PSO ORAZ SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KL. VI
|
|
- Elżbieta Zalewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 PSO ORAZ SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KL. VI I. OBSZARY AKTYWNOŚCI PODLEGAJĄCE OCENIE Na lekcjach matematyki oceniane są następujące obszary aktywności ucznia: 1. Rozumienie pojęć matematycznych i znajomość ich definicji. 2. Znajomość i stosowanie poznanych twierdzeń. 3. Samodzielne lub w grupie przeprowadzanie rozumowań i wnioskowań. 4. Rozwiązywanie zadań z wykorzystaniem poznanych metod. 5. Posługiwanie się symboliką i językiem matematyki. 6. Matematyczny sposób analizowania tekstów. 7. Logiczne rozumowanie, kojarzenie faktów, myślenie abstrakcyjne i stosowanie poznanej wiedzy w rozwiązywaniu zadań problemowych. 8. Aktywność na lekcjach, praca w grupach i wkład pracy ucznia. 9. Prowadzenie zeszytu. II. SPRAWDZANIE I OCENIANIE OSIĄGNIĘĆ UCZNIÓW 1. Formy aktywności: - sprawdziany lub testy - kartkówki, - odpowiedzi ustne, - praca samodzielna na lekcji, - prace domowe, - zeszyt przedmiotowy, - aktywność na lekcji, - praca w grupie,
2 - przygotowanie do lekcji, - udział w konkursach matematycznych, 2. Określenie pojęć zgodne z OW: wypowiedzi pisemne: - sprawdziany lub testy z określonego materiału poprzedzone powtórzeniem, zapisane i zapowiedziane z dwutygodniowym wyprzedzeniem, - kartkówka niezapowiedziana praca obejmująca materiał z 1 3 ostatnich jednostek lekcyjnych, - prace domowe ucznia podlegają sprawdzeniu, ale nie zawsze ocenie, - zeszyt przedmiotowy minimum raz w półroczu, ale nie zawsze podlega ocenie, wypowiedzi ustne: - odpowiedzi z ostatnich 3 lekcji, - aktywność na lekcji 3. Skala ocen: a) Oceny bieżące ustala się w stopniach według następującej skali: 6 5+, 5, 5-4+, 4, 4-3+, 3, 3-2+, 2, 2-1 b) Oceny półrocze i roczne ustala się według skali: stopień celujący- 6, stopień bardzo dobry-5, stopień dobry-4, stopień dostateczny-3, stopień dopuszczający-2, stopień niedostateczny-1 c) Stosuje się określoną wagę ocen dla poszczególnych form aktywności ucznia: Sprawdzian, kartkówka, praca samodzielna na lekcji, odpowiedzi ustne, praca domowa, aktywność na lekcji i zajęciach pozalekcyjnych, zeszyt przedmiotowy. Ocena klasyfikacyjna śródroczna i roczna nie jest średnią ocen bieżących. W przypadku wystawiania ocen półrocznych i rocznych ocenę celującą otrzymuje uczeń, gdy: wymagania wykraczające, obejmują treści: a) znacznie wykraczające poza program, b) stanowiące efekt samodzielnej pracy ucznia, c) wynikające z indywidualnych zainteresowań, d) zapewniające pełne wykorzystanie wiadomości dodatkowych w życiu, dodatkowo uczeń zdobywa miejsca I-III lub tytuł laureata w konkursach i olimpiadach przedmiotowych. 4. Wymagania na poszczególną ocenę: - celujący: otrzymuje uczeń, który swoją wiedzą wykracza poza obowiązujące wymagania programowerozwiązuje zadania z poziomu W, - bardzo dobry: otrzymuje uczeń, który opanował wiadomości z poziomów K, P, R i co najmniej 50% wiadomości z poziomu D, - dobry: otrzymuje uczeń, który opanował wiadomości z poziomów K, P i co najmniej 50% wiadomości z poziomu R, - dostateczny: otrzymuje uczeń, który opanował wiadomości z poziomu K i co najmniej 50% wiadomości z poziomu P, - dopuszczający: otrzymuje uczeń, który opanował wiadomości z poziomu K, - niedostateczny: otrzymuje uczeń, który nie opanował wiadomości i umiejętności określonych na poziomie K, a braki uniemożliwiają zdobywanie dalszej wiedzy. Nie potrafi rozwiązywać zadań o niewielkim stopniu trudności, nawet przy pomocy nauczyciela. Nie zna podstawowych określeń matematycznych. Przy ocenianiu prac pisemnych nauczyciel stosuje następujące zasady przeliczania punktów na ocenę: 0% - 34% - niedostateczny 35% - 54% - dopuszczający 55% - 75% - dostateczny 76% - 89% - dobry 90% - 99% - bardzo dobry 100% i zadanie dodatkowe - celujący III. ZASADY POPRAWIANIA OCEN
3 1. Każdy uczeń ma prawo do poprawy ocen cząstkowych według następujących zasad: sprawdziany w półroczu w ciągu 2 tygodni od daty otrzymania po ustaleniu z nauczycielem kartkówki, odpowiedzi ustne, prace domowe i oceny za prowadzenie zeszytu nie podlegają poprawie (jedynie w wyjątkowych przypadkach uczeń może poprawić te oceny, ale po uzgodnieniu z nauczycielem) 2. Uczeń, który w terminie nie poprawi oceny, traci prawo do poprawy tej oceny. 3. Sprawdziany i testy są obowiązkowe. Nieobecni uczniowie piszą w terminie ustalonym z nauczycielem. Jeżeli uczeń nie przystąpi do pisania sprawdzianu w wyznaczonym drugim terminie, nauczyciel ma prawo do przeprowadzenia jej na lekcji, na której uczeń jest obecny. 4. Wszystkie formy pisemne nauczyciel oddaje do wglądu uczniowi i informuje go o ocenie najpóźniej do dwóch tygodni od daty przeprowadzenia sprawdzianu, testu lub kartkówki. 5. Poprawione sprawdziany oddawane są w terminie do dwóch tygodni. 6.Zapisywanie poprawionych ocen w dzienniku: - poprawioną ocenę ze sprawdzianu piszemy obok wstawionej. 7.Ostatni sprawdzian lub test przed wystawieniem oceny śródrocznej lub rocznej musi być przeprowadzony w takim terminie, aby uczeń miał możliwość poprawy oceny z tego sprawdzianu lub testu IV. USTALENIA KOŃCOWE 1. Każdy uczeń jest oceniany zgodnie z zasadami sprawiedliwości. Oceny są jawne - Oceny są jawne nauczyciel wstawia oceny do dzienniczka. Na prośbę ucznia lub rodzica nauczyciel uzasadnia ustną ocenę w postaci krótkiej notatki sporządzonej w zeszycie ucznia. Każdą ocenę z pracy pisemnej nauczyciel uzasadnia sporządzając notatkę na pracy. 2. Uczeń powinien być oceniany systematycznie. 3. Nie będzie pozytywnie oceniony uczeń, który uchyla się od oceniania. 4. Uczeń ma prawo do trzykrotnego w ciągu półrocza zgłoszenia nieprzygotowania do lekcji bez podania przyczyny ( uczeń zgłasza nieprzygotowanie na początku lekcji).nieprzygotowanie nie dotyczy zapowiedzianych sprawdzianów lub testów. Przez nieprzygotowanie do lekcji rozumiemy: brak zeszytu, brak pomocy potrzebnych do lekcji, brak pracy domowej, niegotowość do zajęć itp. Jeśli uczeń nie zgłosi np a zostanie zauważony brak zeszytu, pracy domowej itd. otrzymuje ocenę niedostateczną. 5. Na koniec półrocza nie przewiduje się żadnych sprawdzianów poprawkowych czy zaliczeniowych. 6. Aktywność na lekcji jest oceniana na bieżąco. Przez aktywność na lekcji rozumiemy: - częste zgłaszanie się na lekcji i udzielanie poprawnych odpowiedzi, - poprawne rozwiązywanie zadań, - aktywna prace w grupie, - wykonywanie zadań dodatkowych. 7. Przy ocenianiu, nauczyciel uwzględnia możliwości intelektualne ucznia, opinie poradni psychologicznopedagogicznej. 8. Przewidywaną ocenę roczną nauczyciel podaje uczniowi na 2 tygodnie przed radą klasyfikacyjną. 9.Warunki i tryb uzyskania wyższej niż przewidywana rocznej oceny klasyfikacyjnej określone zostały w Statucie Szkoły Podstawowej. Do wglądu: na stronie Jeżeli przewidywana ocena śródroczna lub roczna jest oceną niedostateczna, nauczyciel ma obowiązek poinformować o niej ucznia i rodziców ( opiekunów prawnych) miesiąc przed radą kwalifikacyjną. 11. Ustalona przez nauczyciela na koniec roku szkolnego ocena niedostateczna może być zmieniona tylko w wyniku egzaminu poprawkowego zgodnie z zasadami określonymi w OW. 12. Wszystkie prace pisemne (sprawdziany, testy, kartkówki) są przechowywane u nauczyciela i są do wglądu również dla rodzica. 13. Uczeń, który za półrocze otrzymał ocenę niedostateczną ma obowiązek zaliczyć materiał do końca marca (w wyjątkowych przypadkach po uzgodnieniu z nauczycielem). Dostosowanie wymagań edukacyjnych do indywidualnych możliwości ucznia polega na: Dyslektycy
