WYKŁAD: DRZEWA KLASYFIKACYJNE I REGRESYJNE. METODA CART. Zaawansowane Metody Uczenia Maszynowego
|
|
- Radosław Szydłowski
- 5 lat temu
- Przeglądów:
Transkrypt
1 WYKŁAD: DRZEWA KLASYFIKACYJNE I REGRESYJNE. METODA CART Zaawansowane Metody Uczenia Maszynowego
2 Drzewa służą do konstrukcji klasyfikatorów prognozujących Y {1, 2,..., g} na podstawie p-wymiarowego wektora atrybutów (dowolne atrybuty: nominalne, nominalne na skali porządkowej, ciągłe) lub do konstrukcji estymatorów funkcji regresji Y = f (X) + ε gdzie ε błąd losowy, taki, że Eε = 0. Omówimy metodologię wprowadzoną przez Breimana i in. (1984): Classification and Regression Trees (CART). Inne podejście Quinlan (1993,2004) C4.5, C.5 (
3 Drzewo graf skierowany, acykliczny, spójny, wierzchołek wyróżniony - korzeń drzewa. Drzewa binarne z każdego wierzchołka wychodzą 2 krawędzie (lub 0)(dla liści) A B C D E B, D, F, G liście F G D i E są dziećmi węzła C, F i G jego potomkami Konwencja: drzewa rosną od góry do dołu korzeń na górze rysunku, liście na dole
4 W każdym węźle warunek logiczny {X i c} (lub {X i < c}, {X i > c}) spełniony: ścieżka lewa niespełniony: scieżka prawa Zmienna X i jest jedną ze zmiennych objaśniających i z reguły zmienia się przy przejściu z węzła do węzła. W rezultacie z każdym liściem związana jest hiperkostka określona przez warunki na drodze łączącej liść z korzeniem, hiperkostki tworzą rozbicie X = R p. Dla drzewa klasyfikacyjnego: decyzja związana z liściem: wybierz tę klasę, do której należy większość elementów próby uczącej, które trafiły do danego liścia po przepuszczeniu przez drzewo; dla drzewa regresyjnego: x R m kostka w przestrzeni X wyznaczona przez liść Ê(Y X = x) = średnia z wartości y dla elementów znajdujących się w liściu
5 Przykład. Występowanie cukrzycy wśród Indianek Pima (Arizona, USA). y pos (przypadki dodatnie) y neg (przypadki ujemne) X : liczba ciąż, wynik testu glukozowego ( (56, 199)), ciśnienie rozkurczowe, grubość fałdy skórnej na tricepsie (mm), indeks masy ciała BMI (ciężar / (wzrost w m) 2 ), współczynnik podatności na cukrzycę ( (0.085, 2.42)), wiek n = 532, z tego 33% cukrzyca Liść nr 4: test glukozowy < 127.5, wiek < 28.5, osoby w tym liściu zaklasyfikowane jako zdrowe, 214 elementów, w tym 16 błędnie sklasyfikowanych.
6 Glucose<127,5 177/532 Glucose 127,5 Age<28, Age 28,5 Glucose<157, Glucose 157, Pedigree 0,62 Body<30,2 Glucose 110 Body 26,5 Age 42,5 Pregnant 1 Glucose 96,5 Pedigree 0,285 Glucose<135,5 Body<41,55 Body 35,65
7 Reguły podziału - funkcje różnorodności Reguły podziału w węzłach drzewa klasyfikacyjnego. Podpróba znajdująca się w węźle charakteryzuje się pewną różnorodnością (zróżnicowaniem) klas. Dążymy do tego, żeby różnorodność (zróżnicowanie) klas dla dzieci węzła była jak najmniejsza. węzeł: 80 klasa 1, 20 klasa 2 idealny podział (zmniejszył różnorodność klas w dzieciach do 0) potomek lewy: 80 (klasa 1) potomek prawy: 20 (klasa 2)
8 Potrzebujemy: miary różnorodności klas w węźle; oceny zmiany różnorodności klas po przejściu o poziom wyżej; algorytmu maksymalizacji zmiany różnorodności. (x i, y i ), i = 1, 2,..., n próba ucząca węzeł m wyznaczony przez warunek x R m X frakcja elementów z klasy k w węźle m ˆp mk = 1 n m I (y i = k) = n mk n m x i R m n m liczba obserwacji w węźle m n mk liczba obserwacji z klasy k w węźle m Rozsądna miara różnorodności klas powinna być = 0, gdy elementy tylko z jednej klasy = max, gdy ˆp m1 = ˆp m2 = = ˆp mg = 1/g
9 k(m) = arg max k ˆp mk (1) Miary różnorodności klas w węźle m drzewa T 1 ˆp mk(m) g ˆp Q m (T ) = mk (1 ˆp mk ) k=1 indeks Giniego (2) g ˆp mk log ˆp mk k=1 entropia p = (p 1, p 2..., p k ). Z, Z dwie niezależne zmienne losowe przyjmujące wartość i z prawdopodobieństwem p i. Indeks Giniego dla p = k i=1 p i(1 p i ) = P(Z Z ). Interpretacja indeksu Giniego w drzewie klasyfikacyjnym: oszacowanie pr. błędnej decyzji, gdy obserwacje klasyfikowane są do klasy k z pr. ˆp mk.
