa się z komórek powstałych z przecięcia wierszy, oznaczających zwykle przypadki, z kolumnami, oznaczającymi
MACIERZE. Sobiesiak Łukasz Wilczyńska Małgorzata
MACIERZE Sobiesiak Łukasz Wilczyńska Małgorzata Podstawowe pojęcia dotyczące macierzy Nie bez przyczyny zaczynamy od pojęcia macierzy, które jest niezwykle przydatne we wszystkich zastosowaniach, obliczeniach
Interpolacja i aproksymacja, pojęcie modelu regresji
27 styczeń 2009 SciLab w obliczeniach numerycznych - część 3 Slajd 1 Interpolacja i aproksymacja, pojęcie modelu regresji 27 styczeń 2009 SciLab w obliczeniach numerycznych - część 3 Slajd 2 Plan zajęć
VII. WYKRESY Wprowadzenie
VII. WYKRESY 7.1. Wprowadzenie Wykres jest graficznym przedstawieniem (w pewnym układzie współrzędnych) zależności pomiędzy określonymi wielkościami. Ułatwia on interpretację informacji (danych) liczbowych.
Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie
Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Wprowadzenie Metoda Elementów Skończonych (MES) należy do numerycznych metod otrzymywania przybliżonych rozwiązań
Ćwiczenie 3: Wprowadzenie do programu Matlab
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium modelowania i symulacji Ćwiczenie 3: Wprowadzenie do programu Matlab 1. Wyznaczyć wartość sumy 1 1 2 + 1 3 1 4 + 1
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH ĆWICZENIE NR 9 WYRAŻENIA LOGICZNE, INSTRUKCJE WARUNKOWE I INSTRUKCJE ITERACYJNE W PROGRAMIE KOMPUTEROWYM MATLAB Dr inż. Sergiusz Sienkowski ĆWICZENIE NR
ŚRODOWISKO MATLAB cz.4 Tworzenie wykresów funkcji
Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni z przedmiotu Podstawy Informatyki Kod przedmiotu: TSC 3 Ćwiczenie pt. ŚRODOWISKO MATLAB cz.4 Tworzenie wykresów
Obliczenia inżynierskie arkusz kalkulacyjny. Technologie informacyjne
Obliczenia inżynierskie arkusz kalkulacyjny Technologie informacyjne Wprowadzanie i modyfikacja danych Program Excel rozróżnia trzy typy danych: Etykiety tak określa sie wpisywany tekst: tytuł tabeli,
Grafika w Matlabie. Wykresy 2D
Grafika w Matlabie Obiekty graficzne wyświetlane są w specjalnym oknie, które otwiera się poleceniem figure. Jednocześnie może być otwartych wiele okien, a każde z nich ma przypisany numer. Jedno z otwartych
Algebra macierzy
Algebra macierzy Definicja macierzy Macierze Macierze Macierze Działania na macierzach Działania na macierzach A + B = B + A (prawo przemienności dodawania) (A + B) + C = A + (B + C) (prawo łączności dodawania)
Ćwiczenia 11 (12) (4 godziny). Wizualizacja i manipulacja w Matlabie
Ćwiczenia 11 (12) (4 godziny). Wizualizacja i manipulacja w Matlabie 1. Tworzenie animacji Wykres funkcji znajduje się poniżej: W środowisku Matlab, możemy tworzyć różnego rodzaju wykresy przy wykorzystaniu
Zastosowanie GeoGebry w realizacji zagadnień związanych z trygonometrią 13. Wykresy funkcji sin x i cos x Paweł Perekietka 13
. Spis treści 1. 2. 2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10. 3. 3.1. Wstęp Katarzyna Winkowska-Nowak, Edyta Pobiega, Robert Skiba 11 Zastosowanie GeoGebry w realizacji zagadnień związanych z
Wymagania edukacyjne z informatyki dla klasy szóstej szkoły podstawowej.
Wymagania edukacyjne z informatyki dla klasy szóstej szkoły podstawowej. Dział Zagadnienia Wymagania podstawowe Wymagania ponadpodstawowe Arkusz kalkulacyjny (Microsoft Excel i OpenOffice) Uruchomienie
Zad. 3: Układ równań liniowych
1 Cel ćwiczenia Zad. 3: Układ równań liniowych Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Definiowanie właściwego interfejsu klasy. Zwrócenie uwagi na dobór odpowiednich
Arkusz kalkulacyjny. R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski
Arkusz kalkulacyjny R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski www.il.pw.edu.pl/~rg s-rg@siwy.il.pw.edu.pl O arkuszach ogólnie! Arkusz kalkulacyjny (spreadshit) to komputerowy program umożliwiający
Rok akademicki: 2016/2017 Kod: JIS s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Pakiety obliczeniowe Rok akademicki: 2016/2017 Kod: JIS-1-016-s Punkty ECTS: 6 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Informatyka Stosowana Specjalność: - Poziom studiów: Studia