4 nie wyrywać do natychmiastowej odpowiedzi, wcześniej zapowiedzieć, że uczeń będzie pytany w trakcie rozwiązywania zadań tekstowych sprawdzać, czy uczeń przeczytał treść zadania i czy prawidłowo ją zrozumiał, w razie potrzeby udzielać dodatkowych wskazówek w czasie sprawdzianów zwiększyć ilość czasu na rozwiązanie zadań (lub zmniejszyć ilość zadań) można też dać uczniowi do rozwiązania w domu podobne zadania uwzględniać trudności związane z myleniem znaków działań, przestawianiem cyfr, itp. materiał sprawiający trudność dłużej utrwalać, dzielić na mniejsze porcje oceniać tok rozumowania, nawet gdyby ostateczny wynik zadania był błędny, co wynikać może z pomyłek rachunkowych oceniać dobrze, jeśli wynik zadania jest prawidłowy, choćby strategia dojścia do niego była niezbyt jasna, gdyż uczniowie dyslektyczni często prezentują styl dochodzenia do rozwiązania niedostępny innym osobom, będący na wyższym poziomie kompetencji Uczniowie o niższym niż przeciętnym poziomem sprawności intelektualnej: częste odwoływanie się do konkretu ( np. graficzne przedstawianie treści zadań ), szerokie stosowanie zasady poglądowości omawianie niewielkich partii materiału i o mniejszym stopni trudności ( pamiętając, że obniżenie wymagań nie może zejść poniżej podstawy programowej ) podawanie poleceń w prostszej formie ( dzielenie złożonych treści na proste, bardziej zrozumiałe części) wydłużanie czasu na wykonanie zadania (lub zmniejszenie ilości zadań na sprawdzianie lub kartkówce) podchodzenie do dziecka w trakcie samodzielnej pracy w razie potrzeby udzielenie pomocy, wyjaśnień, mobilizowanie do wysiłku i ukończenia zadania zadawanie do domu tyle, ile dziecko jest w stanie samodzielnie wykonać potrzeba większej ilości czasu i powtórzeń dla przyswojenia danej partii materiału. WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KL. VI I PÓŁROCZE LICZBY NATURALNE Oblicza różnice czasu proste przypadki. Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje proste zadania dotyczące obliczania wydatków. Dodaje, odejmuje, mnoży, dzieli liczby naturalne w pamięci i sposobem pisemnym proste przypadki. W zbiorze liczb wskazuje liczby podzielne przez 2, 5, 10, 100. Przedstawia liczbę dwucyfrową jako iloczyn liczb pierwszych wybranym przez siebie sposobem proste przypadki. Oblicza średnią arytmetyczną dwóch liczb naturalnych proste przypadki. Wykonuje cztery podstawowe działania w pamięci lub sposobem pisemnym w zbiorze liczb naturalnych. Stosuje kolejność wykonywania działań w dwu- lub trzydziałaniowych wyrażeniach arytmetycznych. Rozwiązuje proste zadania tekstowe z zastosowaniem obliczeń związanych z upływem czasu. Rozwiązuje równania o podstawowym stopniu trudności. Oblicza prędkość, drogę, czas proste przypadki. Wskazuje w zbiorze liczb naturalnych liczby podzielne przez 3, 9. Rozkłada liczbę dwucyfrową na czynniki pierwsze. Oblicza średnią arytmetyczną dwóch lub trzech liczb naturalnych. Stosuje działania na liczbach naturalnych do rozwiązywania typowych zadań tekstowych. Oblicza wartość wyrażenia arytmetycznego wielodziałaniowego. Stosuje obliczanie średniej arytmetycznej do rozwiązywania nieskomplikowanych zadań tekstowych. Wyjaśnia pojęcia: dzielnik, wielokrotność, liczba pierwsza i złożona. Podaje cechy podzielności liczb przez 2, 5, 10, 100, 3, 9, 25.
5 Na podstawie rozkładu liczby na czynniki pierwsze podaje wszystkie dzielniki liczby złożonej. Objaśnia sposób obliczania niewiadomej w dodawaniu, odejmowaniu, mnożeniu, dzieleniu. Rozwiązuje zadania o podwyższonym stopniu trudności z zastosowaniem obliczeń zegarowych. Oblicza wartość wyrażenia arytmetycznego z zastosowaniem nawiasów kwadratowych i wyjaśnia kolejność wykonywania działań. Rozwiązuje zadania tekstowe o podwyższonym stopniu trudności z zastosowaniem działań na liczbach naturalnych i równań. Wyjaśnia cechy podzielności liczb naturalnych i stosuje je w zadaniach tekstowych. Stosuje obliczanie średniej arytmetycznej liczb naturalnych w rozwiązywaniu zadań o podwyższonym stopniu trudności. Uzasadnia wykonalność działań w zbiorze liczb naturalnych. Rozwiązuje zadania problemowe z zastosowaniem działań na liczbach naturalnych. WŁASNOŚCI FIGUR PŁASKICH Rozróżnia i nazywa podstawowe figury płaskie. Mierzy długość odcinka i podaje ją w odpowiednich jednostkach. Wyróżnia wierzchołki, boki i kąty wielokątów. Rozróżnia rodzaje kątów. Mierzy kąty mniejsze od kąta półpełnego. Oblicza obwód wielokąta, gdy długości boków są liczbami naturalnymi, wyrażonymi w takich samych jednostkach proste przypadki. Wskazuje trójkąt na podstawie jego nazwy. Wskazuje wysokości w trójkącie. Podaje nazwy czworokątów. Wskazuje wysokości trapezów. Rozpoznaje wielokąty. Rysuje proste i odcinki prostopadłe i równoległe. Zamienia jednostki długości. Rozróżnia kąty wierzchołkowe i przyległe. Wskazuje wielokąty wklęsłe i wypukłe. Mierzy i rysuje kąty wypukłe. Mierzy kąty wewnętrzne trójkąta i czworokąta. Podaje sumę miar kątów wewnętrznych trójkąta i czworokąta. Rysuje wskazane trójkąty i czworokąty. Rysuje wysokości w trójkątach i trapezach. Rozróżnia trójkąty i czworokąty na podstawie ich własności proste przypadki. Rozwiązuje proste zadania z zastosowaniem własności figur płaskich. Konstruuje trójkąt z trzech odcinków. Zapisuje wyrażenie algebraiczne opisujące obwód wielokąta i oblicza jego wartość liczbową proste przypadki. Czyta wyrażenie algebraiczne opisujące obwód figury proste przypadki. Zapisuje symbolicznie równoległość i prostopadłość odcinków i prostych. Wyznacza odległość punktu od prostej i odległość dwóch prostych. Mierzy i rysuje kąty wklęsłe. Oblicza miary kątów wierzchołkowych i przyległych. Wyjaśnia nierówność trójkąta. Podaje własności trójkątów i czworokątów. Rysuje trójkąty i czworokąty o podanych własnościach. Rozróżnia wielokąty foremne.