10 W przypadku dwóch klas, g = 2, podane trzy miary przyjmują postać: 1 max(p, 1 p) Q m (T ) = 2p(1 p) (3) p log p (1 p) log (1 p), p: jest ułamkiem przynależności do klasy 2. (Na rysunku entropia przemnożona przez 0.5)
11 Oznaczmy dzieci węzła-rodzica m symbolami m L i m R. ˆp L = n m L n m ˆp R = n m R n m = 1 ˆp L ˆp L (ˆp R ) jest ułamkiem elementów próby uczącej, które z węzła m przeszły do m L (m R ), a n ml (n mr ) oznacza liczbę obserwacji w m L (m R ).
12 Łączną miara różnorodności klas w dzieciach węzła m Q ml,m R (T ) = ˆp L Q ml (T ) + ˆp R Q mr (T ), uśredniona miara różnorodności w dzieciach. Uśrednienie uwzględnia frakcje obserwacji w lewym i prawym potomku. Zmiana różnorodności klas przy przejściu od rodzica do dzieci Q ml,m R (T ) = Q m (T ) Q ml,m R (T ).
13 Uwaga: Indeks Giniego i entropia bardziej czułe na zmiany rozkładów klas niż proporcja błędnych klasyfikacji. Rysunek: dla frakcji błędnych klasyfikacji Q ml,m R (T ) = w obu przypadkach taka sama, gdy drugi daje (intuicyjnie!) większe zmniejszenie różnorodności klas. Cel: maksymalizacja Q ml,m R (T ) ze względu na zmienną objaśniającą i próg c.
14 Atrybuty nominalne Dla atrybutu nominalnego przyjmującego L wartości: gdyby przyjąć podział na podstawie dowolnego podzbioru wartości, to mielibyśmy 1 2 2L 1 = 2 L 1 1 podziałów Duży koszt obliczeniowy. Ograniczamy się do podziałów: {x i c k }, zakładamy, że zmienna x i na skali porządkowej. Dla nominalnej cechy x i przyjmującej L wartości i g = 2 porządkujemy jej wartości x (k) i według p(1 x (k) i ) i traktujemy ją jako cechę na skali porządkowej tzn x (k) i x (l) i jeśli p(1 x (k) i ) < p(1 x (l) i ). Twierdzenie (por. tw. 4.1 w KC (2005)). W przypadku miary różnorodności Giniego i entropii powyższa procedura prowadzi do wyboru optymalnego podziału spośród wszystkich 2 L 1 1 podziałów.
15 Drzewa regresyjne Szukamy podziału m na m L i m R, aby SSE(m L ) + SSE(m R ) ( ) było minimalne. SSE(m L ) suma kwadratów rezyduów, gdy regresja dla m L estymowana jest przez średnią próbkową wartości zmiennej objaśnianej dla tego węzła itd. Minimalizacja ( ) równoważna maksymalizacji różnicy zmiany SSE przy przejściu od rodzica do dzieci.
16 Strategia wyboru najlepszego drzewa Utwórz pełne drzewo T 0 zatrzymując podziały kiedy pewna minimalna wielkość węzła została osiągnięta; przy różnych parametrach określających koszt złożoności drzew przytnij drzewo T 0 do mniejszego drzewa; spośród tak utworzonej skończonej rodziny drzew wybierz drzewo dające najmniejszy błąd w oparciu o kroswalidację.
17 Reguły przycinania drzew Kontynuując metodę optymalnych podziałów dojdziemy do drzewa z (najczęsciej) jednoelementowymi liśćmi (przeuczenie - przetrenowanie drzewa) R(T ) miara niedoskonałości drzewa dla drzewa klasyfikacyjnego: frakcja błędnych klasyfikacji dla drzewa regresyjnego: liście SSE Wprowadzamy karę za złożoność drzewa R α (T ) = R(T ) + α T ( ) T - liczba liści w drzewie T, α > 0. Przy ustalonym α minimalizujemy R α (T ). Dla α = 0: drzewo pełne T 0, duże α: sam korzeń.
18 Zwiększając α od 0 dostaniemy dyskretną rodzinę poddrzew T j drzewa T 0 takich że T j minimalizuje (*) dla α [α j, α j+1 ), j = 1, 2,..., k. Wybieramy dobre drzewo spośród drzew T 1, T 2,..., T k (kandydatów na dobre drzewa). Metodą kroswalidacji liczymy R CV (T i ). Później wyznaczamy j 0 : R CV (T j0 ) = min j R CV (T j ) (!) lub reguła 1SE Wybieramy najmniejsze drzewo T j dla którego R CV (T j ) R CV (T j0 ) + SE(R CV (T j0 )), gdzie SE(R CV (T j0 )) = (R CV (T j0 )(1 R CV (T j0 ))/V ) 1/2, błąd standardowy dla kroswalidacji V-krotnej. Reguła 1SE uwzględnia wypłaszczanie się funkcji R CV (T j ) w okolicach minimum.
19 Przykład. Zależność między stężeniem ozonu (O3), a warunkami meteo: sbtp temperatura hmdt wilgotność powietrza vsty visibility ibtp inversion base temperature dgpg gradient ciśnienia, ibht inversion base height
20 temp< 67.5 ibh>=3574 ibt< dpg< 9.5 humidity< 59.5doy>= ibt< vis>=
21 node), split, n, deviance, yval * denotes terminal node 1) root ) temp< ) ibh>= * 5) ibh< ) temp>= ) ibt< ) vis>= * 31) vis< * CP nsplit rel error xerror xstd
22 size of tree X val Relative Error Inf Drzewo dające minimalny xerror = (stosunek R CV (T ) i SSE dla korzenia) oparte na siedmiu podziałach. Odpowiadający SE= Drzewo wybrane metodą 1SE ma xerror= (< ) i jest oparte na 4 podziałach. cp (complexity) odpowiada α. cp
23 Konstrukcja drzew regresyjnych i klasyfikacyjnych w R: pakiet rpart, funkcja rpart. data.rpart<-rpart(03 ~., cp=0.001, minsplit=2,data=..) cp odpowiada wartości α (współczynnik w karze za złożoność drzewa), minsplit -minimalna liczba elementów w węźle, przy której dokonuje się jeszcze podziału elementów węzła. Wykres przedstawiający drzewo: plot(data.rpart, uniform=true,margin=0.1) text(data.rpart) Wykres i wydruk xerror i jego błędu standardowego: plotcp(data.rpart) printcp(data.rpart)
24 Uwagi Dobre strony drzew Łatwość interpretacyjna; Działaja zarówno dla zmiennych ilościowych i nominalnych; Wartości brakujące: przy konstrukcji podziału węzła rozpatrujemy tylko zmienne nie mające braków w zbiorze uczacym i poza najlepszym podziałem wyznaczamy tzw. podziały zastepcze (surrogate splits) tzn. podział drugi, trzeci w kolejności itd. Przepuszczając obserwacje przez drzewo znajdujemy w każdym węźle najlepszy realizowalny dla tej obserwacji podział.