6 Rozwiązuje zadania tekstowe dotyczące obliczania miar kątów wewnętrznych wielokątów. Rozwiązuje zadania tekstowe z zastosowaniem własności trójkątów i czworokątów. Oblicza obwody wielokątów, gdy długości boków są wyrażone w różnych jednostkach. Rysuje wielokąty foremne i opisuje ich własności. Buduje trójkąt, mając dane 2 odcinki i kąt między nimi zawarty lub odcinek i 2 kąty do niego przylegle, korzystając z linijki i kątomierza. Rozwiązuje zadania o podwyższonym stopniu trudności z zastosowaniem własności trójkątów i czworokątów. Rozwiązuje zadania dotyczące szukania miar kątów w wielokątach w różnych sytuacjach. Rozwiązuje zadania problemowe z wykorzystaniem własności wielokątów. DZIAŁANIA NA UŁAMKACH ZWYKŁYCH I DZIESIĘTNYCH Wskazuje w ułamku: licznik, mianownik, kreskę ułamkową. Zapisuje ułamek w postaci dzielenia i odwrotnie. Skraca i rozszerza ułamki proste przypadki. Porównuje ułamki zwykłe o jednakowych licznikach lub mianownikach. Sprowadza ułamki do wspólnego mianownika proste przypadki. Porównuje ułamki zwykłe o różnych mianownikach na podstawie rysunku proste przypadki. Dodaje i odejmuje ułamki o różnych mianownikach proste przypadki. Mnoży ułamki proste przypadki. Znajduje liczbę odwrotną do danej proste przypadki. Dzieli ułamki proste przypadki. Zapisuje iloczyn dwóch jednakowych czynników w postaci potęgi proste przypadki. Czyta i zapisuje ułamki dziesiętne. Podaje przybliżenie liczby dziesiętnej z dokładnością do całości. Zamienia ułamki zwykłe na dziesiętne proste przypadki. Dodaje i odejmuje ułamki dziesiętne w pamięci lub sposobem pisemnym. Sprawdza wyniki za pomocą kalkulatora. Mnoży i dzieli liczby dziesiętne proste przypadki. Wymienia jednostki drogi, prędkości, czasu. Rozwiązuje proste zadania tekstowe dotyczące obliczania prędkości, drogi, czasu proste przypadki. Porównuje ułamki zwykłe o różnych mianownikach proste przypadki. Dodaje, odejmuje, mnoży, dzieli ułamki zwykłe. Dodaje, odejmuje, mnoży, dzieli ułamki dziesiętne proste przypadki. Zamienia ułamki dziesiętne na zwykłe i odwrotnie proste przypadki. Wykorzystuje kalkulator do znajdywania rozwinięć dziesiętnych. Porównuje ułamki zwykłe i dziesiętne. Oblicza wartości prostych wyrażeń, w których występują ułamki zwykłe i dziesiętne. Oblicza ułamek danej liczby proste przypadki. Oblicza drugą i trzecią potęgę ułamka zwykłego i dziesiętnego proste przypadki. Rozwiązuje proste równania, w których występują ułamki, np.:stosuje własności działań odwrotnych. Podaje przybliżenia liczb z dokładnością do 0,1; 0,01; 0,001 proste przypadki. Podaje przykłady ułamków zwykłych o rozwinięciu dziesiętnym skończonym proste przypadki. Sprawdza przy użyciu kalkulatora, które ułamki maja rozwinięcie dziesiętne nieskończone. Rozwiązuje proste zadania, w których występuje porównywanie ilorazowe, obliczanie ułamka danej liczby. Sprowadza ułamki do najmniejszego wspólnego mianownika i wykonuje dodawanie i odejmowanie ułamków. Porównuje ułamki zwykłe i dziesiętne, dobiera dogodną metodę ich porównywania.
7 Objaśnia sposoby zamiany ułamka dziesiętnego na zwykły i odwrotnie. Oblicza wartość wyrażenia arytmetycznego o podwyższonym stopniu trudności z zastosowaniem działań na ułamkach zwykłych i dziesiętnych. Znajduje liczbę na podstawie danego jej ułamka, korzystając z ilustracji. Ocenia, który ułamek zwykły ma rozwinięcie dziesiętne skończone nieskomplikowane przypadki. Uzasadnia sposób zaokrąglania liczb. Szacuje wyniki. Oblicza prędkość, drogę, czas w zadaniach tekstowych o podwyższonym stopniu trudności. Wyjaśnia, kiedy nie można zamienić ułamka zwykłego na ułamek dziesiętny skończony. Rozwiązuje zadania tekstowe o podwyższonym stopniu trudności z zastosowaniem działań na ułamkach zwykłych i dziesiętnych. Oblicza dokładną wartość wyrażenia arytmetycznego ocenia, czy należy wykonywać działania na ułamkach zwykłych czy dziesiętnych. Uzasadnia sposób rozwiązania zadania. Rozwiązuje zadania problemowe z zastosowaniem działań na ułamkach zwykłych i dziesiętnych. Ocenia wykonalność działań w zbiorze liczb dodatnich. POLA WIELOKĄTÓW Wyróżnia jednostki pola wśród innych jednostek. Oblicza pole figury, licząc kwadraty jednostkowe. Rozwiązuje proste zadania dotyczące obliczania pola i obwodu równoległoboku i trójkąta w sytuacjach typowych, gdy dane są liczbami naturalnymi i wyrażone są w jednakowych jednostkach. Stosuje wzory na pole i obwód dowolnego wielokąta proste przypadki. Oblicza pola poznanych czworokątów i trójkątów, gdy dane są liczbami naturalnymi i wyrażone są w jednakowych jednostkach. Zapisuje wzory na pole i obwód figury i oblicza ich wartość liczbową proste przypadki. Wypowiada słownie wzory na pole i obwód i trójkąta i czworokąta proste przypadki. Zamienia mniejsze jednostki pola na większe i odwrotnie. Oblicza pole i obwód figury, gdy dane wyrażone są w różnych jednostkach. Oblicza pole i obwód figury, gdy podane są zależności np. między długościami boków. Zapisuje wzory na pole i obwód dowolnego trójkąta i czworokąta i wypowiada słownie te wzory. Rozwiązuje założone zadania dotyczące obliczania pól wielokątów. Oblicza bok trapezu, mając dane jego pole, wysokość i zależność między tymi wielkościami. Rozwiązuje zadania problemowe dotyczące obliczania pól i obwodów wielokątów. PROCENTY Stosuje symbol procentu. Zapisuje ułamki o mianowniku 100 za pomocą procentów. Zamienia ułamki typu:, na procenty. Zamienia 50%, 25%, 10% na ułamki. Wskazuje, jaki procent figury zamalowano najprostsze przypadki. Odczytuje dane z diagramów proste przypadki. Zamienia procenty na ułamki zwykłe i dziesiętne proste przypadki. Zamienia ułamki zwykłe i dziesiętne na procenty proste przypadki.