25 Wady drzew: Rzadko stosowane w trudnych problemach klasyfikacyjnych, ze względu na Niestabilność drzew i dużą wariancję rozwiązania: nieduże zmiany w danych mogą spowodować istotne zmiany w strukturze podziałów (związane z hierarchiczną strukturą drzewa: zmiana w podziale na górze propaguje się w dół). Również wartość optymalnego cp i optymalne drzewo może zmieniać się od wykonania do wykonania. Komitety drzew (bagging) zmniejszają wariancję. Drzewa regresyjne nie dają ciągłego estymatora regresji; Drzewa regresyjne nieprzydatne w przypadku zależności addytywnych od predyktorów E(Y X ) = f (X 1 ) f (X p ). Remedium: Lasy losowe i gradient boosting oparty na drzewach
WYKŁAD: DRZEWA KLASYFIKACYJNE I REGRESYJNE. Metoda CART. MiNI PW
WYKŁAD: DRZEWA KLASYFIKACYJNE I REGRESYJNE. Metoda CART MiNI PW Drzewa służą do konstrukcji klasyfikatorów prognozujących Y {1, 2,..., g} na podstawie p-wymiarowego wektora atrybutów (dowolne atrybuty:
WYKŁAD: DRZEWA KLASYFIKACYJNE I REGRESYJNE. METODA CART. Zaawansowane Metody Uczenia Maszynowego
WYKŁAD: DRZEWA KLASYFIKACYJNE I REGRESYJNE. METODA CART Zaawansowane Metody Uczenia Maszynowego Drzewa służą do konstrukcji klasyfikatorów prognozujących Y {1, 2,..., g} na podstawie p-wymiarowego wektora
Drzewa decyzyjne i lasy losowe
Drzewa decyzyjne i lasy losowe Im dalej w las tym więcej drzew! ML Gdańsk http://www.mlgdansk.pl/ Marcin Zadroga https://www.linkedin.com/in/mzadroga/ 20 Czerwca 2017 WPROWADZENIE DO MACHINE LEARNING CZYM
PODSTAWY STATYSTYCZNEGO MODELOWANIA DANYCH. Wykład 6 Drzewa klasyfikacyjne - wprowadzenie. Reguły podziału i reguły przycinania drzew.
PODSTAWY STATYSTYCZNEGO MODELOWANIA DANYCH Wykład 6 Drzewa klasyfikacyjne - wprowadzenie. Reguły podziału i reguły przycinania drzew. Wprowadzenie Drzewo klasyfikacyjne Wprowadzenie Formalnie : drzewo
ESTYMACJA BŁĘDU PREDYKCJI I JEJ ZASTOSOWANIA
ESTYMACJA BŁĘDU PREDYKCJI I JEJ ZASTOSOWANIA Jan Mielniczuk Wisła, grudzień 2009 PLAN Błędy predykcji i ich podstawowe estymatory Estymacja błędu predykcji w modelu liniowym. Funkcje kryterialne Własności
Drzewa klasyfikacyjne Lasy losowe. Wprowadzenie
Wprowadzenie Konstrukcja binarnych drzew klasyfikacyjnych polega na sekwencyjnym dzieleniu podzbiorów przestrzeni próby X na dwa rozłączne i dopełniające się podzbiory, rozpoczynając od całego zbioru X.
Dane dotyczą parametrów wydolnościowych mężczyzn zmierzonych podczas biegu na 1,5 mili. Zmienną objaśnianą jest Oxygen (pobór tlenu podczas biegu).
Zbiór fitness Przedmiotem zainteresowania będzie zbiór fitness. Dane dotyczą parametrów wydolnościowych mężczyzn zmierzonych podczas biegu na 1,5 mili. Zmienną objaśnianą jest Oxygen (pobór tlenu podczas
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania
Indukowane Reguły Decyzyjne I. Wykład 3
Indukowane Reguły Decyzyjne I Wykład 3 IRD Wykład 3 Plan Powtórka Grafy Drzewa klasyfikacyjne Testy wstęp Klasyfikacja obiektów z wykorzystaniem drzewa Reguły decyzyjne generowane przez drzewo 2 Powtórzenie
Algorytmy klasyfikacji
Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe
WYKŁAD 11 Uczenie maszynowe drzewa decyzyjne
WYKŁAD 11 Uczenie maszynowe drzewa decyzyjne Reprezentacja wiedzy w postaci drzew decyzyjnych entropia, przyrost informacji algorytmy ID3, C4.5 problem przeuczenia wyznaczanie reguł rzykładowe drzewo decyzyjne
Konspekt do zajęć: Statystyczne metody analizy danych. Agnieszka Nowak-Brzezińska 14 maja 2012
Drzewa klasyfikacyjne Konspekt do zajęć: Statystyczne metody analizy danych Agnieszka Nowak-Brzezińska 14 maja 2012 1 Wprowadzenie Drzewa klasyfikacyjne 1 jako reprezentacja wiedzy o klasyfikacji są dość
Stosowana Analiza Regresji
prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile
Indukowane Reguły Decyzyjne I. Wykład 8
Indukowane Reguły Decyzyjne I Wykład 8 IRD Wykład 8 Plan Powtórka Krzywa ROC = Receiver Operating Characteristic Wybór modelu Statystyka AUC ROC = pole pod krzywą ROC Wybór punktu odcięcia Reguły decyzyjne
ALGORYTM RANDOM FOREST
SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Agnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia
SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska BUDOWA DRZEW DECYZYJNYCH Drzewa decyzyjne są metodą indukcyjnego
8. Drzewa decyzyjne, bagging, boosting i lasy losowe
Algorytmy rozpoznawania obrazów 8. Drzewa decyzyjne, bagging, boosting i lasy losowe dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Drzewa decyzyjne Drzewa decyzyjne (ang. decision trees), zwane
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
ED Laboratorium 3. Drzewa decyzyjne
ED Laboratorium Drzewa decyzyjne 1 Drzewa decyzyjne Algorytmy indukcji drzew decyzyjnych to jeden z klasycznych algorytmów uczenia maszynowego służący do rozwiązywania problemu klasyfikacji. Drzewa decyzyjne
Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
Złożoność i zagadnienia implementacyjne. Wybierz najlepszy atrybut i ustaw jako test w korzeniu. Stwórz gałąź dla każdej wartości atrybutu.
Konwersatorium Matematyczne Metody Ekonomii Narzędzia matematyczne w eksploracji danych Indukcja drzew decyzyjnych Wykład 3 - część 2 Marcin Szczuka http://www.mimuw.edu.pl/ szczuka/mme/ Plan wykładu Generowanie
Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski
: idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski
Kompresja danych Streszczenie Studia Dzienne Wykład 10,
1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, 28.04.2006 Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny
Analiza składowych głównych. Wprowadzenie
Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących
Drzewa decyzyjne. Inteligentne Obliczenia. Wydział Mechatroniki Politechniki Warszawskiej. Anna Sztyber
Drzewa decyzyjne Inteligentne Obliczenia Wydział Mechatroniki Politechniki Warszawskiej Anna Sztyber INO (IAiR PW) Drzewa decyzyjne Anna Sztyber / Drzewa decyzyjne w podstawowej wersji algorytm klasyfikacji
Metody klasyfikacji danych - część 1 p.1/24
Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji
Regresyjne metody łączenia klasyfikatorów
Regresyjne metody łączenia klasyfikatorów Tomasz Górecki, Mirosław Krzyśko Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza XXXV Konferencja Statystyka Matematyczna Wisła 7-11.12.2009
Drzewa decyzyjne w SAS Enterprise Miner
Drzewa decyzyjne w SAS Enterprise Miner Aneta Ptak-Chmielewska Instytut Statystyki i Demografii Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych www.sgh.waw.pl/zaklady/zahziaw 1 struktura ćwiczeń
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu
Grafy (3): drzewa. Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków. UTP Bydgoszcz
Grafy (3): drzewa Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków UTP Bydgoszcz 13 (Wykłady z matematyki dyskretnej) Grafy (3): drzewa 13 1 / 107 Drzewo Definicja. Drzewo to graf acykliczny
Drzewa klasyfikacyjne algorytm podstawowy
DRZEWA DECYZYJNE Drzewa klasyfikacyjne algorytm podstawowy buduj_drzewo(s przykłady treningowe, A zbiór atrybutów) { utwórz węzeł t (korzeń przy pierwszym wywołaniu); if (wszystkie przykłady w S należą
WYKŁAD: Estymacja funkcji regresji I. Zaawansowane Metody Uczenia Maszynowego
WYKŁAD: Estymacja funkcji regresji I Zaawansowane Metody Uczenia Maszynowego Niech (X, Y ) R p+1 będzie wektorem losowym takim, że Y = f (X) + ε, gdzie ε- błąd losowy taki, że E(ε X = x) = 0 dla dowolnego
Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne)
Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski Klasyfikacja i predykcja. Odkrywaniem reguł klasyfikacji nazywamy proces znajdowania
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Wprowadzenie. Metody bayesowskie Drzewa klasyfikacyjne i lasy losowe Sieci neuronowe SVM. Klasyfikacja. Wstęp
Wstęp Problem uczenia się pod nadzorem, inaczej nazywany uczeniem się z nauczycielem lub uczeniem się na przykładach, sprowadza się do określenia przydziału obiektów opisanych za pomocą wartości wielu
Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2
Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.
Data Mining Wykład 5. Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny. Indeks Gini. Indeks Gini - Przykład
Data Mining Wykład 5 Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny Indeks Gini Popularnym kryterium podziału, stosowanym w wielu produktach komercyjnych, jest indeks Gini Algorytm SPRINT
Podstawy Informatyki. Metody dostępu do danych
Podstawy Informatyki c.d. alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Bazy danych Struktury danych Średni czas odszukania rekordu Drzewa binarne w pamięci dyskowej 2 Sformułowanie
Statystyka opisowa. Wykład V. Regresja liniowa wieloraka
Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +
Co to są drzewa decyzji
Drzewa decyzji Co to są drzewa decyzji Drzewa decyzji to skierowane grafy acykliczne Pozwalają na zapis reguł w postaci strukturalnej Przyspieszają działanie systemów regułowych poprzez zawężanie przestrzeni
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Wprowadzenie. Data Science Uczenie się pod nadzorem
Wprowadzenie Wprowadzenie Wprowadzenie Wprowadzenie Machine Learning Mind Map Historia Wstęp lub uczenie się z przykładów jest procesem budowy, na bazie dostępnych danych wejściowych X i oraz wyjściowych
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Przykład eksploracji danych o naturze statystycznej Próba 1 wartości zmiennej losowej odległość
Dwie metody Klasyczna metoda histogramu jako narzędzie do postawienia hipotezy, jaki rozkład prawdopodobieństwa pasuje do danych Indukcja drzewa decyzyjnego jako metoda wykrycia klasyfikatora ukrytego
Drzewa decyzyjne z użyciem pakietu R. Zastosowanie w badaniach występowania nawrotu choroby u pacjentek z nowotworem piersi.
Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Marta Tyce Nr albumu: 277952 Drzewa decyzyjne z użyciem pakietu R. Zastosowa w badaniach występowania nawrotu choroby u pacjentek z nowotworem
Algorytmy metaheurystyczne Wykład 11. Piotr Syga
Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,
Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,
Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której
Wysokość drzewa Głębokość węzła
Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.
Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne
Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może
KODY SYMBOLI. Kod Shannona-Fano. Algorytm S-F. Przykład S-F
KODY SYMBOLI Kod Shannona-Fano KODOWANIE DANYCH, A.Przelaskowski Metoda S-F Kod Huffmana Adaptacyjne drzewo Huffmana Problemy implementacji Kod Golomba Podsumowanie Kod drzewa binarnego Na wejściu rozkład:
Klasyfikacja. Indeks Gini Zysk informacyjny. Eksploracja danych. Klasyfikacja wykład 2
Klasyfikacja Indeks Gini Zysk informacyjny Klasyfikacja wykład 2 Kontynuujemy prezentacje metod klasyfikacji. Na wykładzie zostaną przedstawione dwa podstawowe algorytmy klasyfikacji oparte o indukcję
PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH. Wykład 4 Dyskryminacja oparta na regresji liniowej i logistycznej. Perceptron Rosenblatta.
Wykład 4 Dyskryminacja oparta na regresji liniowej i logistycznej. Perceptron Rosenblatta. Dyskryminacja oparta na regresji liniowej i logistycznej Wprowadzenie Problem analizy dyskryminacyjnej jest ściśle
Indukcja drzew decyzyjnych
Konwersatorium Matematyczne Metody Ekonomii Narzędzia matematyczne w eksploracji danych Indukcja drzew decyzyjnych Wykład 3 - część 2 Marcin Szczuka http://www.mimuw.edu.pl/ szczuka/mme/ Divide et impera
Metody Eksploracji Danych. Klasyfikacja
Metody Eksploracji Danych Klasyfikacja w wykładzie wykorzystano: 1. materiały dydaktyczne przygotowane w ramach projektu Opracowanie programów nauczania na odległość na kierunku studiów wyższych Informatyka
Algorytmy klasyfikacji
Algorytmy klasyfikacji Konrad Miziński Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych Warszawa, Polska k.mizinski@stud.elka.pw.edu.pl Streszczenie Niniejszy dokument opisuje jedna
Hierarchiczna analiza skupień
Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym
SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006
SAS wybrane elementy DATA MINING Część III Seweryn Kowalski 2006 Algorytmy eksploracji danych Algorytm eksploracji danych jest dobrze zdefiniowaną procedurą, która na wejściu otrzymuje dane, a na wyjściu
Programowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np.