8 Zaznacza 50%, 25%, 10%, 75% figury. Oblicza procent danej liczby proste przypadki. Oblicza procent danej liczby w sytuacjach praktycznych proste przypadki. Odczytuje dane z diagramów prostokątnych, słupkowych, kołowych, w tym także z diagramów procentowych podstawowy stopień trudności. Rozwiązuje proste zadania z zastosowaniem danych odczytanych z diagramów. Rysuje proste diagramy ilustrujące dane z tekstu lub tabeli. Zaznacza wskazany procent figury. Objaśnia sposób zamiany procentu na ułamek i odwrotnie. Objaśnia sposób obliczenia procentu danej liczby. Rozwiązuje zadania praktyczne dotyczące obliczania procentu danej liczby. Oblicza, o ile punktów procentowych nastąpił wzrost lub spadek, porównując wielkości wyrażone w procentach. Interpretuje dane na dowolnym diagramie. Rysuje wskazane diagramy ilustrujące dane zawarte w tekście lub tabeli. Rysuje diagramy podwójne proste przypadki. Rozwiązuje zadania tekstowe, korzystając z danych na diagramach. Uzasadnia sposób rysowania wskazanego diagramu. Rozwiązuje zadania o podwyższonym stopniu trudności z zastosowaniem obliczeń procentowych. Układa pytania i zadania do różnych diagramów. Oblicza liczbę na podstawie jej procentu i stosuje to obliczenie w nieskomplikowanych sytuacjach praktycznych. Rozwiązuje zadania problemowe z zastosowaniem obliczeń procentowych. Układa pytania do ankiety, interpretuje wyniki ankiety i ilustruje je na diagramie. FIGURY PRZESTRZENNE Wskazuje graniastosłupy, ostrosłupy i bryły obrotowe wśród innych brył. Wskazuje na modelu graniastosłupa, ostrosłupa, wierzchołki, krawędzie, ściany. Tworzy siatki graniastosłupów i ostrosłupów przez rozcinanie modelu. Wyróżnia prostopadłościany wśród graniastosłupów. Wyróżnia jednostki pola i objętości wśród innych jednostek. Nazywa bryły obrotowe, mając ich modele. Oblicza pole powierzchni i objętość prostopadłościanu, mając jego siatkę oraz dane wyrażone liczbami naturalnymi w jednakowych jednostkach proste przypadki. Rysuje siatki graniastosłupów i ostrosłupów i wskazuje na nich podstawy, ściany, krawędzie proste przypadki. Rozróżnia i nazywa graniastosłupy, ostrosłupy i bryły obrotowe. Opisuje bryły obrotowe, mając ich modele i wymienia podstawowe ich własności. Zamienia jednostki pola i objętości proste przypadki. Oblicza pole powierzchni i objętość prostopadłościanu, gdy dane wyrażone są liczbami naturalnymi i ułamkami dziesiętnymi w jednakowych jednostkach proste przypadki. Zapisuje wzór na pole powierzchni i objętość prostopadłościanu proste przypadki. Rozwiązuje proste zadania dotyczące własności graniastosłupa lub ostrosłupa, z wykorzystaniem odpowiedniego modelu. Rozpoznaje w otoczeniu przedmioty, które mają kształt graniastosłupów, ostrosłupów lub brył obrotowych. Klasyfikuje figury przestrzenne na graniastosłupy, ostrosłupy i bryły obrotowe i nazywa je. Podaje nazwę graniastosłupa lub ostrosłupa w zależności od liczby jego wierzchołków, krawędzi, ścian.
9 Rozpoznaje graniastosłupy, ostrosłupy i bryły obrotowe na podstawie ich własności. Rysuje różne siatki graniastosłupów i ostrosłupów. Przedstawia na rysunkach pomocniczych graniastosłupy i ostrosłupy. Rysuje siatki graniastosłupów i ostrosłupów w skali. Zamienia jednostki pola i objętości. Zapisuje wzór na pole powierzchni prostopadłościanu i oblicza jego wartość liczbową. Rozwiązuje zadania z zastosowaniem własności graniastosłupów i ostrosłupów. Oblicza pola powierzchni graniastosłupów prostych. Zapisuje wzory na pole powierzchni graniastosłupów prostych i objętość prostopadłościanu. Rozwiązuje zadania o podwyższonym stopniu trudności na obliczanie pól powierzchni graniastosłupów prostych i objętość prostopadłościanu. Projektuje siatki graniastosłupów i ostrosłupów o podanych własnościach. Wyjaśnia sposób tworzenia wzoru na pole powierzchni graniastosłupa i objętość prostopadłościanu. Rozwiązuje zadania problemowe dotyczące własności figur przestrzennych. Wyjaśnia sposób tworzenia brył obrotowych. LICZBY CAŁKOWITE Podaje proste przykłady występowania liczb ujemnych. Podaje przykłady liczb naturalnych, całkowitych dodatnich i ujemnych. Czyta liczby całkowite zaznaczone na osi liczbowej proste przypadki. Podaje przykłady par liczb przeciwnych. Znajduje liczbę przeciwną do danej. Porównuje liczby całkowite proste przypadki. Ilustruje liczby przeciwne na osi liczbowej proste przypadki. Dodaje, odejmuje, mnoży i dzieli liczby całkowite proste przypadki. Zaznacza liczby całkowite na osi liczbowej proste przypadki. Podaje przykłady występowania liczb całkowitych w życiu codziennym. Podaje i zapisuje wartość bezwzględną danej liczby całkowitej. Stosuje kolejność działań do obliczania wartości wyrażeń z zastosowaniem działań na liczbach całkowitych proste przypadki. Zapisuje iloczyn jednakowych czynników w postaci drugiej i trzeciej potęgi liczby całkowitej proste przypadki. Oblicza drugą i trzecia potęgę dowolnej liczby całkowitej proste przypadki. Rozwiązuje proste zadania tekstowe z zastosowaniem działań na liczbach całkowitych. Wyznacza jednostkę na osi liczbowej, na której zaznaczone są co najmniej dwie liczby całkowite. Porównuje wartości bezwzględne liczb całkowitych. Rozwiązuje zadania tekstowe uwzględniające działania na liczbach całkowitych. Stosuje kolejność wykonywania działań w wyrażeniach arytmetycznych zawierających liczby całkowite. Wyjaśnia sposób dodawania, odejmowania, mnożenia i dzielenia liczb całkowitych. Rozwiązuje równania z zastosowaniem dodawania, odejmowania, mnożenia i dzielenia liczb całkowitych. Rozwiązuje zadania tekstowe o podwyższonym stopniu trudności uwzględniające działania na liczbach całkowitych. Ocenia wykonalność działań w zbiorze liczb całkowitych. Rozwiązuje zadania problemowe, w których występują działania na liczbach całkowitych.
10 Ocenę niedostateczną : otrzymuje uczeń, który nie opanował wiadomości i umiejętności na ocenę dopuszczającą, a braki uniemożliwiają zdobywanie dalszej wiedzy. Nie potrafi rozwiązywać zadań o niewielkim stopniu trudności, nawet przy pomocy nauczyciela. Nie zna podstawowych określeń matematycznych. Ocena śródroczna wymagania edukacyjne za I półrocze Ocena roczna wymagania edukacyjne za I i II półrocze Opracowała: Katarzyna Śnioszek
Własności figur płaskich
Klasa VI Liczby naturalne Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje proste zadania dotyczące obliczania wydatków. Dodaje, odejmuje, mnoży, dzieli liczby
Bardziej szczegółowoP 3.3. Plan wynikowy klasa 6
P 3.3. Plan wynikowy klasa 6 W propozycji planu wynikowego uwzględniono 136 lekcyjnych. Do dyspozycji nauczyciela pozostawiono 21. Liczby naturalne 8 h Już za rok w gimnazjum 1 P 4.6 Wykonuje nieskomplikowane
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI Kryteria ocen 1. Wymagania edukacyjne na poszczególne oceny: Ocenę celującą otrzymuje uczeń, który: Posiadł wiedzę i umiejętności obejmujące pełny
Bardziej szczegółowoMatematyka Wokół Nas - klasa 5 Katalog wymagań programowych na poszczególne stopnie szkolne
Matematyka Wokół Nas - klasa 5 Katalog wymagań programowych na poszczególne stopnie szkolne Kategorie zostały określone następująco: dotyczące wiadomości uczeń zna uczeń rozumie dotyczące przetwarzania
Bardziej szczegółowoSzczegółowe kryteria ocen dla klasy czwartej.
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLAS 4-6 SP ROK SZKOLNY 2016/2017 Szczegółowe kryteria ocen dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń, który: Zna zależności wartości
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASACH IV VI SZKOŁY PODSTAWOWEJ W WÓLCE HYŻNEŃSKIEJ
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASACH IV VI SZKOŁY PODSTAWOWEJ W WÓLCE HYŻNEŃSKIEJ Przedmiotowy System Oceniania jest zgodny z Rozporządzeniem Ministra Edukacji Narodowej z dnia 30.04.2007
Bardziej szczegółowoWYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI
WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI obowiązujące od roku 2015/16 I. Kryteria oceny semestralnej i końcowej dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń,
Bardziej szczegółowoWymagania na poszczególne oceny klasa 4
Wymagania na poszczególne oceny klasa 4 a) Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie zrozumieć
Bardziej szczegółowoRozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas
Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 5 Nr lekcji 1 2 Temat lekcji Wakacje, wakacje i po wakacjach 3 Systemy zapisywania liczb 4 5 Rachunek
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA IV SZKOŁA PODSTAWOWA W KLĘCZANACH ROK SZKOLNY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA IV SZKOŁA PODSTAWOWA W KLĘCZANACH ROK SZKOLNY 2014/ 2015 Dostosowane do programu,,matematyka z kluczem'' I półrocze Dopuszczający Dostateczny
Bardziej szczegółowoi danej prędkości; stosuje jednostki prędkości: km/h, m/s; umiejętności rachunkowe, a także własne poprawne metody.
Propozycja rozkładu materiału nauczania Matematyka wokół nas Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 5 Nr lekcji Temat lekcji Zagadnienie
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu matematyka
PRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu matematyka 1. Wymagania edukacyjne treści i umiejętności podlegające ocenie. Ocena celująca Ocenę tę otrzymuje uczeń, którego wiedza wykracza poza obowiązujący
Bardziej szczegółowoTest całoroczny z matematyki. Wersja A
Test całoroczny z matematyki klasa IV Wersja A Na kartce masz zapisanych 20 zadań. Opuść więc te, których rozwiązanie okaże się zbyt trudne dla Ciebie. Wrócisz do niego później. W niektórych zadaniach
Bardziej szczegółowoWYMAGANIA EDUKACYJNE SPOSOBY SPRAWDZANIA POSTĘPÓW UCZNIÓW WARUNKI I TRYB UZYSKANIA WYŻSZEJ NIŻ PRZEWIDYWANA OCENY ŚRÓDROCZNEJ I ROCZNEJ
WYMAGANIA EDUKACYJNE SPOSOBY SPRAWDZANIA POSTĘPÓW UCZNIÓW WARUNKI I TRYB UZYSKANIA WYŻSZEJ NIŻ PRZEWIDYWANA OCENY ŚRÓDROCZNEJ I ROCZNEJ Anna Gutt- Kołodziej ZASADY OCENIANIA Z MATEMATYKI Podczas pracy
Bardziej szczegółowoKLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6
KLASA 3 GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R.
Bardziej szczegółowoTrenuj przed sprawdzianem! Matematyka Test 4
mię i nazwisko ucznia...................................................................... Klasa............... Numer w dzienniku.............. nformacja do zadań od 1. do 3. Historia telewizji w Polsce
Bardziej szczegółowoAnaliza wyników egzaminu gimnazjalnego. Test matematyczno-przyrodniczy matematyka. Test GM-M1-122,
Analiza wyników egzaminu gimnazjalnego Test matematyczno-przyrodniczy Test GM-M1-122, Zestaw zadań z zakresu matematyki posłużył w dniu 25 kwietnia 2012 r. do sprawdzenia, u uczniów kończących trzecią
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 4, 5, 6 SZKOŁY PODSTAWOWEJ NR 2 W LIMANOWEJ
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 4, 5, 6 SZKOŁY PODSTAWOWEJ NR 2 W LIMANOWEJ TREŚCI NAUCZANIA MATEMATYKI I WYMAGANIA SZCZEGÓŁOWE Treści nauczania określone w programie Matematyka wokół nas szkoła
Bardziej szczegółowoPRACA KLASOWA PO REALIZACJI PROGRAMU NAUCZANIA W KLASIE 4
PRACA KLASOWA PO REALZACJ PROGRAMU NAUCZANA W KLASE 4 PLAN PRACY KLASOWEJ Nr zad. Czynności sprawdzane Cele / Wymagania Odniesienie do podstawy programowej Odpowiedzi 1 zapisywanie liczby w systemie dziesiątkowym
Bardziej szczegółowoPrzedmiotowy system oceniania z matematyki w klasach IV - VI
Przedmiotowy system oceniania z matematyki w klasach IV - VI 1. Ocenie podlegają: a) wiadomości i umiejętności związane z realizacją podstawy programowej kształcenia ogólnego z matematyki, b) praca na
Bardziej szczegółowoMatematyka klasa 6 Wymagania na poszczególne oceny
Matematyka klasa 6 Wymagania na poszczególne oceny Wymagania na ocenę dopuszczającą obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie zrozumieć
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI I LICEUM OGÓLNOKSZTAŁCĄCE IM. MIKOŁAJA KOPERNIKA W KROŚNIE
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI I LICEUM OGÓLNOKSZTAŁCĄCE IM. MIKOŁAJA KOPERNIKA W KROŚNIE Przedmiotowy system oceniania z matematyki jest zgodny z Rozporządzeniem Ministra Edukacji Narodowej
Bardziej szczegółowoPodstawa programowa z matematyki - II etap edukacyjny (klasy IV-VI SP)
Podstawa programowa z matematyki - II etap edukacyjny (klasy IV-VI SP) Cele kształcenia (wymagania ogólne): sprawność rachunkowa - uczeń wykonuje proste działania pamięciowe na liczbach naturalnych, całkowitych
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA. z Matematyki. Krysztof Jerzy
PRZEDMIOTOWY SYSTEM OCENIANIA z Matematyki Krysztof Jerzy 1 Matematyka jest jednym z głównych przedmiotów nauczania w szkole, między innymi, dlatego, że służy stymulowaniu rozwoju intelektualnego uczniów.
Bardziej szczegółowo'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+
'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+ Ucze interpretuje i tworzy teksty o charakterze matematycznym, u ywa j zyka matematycznego do opisu
Bardziej szczegółowoMatematyka klasa 5 Wymagania edukacyjne na ocenę śródroczną.
Matematyka klasa 5 Wymagania edukacyjne na ocenę śródroczną. Każda wyższa ocena zawiera wymagania dotyczące ocen niższych. Wymagania na ocenę dopuszczającą obejmują wiadomości i umiejętności umożliwiające
Bardziej szczegółowoWymagania edukacyjne dla klasy IV z matematyki opracowane na podstawie programu nauczania Matematyka z plusem
Wymagania edukacyjne dla klasy IV z matematyki opracowane na podstawie programu nauczania Matematyka z plusem Wymagania Skala ocen konieczne dopuszczający podstawowe dostateczny rozszerzające dobry dopełniający
Bardziej szczegółowoWymagania edukacyjne z matematyki w klasie V Matematyka z plusem
Poziomy wymagań edukacyjnych K konieczny ocena dopuszczająca P podstawowy ocena dostateczna R rozszerzający ocena dobra D dopełniający ocena bardzo dobra W wykraczający ocena celująca Wymagania edukacyjne
Bardziej szczegółowoPRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W PUBLICZNYM GIMNAZJUM IM. JANUSZA KORCZAKA W LASKOWEJ
PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W PUBLICZNYM GIMNAZJUM IM. JANUSZA KORCZAKA W LASKOWEJ Przedmiotowe zasady oceniania opracowały: mgr Anna Guzik mgr Edyta Leśniak Przedmiotowe Zasady Oceniania
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI. Przedmiotowy system oceniania z matematyki jest zgodny z Wewnątrzszkolnym Systemem Oceniania
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI Przedmiotowy system oceniania z matematyki jest zgodny z Wewnątrzszkolnym Systemem Oceniania I. Kontrakt z uczniami 1. Każdy uczeń jest oceniany zgodnie z zasadami
Bardziej szczegółowoAnaliza wyników egzaminu gimnazjalnego 2014 r. Test matematyczno-przyrodniczy (matematyka)
Analiza wyników egzaminu gimnazjalnego 2014 r. Test matematyczno-przyrodniczy (matematyka) Zestaw standardowy zawierał 23 zadania, w tym 20 zadań zamkniętych i 3 zadania otwarte. Wśród zadań zamkniętych
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA Z HISTORII DLA KLAS IV VI
PRZEDMIOTOWY SYSTEM OCENIANIA Z HISTORII DLA KLAS IV VI SPIS TREŚCI: 1. Cel oceny 2. Formy oceniania 3. Ogólne kryteria oceniania uczniów z historii 4. Zasady poprawiania ocen 5. Ustalenia końcowe 6. Kontrakt
Bardziej szczegółowoMatematyka z kluczem. Plan wynikowy z rozkładem materiału Klasa 4
Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 4 Plan wynikowy z rozkładem materiału Klasa 4 Matematyka z kluczem Lp. Temat lekcji Punkty z podstawy programowej z dnia 27 sierpnia 2012
Bardziej szczegółowoWYMAGANIA EDUKACYJNE - MATEMATYKA klasa 6
Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. LICZBY NATURALNE I UŁAMKI zaznaczyć i odczytać na osi liczbowej ułamek dziesiętny (P-R) obliczyć wartość wyrażenia arytmetycznego zawierającego
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z PRZEDMIOTÓW ZAWODOWYCH ODBYWAJĄCYCH SIĘ W SZKOLNYM LABORATORIUM CHEMICZNYM
WYMAGANIA EDUKACYJNE Z PRZEDMIOTÓW ZAWODOWYCH ODBYWAJĄCYCH SIĘ W SZKOLNYM LABORATORIUM CHEMICZNYM PSO jest uzupełnieniem Wewnątrzszkolnego Systemu Oceniania obowiązującego w GCE. Precyzuje zagadnienia
Bardziej szczegółowoPRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY CZWARTEJ
PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY CZWARTEJ 1 PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY IV SZKOŁY PODSTAWOWEJ Materiał przedstawia Przedmiotowe Zasady Oceniania z matematyki
Bardziej szczegółowoPrzedmiotowy system oceniania MATEMATYKA kl. IV na podstawie programu nauczania Matematyka z kluczem
Przedmiotowy system oceniania MTEMTYK kl. IV na podstawie programu nauczania Matematyka z kluczem opracowany zgodnie ze Statutem Szkoły oraz Wewnątrzszkolnym Programem Nauczania Szkoły Podstawowej w rzozówce
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE I
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE I Przedmiotowy System Oceniania z matematyki jest zgodny z Wewnątrzszkolnym Systemem Oceniania GIMNAZJUM IM. JANA PAWŁA II W BOGUSZYCACH Nauczyciel matematyki:
Bardziej szczegółowoZASADY OCENIANIA PRZEDMIOTOWEGO Z MATEMATYKI
ZASADY OCENIANIA PRZEDMIOTOWEGO Z MATEMATYKI Zasady oceniania przedmiotowego z matematyki opracowane zostały w oparciu o: 1. Zasady Oceniania Wewnątrzszkolnego w Szkole Podstawowej nr 15 w Olsztynie 2.
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY KLASA CZWARTA, PIĄTA I SZÓSTA
PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY KLASA CZWARTA, PIĄTA I SZÓSTA PROGRAM: Przyrodo, witaj! WSiP, PODRĘCZNIK, ZESZYT UCZNIA, ZESZYT ĆWICZEŃ (tylko klasa piąta) Przyrodo, witaj! E.Błaszczyk, E.Kłos
Bardziej szczegółowoPrzedmiotowy system oceniania z przedmiotu wiedza o społeczeństwie Publicznego Gimnazjum Sióstr Urszulanek UR we Wrocławiu w roku szkolnym 2015/2016
Przedmiotowy system oceniania z przedmiotu wiedza o społeczeństwie Publicznego Gimnazjum Sióstr Urszulanek UR we Wrocławiu w roku szkolnym 2015/2016 KRYTERIA OGÓLNE 1. Wszystkie oceny są jawne. 2. Uczennica/uczeń
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z FIZYKI DLA KL.I -III W PUBLICZNYM GIMNAZJUM SIÓSTR SALEZJANEK IM. ŚW. JANA BOSKO W OSTROWIE WIELKOPOLSKIM
WYMAGANIA EDUKACYJNE Z FIZYKI DLA KL.I -III W PUBLICZNYM GIMNAZJUM SIÓSTR SALEZJANEK IM. ŚW. JANA BOSKO W OSTROWIE WIELKOPOLSKIM Nauczanie fizyki w naszym gimnazjum odbywa się według programu wydawnictwa
Bardziej szczegółowoKARTY PRACY UCZNIA. Twierdzenie Pitagorasa i jego zastosowanie. samodzielnej pracy ucznia. Zawarte w nich treści są ułożone w taki sposób,
KARTY PRACY UCZNIA Twierdzenie Pitagorasa i jego zastosowanie opracowanie: mgr Teresa Kargol, nauczyciel matematyki w PSP nr 162 w Łodzi Karty pracy to materiały pomocnicze, które mogą służyć do samodzielnej
Bardziej szczegółowoPLAN WYNIKOWY Z MATEMATYKI DLA KLASY V TECHNIKUM 5 - LETNIEGO
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY V TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Rachunek prawdopodobieństwa. Uczeń: Uczeń: 1-2 Permutacje. - zna symbol n!; - stosuje
Bardziej szczegółowo,,Nie bój się matematyki - Program zajęć wyrównawczych z matematyki dla uczniów klas VI Szkoły Podst. nr 5 w Nowym Dworze Maz.
1,,Nie bój się matematyki - Program zajęć wyrównawczych z matematyki dla uczniów klas VI Szkoły Podst. nr 5 w Nowym Dworze Maz. Wstęp Program zajęć wyrównawczych został napisany z myślą o uczniach klas
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI OBOWIĄZUJĄCY W SZKOLE PODSTAWOWEJ SIÓSTR URSZULANEK UR W LUBLINIE (KLASY IVb i VI)
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI OBOWIĄZUJĄCY W SZKOLE PODSTAWOWEJ SIÓSTR URSZULANEK UR W LUBLINIE (KLASY IVb i VI) Zadaniem PSO jest zapewnienie trafnego, rzetelnego, jawnego, i obiektywnego
Bardziej szczegółowoSYSTEM OCENIANIA PRZEDMIOTÓW PRZYRODNICZYCH (FIZYKA, CHEMIA, BIOLOGIA, GEOGRAFIA) W GIMNAZJUM NR 18 W GDYNI.
SYSTEM OCENIANIA PRZEDMIOTÓW PRZYRODNICZYCH (FIZYKA, CHEMIA, BIOLOGIA, GEOGRAFIA) W GIMNAZJUM NR 18 W GDYNI. 1. Podstawa prawna Rozporządzenie MEN z dnia 30 kwietnia 2007 r., w sprawie warunków i sposobu
Bardziej szczegółowoKRYTERIA EDUKACYJNE Z MATEMATYKI W KLASIE
KRYTERIA EDUKACYJNE Z MATEMATYKI W KLASIE 6 Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie wiadomości w sytuacjach
Bardziej szczegółowoPlan naprawczy. Sokółka 2006/2007. Opracowanie: Urszula Bronowicz Henryka Sarosiek ElŜbieta Plichta Katarzyna Dykiel Tomasz Mucuś
Plan naprawczy przyjęty do realizacji w klasach VI-tych po wykonaniu analizy wyników próbnego sprawdzianu Na grzyby przeprowadzonego 10 października 2006 roku Opracowanie: Urszula Bronowicz Henryka Sarosiek
Bardziej szczegółowoPrzedmiotowy system oceniania z plastyki. Gimnazjum nr 1 w Pacanowie
Przedmiotowy system oceniania z plastyki Gimnazjum nr 1 w Pacanowie System oceniania z przedmiotu plastyka jest dostosowany do podstawy programowej i uwzględnia elementy Oceniania Kształtującego. 1. Przedmiotowy
Bardziej szczegółowoPrzedmiotowy system oceniania klasa II gimnazjum rok szkolny 2015/2016
Przedmiotowy system oceniania klasa II gimnazjum rok szkolny 2015/2016 1. Sposoby sprawdzania osiągnięć ucznia: odpowiedź ustna: - uczeń odpowiada z zakresu trzech ostatnich lekcji, - omawianie wyników
Bardziej szczegółowoPrzedmiotowy system oceniania
Przedmiotowy system oceniania Przedmiotowy system oceniania (PSO) to podstawowe zasady wewnątrzszkolnego oceniania uczniów z konkretnego przedmiotu. Powinien być zgodny z podstawą programową oraz obowiązującym
Bardziej szczegółowoPRZEDMIOTOWE ZASADY OCENIANIA Z HISTORII I SPOŁECZEŃSTWA W KLASACH IV - VI SZKOŁY PODSTAWOWEJ W PROMNIKU
PRZEDMIOTOWE ZASADY OCENIANIA Z HISTORII I SPOŁECZEŃSTWA W KLASACH IV - VI SZKOŁY PODSTAWOWEJ W PROMNIKU Przedmiotowe Zasady Oceniania są zgodne z Wewnątrzszkolnymi Zasadami Oceniania Szkoły Podstawowej
Bardziej szczegółowoPLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY VI c w Szkole Podstawowej nr 67 w Łodzi
PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY VI c w Szkole Podstawowej nr 67 w Łodzi Plan nauczania został opracowany na podstawie programu nauczania wydawnictwa pedagogicznego NOWA ERA zgodnego
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI rok szkolny 2015/2016
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI rok szkolny 2015/2016 Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych
Bardziej szczegółowoK P K P R K P R D K P R D W
KLASA III TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
Bardziej szczegółowoMatematyka klasa 1a i 1b gimnazjum
Matematyka klasa 1a i 1b gimnazjum Wymagania edukacyjne na ocenę śródroczną. Każda wyższa ocena zawiera wymagania dotyczące ocen niższych Wymagania na ocenę dopuszczającą obejmują wiadomości i umiejętności
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA Z PODSTAW PSYCHOLOGII W KLASIE DRUGIEJ. Ocenianie wewnątrzszkolne na przedmiocie podstawy psychologii ma na celu:
PRZEDMIOTOWY SYSTEM OCENIANIA Z PODSTAW PSYCHOLOGII W KLASIE DRUGIEJ Zasady ogólne Ocenianie wewnątrzszkolne na przedmiocie podstawy psychologii ma na celu: 1. informowanie ucznia o poziomie jego osiągnięć
Bardziej szczegółowoKlasa 1 gimnazjum. Na ocenę dostateczną wymagania podstawowe, uczeń:
Klasa 1 gimnazjum Na ocenę dopuszczającą wymagania konieczne, uczeń: na ocenę śródroczną: Definiuje liczbę naturalną, całkowitą, wymierną Zaznacza liczbę wymierną na osi liczbowej Zmienia ułamek zwykły
Bardziej szczegółowoOcenianie bieżące polega na obserwacji pracy ucznia i zapisywanie ich w formie ocen, którym przypisane są opisy:
SYSTEM OCENIANIA Z języka angielskiego w klasach I II W SZKOLE PODSTAWOWEJ NR 3 IM. JANUSZA KUSOCIŃSKIEGO W SULECHOWIE System oceniania jest zgodny z rozporządzeniem Ministra Edukacji Narodowej z dnia
Bardziej szczegółowoPrzedmiotowe zasady oceniania. zgodne z Wewnątrzszkolnymi Zasadami Oceniania. obowiązującymi w XLIV Liceum Ogólnokształcącym.
Przedmiotowe zasady oceniania zgodne z Wewnątrzszkolnymi Zasadami Oceniania obowiązującymi w XLIV Liceum Ogólnokształcącym. Przedmiot: biologia Nauczyciel przedmiotu: Anna Jasztal, Anna Woch 1. Formy sprawdzania
Bardziej szczegółowoPrzedmiotowy System Oceniania Matematyki w ZPO w Sieciechowie (S. Kowalczyk)
1 Przedmiotowy System Oceniania Matematyki w ZPO w Sieciechowie (S. Kowalczyk) Ocenianie za pomocą stopni szkolnych ma na celu: 1) poinformowanie ucznia o poziomie jego osiągnięć edukacyjnych i postępach
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W ZESPOLE SZKÓŁ NR 32 im. K. K. Baczyńskiego W WARSZAWIE
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W ZESPOLE SZKÓŁ NR 32 im. K. K. Baczyńskiego W WARSZAWIE I. Przedmiotowy System Oceniania z matematyki jest zgodny z Wewnątrzszkolnym Systemem Oceniania (WSO)
Bardziej szczegółowoMATEMATYKA WYMAGANIA NA POSZCZEGÓLNE OCENY KL IV
1 MATEMATYKA WYMAGANIA NA POSZCZEGÓLNE OCENY KL IV LICZBY I DZIAŁANIA I SEMESTR 1. Ocenę dopuszczającą otrzymuje uczeń, który: - zna pojęcie składnika i sumy, odjemnej, odjemnika i różnicy, czynnika i
Bardziej szczegółowoMatematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie:
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra (db.) D
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA z teoretycznych przedmiotów zawodowych
PRZEDMIOTOWY SYSTEM OCENIANIA z teoretycznych przedmiotów zawodowych opracowany w oparciu o Rozporządzenie MENIS z 07.09.2004 w sprawie warunków i sposobów oceniania, klasyfikowania i promowania uczniów
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA Z WIEDZY O SPOŁECZEŃSTWIE obowiązujący w Publicznym Gimnazjum w Złotnikach
PRZEDMIOTOWY SYSTEM OCENIANIA Z WIEDZY O SPOŁECZEŃSTWIE obowiązujący w Publicznym Gimnazjum w Złotnikach Przedmiotowy System Oceniania /PSO/ opracowany został na podstawie zatwierdzonego przez Ministerstwo
Bardziej szczegółowoSPRAWDZIANY Z MATEMATYKI
SPRAWDZIANY Z MATEMATYKI dla klasy III gimnazjum dostosowane do programu Matematyka z Plusem opracowała mgr Marzena Mazur LICZBY I WYRAŻENIA ALGEBRAICZNE Grupa I Zad.1. Zapisz w jak najprostszej postaci
Bardziej szczegółowoPrzedmiotowy system oceniania z matematyki kl.i
I Matematyka klasa I - wymagania programowe DZIAŁ 1. LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej (K) rozumie rozszerzenie osi liczbowej na liczby ujemne (K) umie porównywać
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI
ZESPÓŁ SZKÓŁ IM. JANA PAWŁA II W ŁOCHOWIE PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DO CYKLU PODRĘCZNIKÓW MATEMATYKA Z PLUSEM SPIS TREŚCI: 1. Cele oceniania. 2. Podstawa programowa. 3. Obszary aktywności
Bardziej szczegółowoGŁÓWNE ZASADY OCENIANIA i WZMAGANIA EDUKACZJNE Z MATEMATYKI DLA KLAS IV- VI (2015/2016)
GŁÓWNE ZASADY OCENIANIA i WZMAGANIA EDUKACZJNE Z MATEMATYKI DLA KLAS IV- VI (2015/2016) Nauczyciele uczący: mgr Justyna Matyśkiewicz, mgr Aleksandra Mierzchała. Program nauczania matematyki: Matematyka
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA UCZNIÓW O SPECJALNYCH POTRZEBACH EDUKACYJNYCH
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA UCZNIÓW O SPECJALNYCH POTRZEBACH EDUKACYJNYCH Uczniów o specjalnych potrzebach edukacyjnych obowiązują na lekcjach matematyki wymagania i kryteria ocen określone w
Bardziej szczegółowoOcenianie przedmiotowe
Ocenianie przedmiotowe informatyka I. Wymagania edukacyjne 1. Wymagania programowe na poszczególne oceny Ocenę celującą (6) otrzymuje uczeń, który posiada wiedzę wykraczającą poza zakres materiału programowego,
Bardziej szczegółowoOdpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem
Odpowiedzi i schematy oceniania Arkusz Zadania zamknięte Numer zadania Poprawna odpowiedź Wskazówki do rozwiązania B W ( ) + 8 ( ) 8 W ( 7) ( 7) ( 7 ) 8 ( 7) ( 8) 8 ( 8) Iloczyn dwóch liczb ujemnych jest
Bardziej szczegółowoPlan wynikowy dla klasy 6 Matematyka wokół nas"
Plan wynikowy dla klasy 6 Matematyka wokół nas" NR LEKCJI 3-4 TEMAT LEKCJI Nowy rok szkolny poznajemy program oraz podręcznik do klasy VI. Zapoznanie z systemem oceniania i wymaganiami edukacyjnymi z matematyki.
Bardziej szczegółowoPOTĘGI WYMAGANIA EDUKACYJNE. Uczeń: określa definicję potęgi o wykładniku ujemnym szacuje wartość potęgi o wykładniku ujemnym
POTĘGI P-PODSTAWOWE ocena dop i dst WYMAGANIA EDUKACYJNE PP-PONADPODSTAWOWE ocena db i bdb ( wymagania z poziomu P i PP) W-WYKRACZAJĄCE ocena cel (wymagania z poziomu P, PP i W) zamienia potęgi o wykładnikach
Bardziej szczegółowoROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych Numer zadania 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 Odpowiedź A B B C C D C B B C
Bardziej szczegółowoPrzedmiotowy system oceniania z języka angielskiego
Przedmiotowy system oceniania z języka angielskiego Spis treści I. Główne założenia PSO... 2 II. Kategorie oceny postępów... 2 III. Formy sprawdzania wiedzy:... 2 IV. Wymagania na poszczególne oceny...
Bardziej szczegółowoPRZEDMIOTOWE OCENIANIE Z MATEMATYKI W TECHNIKUM NR 13. rok szkolny 2015/2016
PRZEDMIOTOWE OCENIANIE Z MATEMATYKI W TECHNIKUM NR 13 rok szkolny 2015/2016 1 Ocenia się osiągnięcia ucznia w zakresie: 1. Jego matematycznych wiadomości z danego semestru bądź roku, tj.: a) znajomość
Bardziej szczegółowoPrzedmiotowe zasady oceniania z matematyki w Zespole Szkół w Bierzwnicy
Przedmiotowe zasady oceniania z matematyki w Zespole Szkół w Bierzwnicy Przedmiotowe zasady oceniania z matematyki są zgodny ze Wewnątrzszkolnymi Zasadami Oceniania w Zespole Szkół w Bierzwnicy. I. Zasady
Bardziej szczegółowo14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.
Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM Z MATEMATYKI DLA KLAS
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV, V, VI. Przedmiotowy system oceniania z matematyki dla klas IV, V, VI. Nauczyciel: Kamila Pągowska Podręczniki: klasa IV Matematyka 4, M. Dobrowolska,
Bardziej szczegółowoPrzedmiotowy System Oceniania z Katechezy w Szkole Podstawowej w Trzebielu dla klas IV-VI zgodny z programem nauczania Odkrywamy tajemnice Bożego
Przedmiotowy System Oceniania z Katechezy w Szkole Podstawowej w Trzebielu dla klas IV-VI zgodny z programem nauczania Odkrywamy tajemnice Bożego świata AZ-2-02/12 PSO NA LEKCJACH KATECHEZY W KLASIE IV
Bardziej szczegółowoWymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki I. Oceny aktywności ucznia w zakresie wiedzy, umiejętności i postaw będące przedmiotem oceny: 1. Posługiwanie się w opisie pojęć, środków, narzędzi i metod matematyki
Bardziej szczegółowoZKP I G NR 20 SZKOŁA PODSTAWOWA NR 1 IM M. ZARUSKIEGO W GDAŃSKU ZAJĘCIA TECHNICZNE PRZEDMIOTOWY SYSTEM OCENIANIA ROK SZKOLNY 2015/2016
ZKP I G NR 20 SZKOŁA PODSTAWOWA NR 1 IM M. ZARUSKIEGO W GDAŃSKU ZAJĘCIA TECHNICZNE PRZEDMIOTOWY SYSTEM OCENIANIA ROK SZKOLNY 2015/2016 MAGDALENA WILKOŁASKA SYLWIA HALMAN-KULIK Klasy: 4-6 szkoły podstawowej
Bardziej szczegółowoKryteria ocen z języka angielskiego
Klasa I Kryteria ocen z języka angielskiego Edward Szczyrk, Maria Zaor OCENA CELUJĄCA Potrafi bezbłędnie porównywać i stosować poznane czasy. Stosuje bezbłędnie Posługuje się szerokim słownictwem z poznanego
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM
Matematyka z plusem dla gimnazjum WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (dp.) P - podstawowy ocena dostateczna (dst.)
Bardziej szczegółowoPrzedmiotowy System Oceniania Matematyki w klasach I-III Gimnazjum nr 1 w Inowrocławiu
Przedmiotowy System Oceniania Matematyki w klasach I-III Gimnazjum nr 1 w Inowrocławiu Podstawa programowa z 23 grudnia 2008 r. obowiązująca w klasie I gimnazjalnej od roku szkolnego 2009/2010 Rozporządzenie
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA NIEMIECKIEGO
PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA NIEMIECKIEGO Zasady ogólne Ocenianie wewnątrzszkolne na przedmiocie język niemiecki ma na celu: 1) informowanie ucznia o poziomie jego osiągnięć edukacyjnych i jego
Bardziej szczegółowoKlasa 1. 1. LICZBY RZECZYWISTE I WYRAŻENIA ALGEBRAICZNE
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z matematyki w Zasadniczej Szkole Zawodowej nr 1 w Regionalnym Centrum Edukacji Zawodowej Klasa 1. 1. LICZBY RZECZYWISTE
Bardziej szczegółowoPrzedmiotowe Zasady Oceniania
Przedmiotowe Zasady Oceniania z języka polskiego dla klas IV-VI Szkoły Podstawowej im. Marii Konopnickiej w Zaczarniu Zaczarnie, rok szkolny 2015/2016 Przedmiotowe zasady oceniania z języka polskiego w
Bardziej szczegółowoWYMAGANIA EDUKACYJNE I PRZEDMIOTOWY SYSTEM OCENIANIA
Zespół Szkół Zawodowych im. Gen. Władysława Sikorskiego w Słupcy WYMAGANIA EDUKACYJNE I PRZEDMIOTOWY SYSTEM OCENIANIA GEOGRAFIA Opracowała mgr Mirosława Błaszczak Aktualne od roku szkolnego 2014-2015 1
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
Bardziej szczegółowoPrzedmiotowe Zasady Oceniania z przedmiotu Informatyka
I Liceum Ogólnokształcące w Giżycku Przedmiotowe Zasady Oceniania z przedmiotu Informatyka Przedmiotowy System Oceniania z zajęć komputerowych i informatyki został opracowany na podstawie: 1. Rozporządzenia
Bardziej szczegółowoWymagania edukacyjne z matematyki w klasie V Matematyka z plusem
Wymagania edukacyjne z matematyki w klasie V Matematyka z plusem Poziomy wymagań edukacyjnych K konieczny ocena dopuszczająca P podstawowy ocena dostateczna R rozszerzający ocena dobra D dopełniający ocena
Bardziej szczegółowoWymagania edukacyjne z matematyki dla klasy I TM w roku szkolnym 2012/2013
Wymagania edukacyjne z matematyki dla klasy I TM w roku szkolnym 2012/2013 Uczeń otrzymuje ocenę celującą, gdy: a) w 100% opanował treści zawarte w programie nauczania. Uczeń otrzymuje ocenę bardzo dobrą,
Bardziej szczegółowoPrzedmiotowy system oceniania z religii Szkoła Podstawowa im. Janusza Korczaka w Przechlewie
Przedmiotowy system oceniania z religii Szkoła Podstawowa im. Janusza Korczaka w Przechlewie I. Formy oceniania ucznia. Pomiar osiągnięć ucznia odbywa się w całym procesie katechizacji za pomocą następujących
Bardziej szczegółowoKryteria oceniania z matematyki Klasa III poziom rozszerzony
Kryteria oceniania z matematyki Klasa III poziom rozszerzony Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja potęgowa - zna i stosuje tw. o potęgach - zna wykresy funkcji potęgowej o dowolnym
Bardziej szczegółowoKRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY
KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA I LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby
Bardziej szczegółowoPRZEDMIOTOWE ZASADY OCENIANIA UCZNIÓW Z ZAJĘĆ TECHNICZNYCH Podstawa prawna do opracowania Przedmiotowych Zasad Oceniania: Rozporządzenie Ministra
PRZEDMIOTOWE ZASADY OCENIANIA UCZNIÓW Z ZAJĘĆ TECHNICZNYCH Podstawa prawna do opracowania Przedmiotowych Zasad Oceniania: Rozporządzenie Ministra Edukacji Narodowej z dnia 30 kwietnia 2007r. zmieniające
Bardziej szczegółowo