Drzewa binarne Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0 i T 1 są drzewami binarnymi to T 0 T 1 jest drzewem binarnym Np. ( ) ( ( )) Wielkość drzewa
ALGORYTMY I STRUKTURY DANYCH
LGORTM I STRUKTUR DNH Temat 6: Drzewa ST, VL Wykładowca: dr inż. bigniew TRPT e-mail: bigniew.tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/ Współautorami wykładu
DRZEWA KLASYFIKACYJNE W BADANIACH SATYSFAKCJI
StatSoft Polska, tel. (1) 48400, (601) 414151, info@statsoft.pl, www.statsoft.pl DRZEWA KLASYFIKACYJNE W BADANIACH SATYSFAKCJI I LOJALNOŚCI KLIENTÓW Mariusz Łapczyński Akademia Ekonomiczna w Krakowie,
Metody probabilistyczne klasyfikatory bayesowskie
Konwersatorium Matematyczne Metody Ekonomii narzędzia matematyczne w eksploracji danych First Prev Next Last Go Back Full Screen Close Quit Metody probabilistyczne klasyfikatory bayesowskie Wykład 8 Marcin
Estymacja parametrów rozkładu cechy
Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział
Rozmyte drzewa decyzyjne. Łukasz Ryniewicz Metody inteligencji obliczeniowej
µ(x) x µ(x) µ(x) x x µ(x) µ(x) x x µ(x) x µ(x) x Rozmyte drzewa decyzyjne Łukasz Ryniewicz Metody inteligencji obliczeniowej 21.05.2007 AGENDA 1 Drzewa decyzyjne kontra rozmyte drzewa decyzyjne, problemy
Własności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
Wykład 2. Drzewa zbalansowane AVL i 2-3-4
Wykład Drzewa zbalansowane AVL i -3-4 Drzewa AVL Wprowadzenie Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Drzewa -3-4 Definicja drzewa -3-4 Operacje wstawiania
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują
Wybrane zagadnienia uczenia maszynowego. Zastosowania Informatyki w Informatyce W2 Krzysztof Krawiec
Wybrane zagadnienia uczenia maszynowego Zastosowania Informatyki w Informatyce W2 Krzysztof Krawiec Przygotowane na podstawie T. Mitchell, Machine Learning S.J. Russel, P. Norvig, Artificial Intelligence
Ekonometria. Wprowadzenie do modelowania ekonometrycznego Estymator KMNK. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Wprowadzenie do modelowania ekonometrycznego Estymator Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 1 Estymator 1 / 16 Agenda 1 Literatura Zaliczenie przedmiotu 2 Model
Analiza zależności cech ilościowych regresja liniowa (Wykład 13)
Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne
Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład
Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący
Drzewa klasyfikacyjne Lasy losowe. Wprowadzenie
Wprowadzenie Konstrukcja binarnych drzew klasyfikacyjnych polega na sekwencyjnym dzieleniu podzbiorów przestrzeni próby X na dwa rozłączne i dopełniające się podzbiory, rozpoczynając od całego zbioru X.Wkażdymkrokupodziałdokonywanyjesttak,aby
Data Mining Wykład 4. Plan wykładu
Data Mining Wykład 4 Klasyfikacja danych Klasyfikacja poprzez indukcje drzew decyzyjnych Plan wykładu Sformułowanie problemu Kryteria oceny metod klasyfikacji Metody klasyfikacji Klasyfikacja poprzez indukcje
dodatkowe operacje dla kopca binarnego: typu min oraz typu max:
ASD - ćwiczenia IX Kopce binarne własność porządku kopca gdzie dla każdej trójki wierzchołków kopca (X, Y, Z) porządek etykiet elem jest następujący X.elem Y.elem oraz Z.elem Y.elem w przypadku kopca typu
WYKORZYSTANIE DRZEW KLASYFIKACYJNYCH DO WSPOMAGANIA
WYKORZYSTANIE DRZEW KLASYFIKACYJNYCH DO WSPOMAGANIA PROCESÓW PODEJMOWANIA DECYZJI mgr Małgorzata Misztal 6 Uwagi wstępne Działalność człowieka to nieustanny proces podejmowania decyzji. Z każdą decyzją
Metoda simpleks. Gliwice
Sprowadzenie modelu do postaci bazowej Sprowadzenie modelu do postaci bazowej Przykład 4 Model matematyczny z Przykładu 1 sprowadzić do postaci bazowej. FC: ( ) Z x, x = 6x + 5x MAX 1 2 1 2 O: WB: 1 2
Stopę zbieżności ciagu zmiennych losowych a n, takiego, że E (a n ) < oznaczamy jako a n = o p (1) prawdopodobieństwa szybciej niż n α.
Stopy zbieżności Stopę zbieżności ciagu zmiennych losowych a n, takiego, że a n oznaczamy jako a n = o p (1 p 0 a Jeśli n p n α 0, to a n = o p (n α i mówimy a n zbiega według prawdopodobieństwa szybciej
Optymalizacja wielokryterialna
Optymalizacja wielokryterialna Optymalizacja wielokryterialna Dział badań operacyjnych zajmujący się wyznaczaniem optymalnej decyzji w przypadku, gdy występuje więcej niż jedno kryterium Problem wielokryterialny
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:
Drzewo. Drzewo uporządkowane ma ponumerowanych (oznaczonych) następników. Drzewo uporządkowane składa się z węzłów, które zawierają następujące pola:
Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.
Klasyfikacja. Sformułowanie problemu Metody klasyfikacji Kryteria oceny metod klasyfikacji. Eksploracja danych. Klasyfikacja wykład 1
Klasyfikacja Sformułowanie problemu Metody klasyfikacji Kryteria oceny metod klasyfikacji Klasyfikacja wykład 1 Niniejszy wykład poświęcimy kolejnej metodzie eksploracji danych klasyfikacji. Na początek
7. Teoria drzew - spinanie i przeszukiwanie
7. Teoria drzew - spinanie i przeszukiwanie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 7. wteoria Krakowie) drzew - spinanie i przeszukiwanie
Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych DRZEWA KLASYFIKACYJNE ICH BUDOWA, PROBLEMY ZŁOŻONOŚCI I SKALOWALNOŚCI
Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych PRACA DYPLOMOWA MAGISTERSKA MATEMATYKA DRZEWA KLASYFIKACYJNE ICH BUDOWA, PROBLEMY ZŁOŻONOŚCI I SKALOWALNOŚCI Autor: Mariusz Gromada Promotor:
Rozpoznawanie wzorców. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki
Rozpoznawanie wzorców Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Twierzdzenie: Prawdopodobieostwo, że n obserwacji wybranych
Regresja liniowa wprowadzenie
Regresja liniowa wprowadzenie a) Model regresji liniowej ma postać: gdzie jest zmienną objaśnianą (zależną); są zmiennymi objaśniającymi (niezależnymi); natomiast są parametrami modelu. jest składnikiem
Wyznaczanie strategii w grach
Wyznaczanie strategii w grach Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Definicja gry Teoria gier i konstruowane na jej podstawie programy stanowią jeden z głównych
< K (2) = ( Adams, John ), P (2) = adres bloku 2 > < K (1) = ( Aaron, Ed ), P (1) = adres bloku 1 >
Typy indeksów Indeks jest zakładany na atrybucie relacji atrybucie indeksowym (ang. indexing field). Indeks zawiera wartości atrybutu indeksowego wraz ze wskaźnikami do wszystkich bloków dyskowych zawierających
Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010
Algorytmy równoległe Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka Znajdowanie maksimum w zbiorze n liczb węzły - maksimum liczb głębokość = 3 praca = 4++ = 7 (operacji) n - liczność
Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego
Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Współczynnik korelacji opisuje siłę i kierunek związku. Jest miarą symetryczną. Im wyższa korelacja tym lepiej potrafimy
liniowa - elementy następują jeden za drugim. Graficznie możemy przedstawić to tak:
Sortowanie stogowe Drzewo binarne Binary Tree Dotychczas operowaliśmy na prostych strukturach danych, takich jak tablice. W tablicy elementy ułożone są zgodnie z ich numeracją, czyli indeksami. Jeśli za
Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek
Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących