ODRĘBNA KOMPRESJA WYŻSZYCH OKTAW ELEKTROKARDIOGRAMU
|
|
- Justyna Wojciechowska
- 5 lat temu
- Przeglądów:
Transkrypt
1 ODRĘBNA KOMPRESJA WYŻSZYCH OKTAW ELEKTROKARDIOGRAMU Piotr Augustyniak Katedra Automatyki AGH, Kraków, Mickiewicza 30, e_mail: Streszczenie Przedmiotem referatu jest algorytm kompresji elektrokardiogramów wykorzystujący dekompozycję czasowo-częstotliwościową sygnału i spodziewaną chwilową szerokość jego pasma. W zakresie wyższych oktaw otrzymano sygnał odcinkami ciągły, uzupełniony bajtem synchronizacji z sygnałem podstawowym i współczynnikiem normalizacji rozdzielczości. Algorytm zawiera mechanizmy kontroli zniekształceń w dziedzinie czasu oraz dopasowania parametrów do odmiennej niż założona charakterystyki sygnału (np. elektrokardiogram patologiczny). Uzyskany współczynnik kompresji 4.90 przy zniekształceniach poniżej 5% uznano za wynik obiecujący. 1. Wstęp Kompresja sygnałów elektrokardiograficznych jest zagadnieniem coraz bardziej istotnym, tym bardziej im powszechniejsze stają się techniki zapisów długoczasowych (metodą Holtera). Z jednej strony, współczynniki kompresji możliwe do osiągnięcia metodami bezstratnymi są niezadowalające, z drugiej strony, powszechnie kwestionowane jest stosowanie metod stratnych, co powszechnie wiązane jest z ryzykiem zniekształcenia informacji istotnych diagnostycznie [1]. Analiza tych zniekształceń prowadzi do wniosku, że stosowanie uniwersalnych metod kompresji najczęściej opartych na parametrach energetycznych do elektrokardiogramu, powinno być zastąpione przez metody dedykowane wykorzystujące wiedzę o sygnale i jego strukturze. Wiedza ta jest aplikowana w poszczególnych partiach sygnału w zależności od rezultatów analizy dokonywanej automatycznie z użyciem powszechnie stosowanych klinicznie algorytmów [2] - bezpośrednio przed procesem kompresji. Opisany algorytm kompresji wykorzystuje opracowaną w Laboratorium Biocybernetyki AGH funkcję chwilowego pasma elektrokardiogramu [3]. 2. Narzędzia kontroli procesu kompresji Rozdział ten poświęcony jest opisowi zastosowanych w algorytmie kompresji mechanizmów predykcyjno-korekcyjnych, które realizują bieżące dopasowanie chwilowych parametrów kompresji do lokalnych własności sygnału. Mechanizmy te wykorzystują wiedzę o sygnale EKG i zawierają algorytmy przetwarzania typowe dla tego właśnie sygnału, co uprawnia stwierdzenie, że metoda kompresji jest dedykowana dla elektrokardiogramu. Opracowanie analogicznych mechanizmów wykorzystujących własności typowe dla innych sygnałów umożliwi wykorzystanie opisanego algorytmu do ich kompresji Chwilowe pasmo elektrokardiogramu Chwilowe pasmo elektrokardiogramu jest funkcją czasu opracowaną na podstawie typowych przebiegów EKG definiującą chwilową spodziewaną szerokość pasma na podstawie punktów początkowych i końcowych rozpoznanych załamków. Funkcja jest zdefiniowana na powierzchni czasowo-częstotliwościowej i oddziela współczynniki, których praca finansowana ze źródeł KBN nr grantu: 8 T11E
2 wkład w treść informacyjną sygnału nie przekracza założonego progu (np. 5%). Przykładową wartość chwilowej szerokości pasma dla zespołu QRS przedstawia rys. 1. Rys.1. Spodziewana reprezentacja czasowo-częstotliwościowa zespołu QRS; czarna linia oddziela współczynniki reprezentujące poniżej 5% wartości chwilowej energii jest to funkcja chwilowego pasma elektrokardiogramu. Wykazano, że przy założeniu strat na poziomie 5% ilość niezerowych współczynników powierzchni czasowo-częstotliwościowej nie przekracza 20% ogólnej ich liczby [4] Filtracja w dziedzinie czasowo-częstotliwościowej Ponieważ funkcja chwilowego pasma elektrokardiogramu jest określona na czasowoczęstotliwościowej reprezentacji sygnału w obrębie wykrytych załamków wymagane jest użycie bezstratnej transformacji czasowo-częstotliwościowej, np. transformacji falkowej. Dopiero w tej dziedzinie możliwa będzie eliminacja współczynników reprezentacji czasowoczęstotliwościowej nie niosących istotnych informacji, czyli leżących poza zakresem wyznaczonym przez funkcję chwilowego pasma elektrokardiogramu. - Jest sprawą fundamentalną użycie transformacji bezstratnej (opartej na dekompozycji ortonormalnej), gdyż warunkuje to prawidłową rekonstrukcję (dekompresję) sygnału. - Transformacja powinna używać filtrów o możliwie krótkim nośniku i wprowadzających minimalne zniekształcenia fazowe. Transformacja użyta w opisywanym algorytmie kompresji wykorzystywała biortogonalne filtry Daubechies 5 rzędu i algorytm dekompozycji piramidowej [5]. Dekompozycja sygnału o oryginalnej częstotliwości próbkowania 256 Hz, została przeprowadzona na trzech poziomach, co umożliwiło wydzielenie oktaw o pasmach: Hz, Hz oraz Hz (rys. 2). Poniżej 16 Hz zachowano sygnał oryginalny gdyż: - przeprowadzone badania wykazały mały związek zawartości informacyjnej sygnału z załamkami elektrokardiogramu, - efektywna częstotliwość próbkowania wynosi 32 Hz i odpowiadający jej okres (30 ms) jest porównywalny z długością załamków, - sygnał o pasmie Hz jest reprezentowany przez niewielka ilość współczynników i ich ewentualna modyfikacja nie jest już tak interesująca z punktu widzenia kompresji.
3 Filtr dolnoprzepustowy Daubechies 5 rzędu Filtr górnoprzepustowy Daubechies 5 rzędu Rys. 2. Współczynniki zastosowanych filtrów ortogonalnych i schemat dekompozycji piramidowej, obok przedstawiono symbolicznie długość i zawartość widmową produktów kolejnych etapów 2.3. Metody weryfikacji poziomu zakłóceń Funkcja chwilowego pasma elektrokardiogramu została określona na podstawie własności statystycznych typowych zapisów. Istnieje uzasadniona obawa, że pojawi się sygnał EKG nie spełniający założeń przyjętych podczas konstruowania funkcji chwilowego pasma. Przykładowe sytuacje to: - migotanie przedsionków, blok przedsionkowo-komorowy, migotanie komór struktura sygnału odbiega od założonej kolejności załamków P, QRS i T; - podwyższony poziom zakłóceń w pasmach podlegających modyfikacji w dziedzinie czasowo-częstotliwościowej jest to zwykle związane ze zmniejszoną dokładnością wyznaczania granic załamków. Proponowany algorytm kompresji korzysta z dwóch metod weryfikacji poziomu zniekształceń sygnału: - poprzez zastosowanie odwrotnej transformacji falkowej do sygnału skompresowanego a następnie porównanie sygnału zrekonstruowanego z sygnałem oryginalnym, - poprzez analizę istotności współczynników reprezentacji czasowo-częstotliwościowej załamka w stosunku do odcinka referencyjnego (linii izoelektrycznej). Obie opisane metody wprowadzają modyfikacje wpływu funkcji chwilowego pasma elektrokardiogramu na eliminację współczynników powierzchni czasowo-częstotliwościowej. 3. Algorytm kompresji sygnału EKG Użycie modyfikowanej funkcji chwilowego pasma prowadzi do uzyskania powierzchni czasowo-częstotliwościowej na której sygnał poniżej ostatniego poziomu dekompozycji (16 Hz) będzie ciągły, natomiast sygnały wyższych oktaw będą tylko odcinkami niezerowe. Wystąpią one tylko tam, gdzie jest to istotne z punktu widzenia treści informacyjnej sygnału (rys. 3).
4 Hz Hz Hz Hz Rys. 3. Powierzchnia czasowo-częstotliwościowa sygnału EKG zmodyfikowana przez funkcję pasma chwilowego. Sygnał poniżej ostatniego poziomu dekompozycji jest ciągły, natomiast pozostałe sygnały są odcinkami ciągłe i występują tylko tam, gdzie jest to niezbędne z punktu widzenia zachowania treści informacyjnej sygnału. Poniżej: odpowiadający sygnał EKG. Schemat blokowy algorytmu kompresji przedstawia rysunek 4. porównanie sygn. zrekonstruowanego z oryginalnym przekształcenie t-f t (IWT) identyfikacja załamków P, QRS i T przekształcenie t t-f (WT) modyfikacja powierzchni t-f normalizacja rozdzielczości obliczenie istotności współczynników t-f Rys. 4. Schemat blokowy algorytmu kompresji Niezerowe odcinki sygnałów wyższych oktaw są poprzedzone bajtem synchronizującym zawierającym pozycję ich początku względem sygnału ciągłego, natomiast zawartość odcinków jest przedmiotem normalizacji rozdzielczości. Normalizacja rozdzielczości polega na ustaleniu - dla każdego odcinka sygnału indywidualnie - nowej jednostki odpowiadającej 1 LSB, tak aby rozdzielczość nie przekraczała 8 bitów. W większości przypadków odcinki sygnałów wyższych oktaw niosą niewielką energię, najstarsze bity nie są wykorzystane i żadne przeskalowanie nie jest konieczne. W przeciwnym przypadku, odszukiwane jest maksimum odcinka i wszystkie jego wartości są normalizowane tak, aby wartość maksymalna była reprezentowana przez 255. Jeżeli przeskalowanie amplitudy było wykonane, nowa wartość odpowiadająca 1 LSB jest zapisywana w bajcie poprzedzającym sygnał. Warto zwrócić uwagę, że jednostka ta może być inna dla kolejnych odcinków sygnału należących do tej samej oktawy. Sygnał ciągły w paśmie Hz jest przenoszony z pełną rozdzielczością 14 bitów. Struktura sygnału skompresowanego jest przedstawiona na rys. 5.
5 bajt synchronizacji bajt przeskalowania wartości 8 bitowe wartości 14 bitowe Hz Hz Hz Hz Rys. 5. Struktura sygnału skompresowanego 4. Rezultaty Stopień kompresji sygnału EKG w dużej mierze zależy od lokalnych jego własności, toteż nie jest możliwe podanie dokładnej wartości obowiązującej dla wszystkich zapisów. Przeprowadzone testy opisywanego algorytmu z użyciem plików z podstawowego katalogu kardiologicznej bazy danych MIT-BIH (MITDB, po przepróbkowaniu na 256 Hz) umożliwiły uzyskanie współczynnika kompresji równego 4.90, co wydaje się wartością znaczną przy dopuszczeniu zniekształceń lokalnie tylko sięgających 5%. W rzeczywistości mogą się jednak pojawić sygnały dla których współczynnik kompresji będzie niższy. 5. Dyskusja Opisany algorytm kompresji elektrokardiogramów został wykonany w wersji eksperymentalnej umożliwiającej dalsze badania dotyczące bardziej szczegółowych zagadnień: - rola i zakres oddziaływania metod weryfikacji zakłóceń powinny być przedmiotem dalszych analiz, szczególnie przy wykorzystaniu elektrokardiogramów patologicznych; - z medycznego punktu widzenia, należy umożliwić lekarzowi znającemu dodatkowe uwarunkowania modyfikację funkcji określonego pasma; typowym zastosowaniem jest poszukiwanie późnych potencjałów (LP) wysokie częstotliwości będą wówczas przenoszone bezstratnie w obrębie zespołu QRS i bezpośrednio po nim; - znacząca ilość współczynników (61%) to sygnał w paśmie Hz; ponieważ dekompozycja czasowo-częstotliwościowa tak rzadko próbkowanego sygnału jest problematyczna, celowe wydaje się zastosowanie innego algorytmu kompresji bezstratnej (np. kodowania przyrostowego) do tego sygnału. Bibliografia [1] Polskie Towarzystwo Kardiologiczne Standardy postępowania w badaniu Holterowskim nakładem PTK, Warszawa 1997 [2] D. Morlet Algorithmes de localisation, classification et delimitation precise des ondes dans le systeme de Lyon these INSA-Lyon [3] P. Augustyniak Pasmo chwilowe sygnału elektrokardiograficznego w materiałach konferencji TiM 99, [4] P. Augustyniak, R. Tadeusiewicz "The Bandwidth Variability of a Typical Electrocardiogram" w materiałach konferencji EMBEC 99, Vienna [5] I. Daubechies "Ten lectures on wavelets" CBMS-NSF conference series in applied mathematics. SIAM Ed, 1992,
CIĄGŁY MODEL SZUMU ELEKTROKARDIOGRAMU W DZIEDZINIE CZASOWO-CZĘSTOTLIWOŚCIOWEJ
V Krajowa Konferencja "Modelowanie Cybernetyczne Systemów Biologicznych" Kraków 2000 CIĄGŁY MODEL SZUMU ELEKTROKARDIOGRAMU W DZIEDZINIE CZASOWO-CZĘSTOTLIWOŚCIOWEJ Piotr Augustyniak Katedra Automatyki AGH,
POMIAR CHWILOWEGO PASMA SYGNAŁU EKG Z ESTYMACJĄ SZUMÓW W ZAKRESIE NISKICH CZĘSTOTLIWOŚCI
II Sympozjum Modelowanie i Pomiary w Medycynie 8-12 maja 2000r., Krynica Górska POMIAR CHWILOWEGO PASMA SYGNAŁU EKG Z ESTYMACJĄ SZUMÓW W ZAKRESIE NISKICH CZĘSTOTLIWOŚCI Piotr Augustyniak 1 STRESZCZENIE
OCENA GĘSTOŚCI INFORMACYJNEJ ELEKTROKARDIOGRAMU METODĄ ELIMINACJI WSPÓŁCZYNNIKÓW FALKOWYCH
II Sympozjum Modelowanie i Pomiary w Medycynie 8-12 maja 2000r., Krynica Górska OCENA GĘSTOŚCI INFORMACYJNEJ ELEKTROKARDIOGRAMU METODĄ ELIMINACJI WSPÓŁCZYNNIKÓW FALKOWYCH Piotr Augustyniak 1 STRESZCZENIE
Kompresja dźwięku w standardzie MPEG-1
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 7, strona 1. Kompresja dźwięku w standardzie MPEG-1 Ogólne założenia kompresji stratnej Zjawisko maskowania psychoakustycznego Schemat blokowy
PASMO CHWILOWE SYGNAŁU ELEKTROKARDIOGRAFICZNEGO
słowa kluczowe: elektrokardiografia automatyzacja diagnostyki medycznej Piotr AUGUSTYNIAK PASMO CHWILOWE SYGNAŁU ELEKTROKARDIOGRAFICZNEGO Streszczenie Praca dotyczy zmienności w czasie gęstości strumienia
Rejestracja elektrokardiogramu ze zmienną częstotliwością próbkowania modulowaną zawartością sygnału
Rejestracja elektrokardiogramu ze zmienną częstotliwością próbkowania modulowaną zawartością sygnału Piotr Augustyniak Akademia Górniczo-Hutnicza, Katedra Automatyki Al. Mickiewicza 30, 30-059 Kraków email:
LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 12. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ.
LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 1. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ. Transformacja falkowa (ang. wavelet falka) przeznaczona jest do analizy
Elektrokardiografia dla informatyka-praktyka / Piotr Augustyniak. Kraków, Spis treści Słowo wstępne 5
Elektrokardiografia dla informatyka-praktyka / Piotr Augustyniak. Kraków, 2011 Spis treści Słowo wstępne 5 1. Wprowadzenie 15 1.A Przetwarzanie sygnałów elektrodiagnostycznych profesjonalizm i pasja 15
Podstawy Przetwarzania Sygnałów
Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech
2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).
SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy
Detekcja zespołów QRS w sygnale elektrokardiograficznym
Detekcja zespołów QRS w sygnale elektrokardiograficznym 1 Wprowadzenie Zadaniem algorytmu detekcji zespołów QRS w sygnale elektrokardiograficznym jest określenie miejsc w sygnale cyfrowym w których znajdują
ĆWICZENIE 5 EMC FILTRY AKTYWNE RC. 1. Wprowadzenie. f bez zakłóceń. Zasilanie FILTR Odbiornik. f zakłóceń
ĆWICZENIE 5 EMC FILTRY AKTYWNE RC. Wprowadzenie Filtr aktywny jest zespołem elementów pasywnych RC i elementów aktywnych (wzmacniających), najczęściej wzmacniaczy operacyjnych. Właściwości wzmacniaczy,
4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych...
Spis treści 1 Wstęp 11 1.1 Do kogo adresowana jest ta książka... 12 1.2 Historia badań nad mową i językiem... 12 1.3 Obecne główne trendy badań... 16 1.4 Opis zawartości rozdziałów... 18 2 Wyzwania i możliwe
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Teoria i przetwarzanie sygnałów Rok akademicki: 2013/2014 Kod: EEL-1-524-s Punkty ECTS: 6 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika
Kompresja JPG obrazu sonarowego z uwzględnieniem założonego poziomu błędu
Kompresja JPG obrazu sonarowego z uwzględnieniem założonego poziomu błędu Mariusz Borawski Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Zbieranie danych Obraz sonarowy
Kodowanie podpasmowe. Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania
Kodowanie podpasmowe Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania Zasada ogólna Rozkład sygnału źródłowego na części składowe (jak w kodowaniu transformacyjnym) Wada kodowania
x(n) x(n-1) x(n-2) D x(n-n+1) h N-1
Laboratorium Układy dyskretne LTI projektowanie filtrów typu FIR Z1. apisać funkcję y = filtruj(x, h), która wyznacza sygnał y będący wynikiem filtracji sygnału x przez filtr FIR o odpowiedzi impulsowej
SYMULATOR EKG. Bartłomiej Bielecki 1, Marek Zieliński 2, Paweł Mikołajaczak 1,3
SYMULATOR EKG Bartłomiej Bielecki 1, Marek Zieliński 2, Paweł Mikołajaczak 1,3 1. Państwowa Wyższa Szkoła Zawodowa w Chełmie 2. Państwowy Szpital im. Ludwika Rydygiera w Chełmie 3. Uniwersytet Marii Curie-Skłodowskiej
Kodowanie transformacyjne. Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG
Kodowanie transformacyjne Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG Zasada Zasada podstawowa: na danych wykonujemy transformacje która: Likwiduje korelacje Skupia energię w kilku komponentach
Analiza i Przetwarzanie Biosygnałów
Analiza i Przetwarzanie Biosygnałów Sygnał EKG Historia Luigi Galvani (1737-1798) włoski fizyk, lekarz, fizjolog 1 Historia Carlo Matteucci (1811-1868) włoski fizyk, neurofizjolog, pionier badań nad bioelektrycznością
Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.
Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu
PL B1. Sposób i układ pomiaru całkowitego współczynnika odkształcenia THD sygnałów elektrycznych w systemach zasilających
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 210969 (13) B1 (21) Numer zgłoszenia: 383047 (51) Int.Cl. G01R 23/16 (2006.01) G01R 23/20 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi:
Wydział: EAIiIB Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi: Wstęp
Założenia i obszar zastosowań. JPEG - algorytm kodowania obrazu. Geneza algorytmu KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG
Założenia i obszar zastosowań KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Plan wykładu: Geneza algorytmu Założenia i obszar zastosowań JPEG kroki algorytmu kodowania obrazu Założenia: Obraz monochromatyczny
Zastosowanie Informatyki w Medycynie
Zastosowanie Informatyki w Medycynie Dokumentacja projektu wykrywanie bicia serca z sygnału EKG. (wykrywanie załamka R) Prowadzący: prof. dr hab. inż. Marek Kurzyoski Grupa: Jakub Snelewski 163802, Jacek
dr inż. Piotr Odya dr inż. Piotr Suchomski
dr inż. Piotr Odya dr inż. Piotr Suchomski Podział grafiki wektorowa; matematyczny opis rysunku; małe wymagania pamięciowe (i obliczeniowe); rasteryzacja konwersja do postaci rastrowej; rastrowa; tablica
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH
ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny
Podstawy elektrokardiografii część 1
Podstawy elektrokardiografii część 1 Dr med. Piotr Bienias Klinika Chorób Wewnętrznych i Kardiologii WUM Szpital Kliniczny Dzieciątka Jezus w Warszawie ELEKTROKARDIOGRAFIA metoda rejestracji napięć elektrycznych
Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3.
Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Sygnały deterministyczne 4 1.3.1. Parametry 4 1.3.2. Przykłady 7 1.3.3. Sygnały
Ćw. 18: Pomiary wielkości nieelektrycznych II
Wydział: EAIiIB Kierunek: Imię i nazwisko (e mail): Rok: Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 18: Pomiary wielkości nieelektrycznych II Celem
ĆWICZENIE nr 3. Badanie podstawowych parametrów metrologicznych przetworników analogowo-cyfrowych
Politechnika Łódzka Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych WWW.DSOD.PL LABORATORIUM METROLOGII ELEKTRONICZNEJ ĆWICZENIE nr 3 Badanie podstawowych parametrów metrologicznych przetworników
Analiza sygnałów biologicznych
Analiza sygnałów biologicznych Paweł Strumiłło Zakład Elektroniki Medycznej Instytut Elektroniki PŁ Co to jest sygnał? Funkcja czasu x(t) przenosząca informację o stanie lub działaniu układu (systemu),
AKADEMIA GÓRNICZO-HUTNICZA im. St. Staszica w Krakowie
AKADEMIA GÓRNICZO-HUTNICZA im. St. Staszica w Krakowie WEAIiE, Katedra Automatyki Laboratorium Biocybernetyki Przedmiot: Przetwarzanie sygnałów. Temat projektu: Klasyfikacja zespołów QRS Spis treści: 1.
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1C400027 Temat ćwiczenia:
przetworzonego sygnału
Synteza falek ortogonalnych na podstawie oceny przetworzonego sygnału Instytut Informatyki Politechnika Łódzka 28 lutego 2012 Plan prezentacji 1 Sformułowanie problemu 2 3 4 Historia przekształcenia falkowego
Cyfrowe przetwarzanie sygnałów w urządzeniach EAZ firmy Computers & Control
Cyfrowe przetwarzanie sygnałów w urządzeniach EAZ firmy Computers & Control 1. Wstęp 2.Próbkowanie i odtwarzanie sygnałów 3. Charakterystyka sygnałów analogowych 4. Aliasing 5. Filtry antyaliasingowe 6.
Automatyczna klasyfikacja zespołów QRS
Przetwarzanie sygnałów w systemach diagnostycznych Informatyka Stosowana V Automatyczna klasyfikacja zespołów QRS Anna Mleko Tomasz Kotliński AGH EAIiE 9 . Opis zadania Tematem projektu było zaprojektowanie
Oprogramowanie Analizy Elektrokardiogramów dla Nauki i Edukacji
Oprogramowanie Analizy Elektrokardiogramów dla Nauki i Edukacji Piotr Augustyniak Katedra Automatyki AGH, Kraków 30-059 Kraków, Mickiewicza 30, august@agh.edu.pl Streszczenie: Praca przedstawia przybornik
Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"
Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres
5 Filtry drugiego rzędu
5 Filtry drugiego rzędu Cel ćwiczenia 1. Zrozumienie zasady działania i charakterystyk filtrów. 2. Poznanie zalet filtrów aktywnych. 3. Zastosowanie filtrów drugiego rzędu z układem całkującym Podstawy
Zaawansowane algorytmy DSP
Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Zaawansowane algorytmy DSP Wstęp Cztery algorytmy wybrane spośród bardziej zaawansowanych
Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt.
1 Kodowanie podpasmowe Kompresja Danych Streszczenie Studia Dzienne Wykład 13, 18.05.2006 1.1 Transformaty, próbkowanie i filtry Korzystamy z faktów: Każdą funkcję okresową można reprezentować w postaci
AKADEMIA GÓRNICZO-HUTNICZA im. St. Staszica w Krakowie
AKADEMIA GÓRNICZO-HUTNICZA im. St. Staszica w Krakowie WEAIiE, Katedra Automatyki Laboratorium Biocybernetyki Przedmiot: Przetwarzanie sygnałów w systemach diagnostyki medycznej. PR04307 Temat projektu:
Szumy układów elektronicznych, wzmacnianie małych sygnałów
Szumy układów elektronicznych, wzmacnianie małych sygnałów Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Szumy
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej.
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Konstrukcje i Technologie w Aparaturze Elektronicznej Ćwiczenie nr 5 Temat: Przetwarzanie A/C. Implementacja
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 01/015 Kierunek studiów: Transport Forma sudiów:
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
Pomiary w technice studyjnej. TESTY PESQ i PEAQ
Pomiary w technice studyjnej TESTY PESQ i PEAQ Wprowadzenie Problem: ocena jakości sygnału dźwiękowego. Metody obiektywne - np. pomiar SNR czy THD+N - nie dają pełnych informacji o jakości sygnału. Ważne
Pomiary i analiza biosygnałów
Pomiary i analiza biosygnałów dr hab. inż. Andrzej Dobrowolski dr hab. inż. Jacek Jakubowski dr hab. inż. Marek Kuchta Wojskowa Akademia Techniczna w Warszawie Instytut Systemów Elektronicznych Wydziału
Laboratorium Przetwarzania Sygnałów Biomedycznych
Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 2 Analiza sygnału EKG przy użyciu transformacji falkowej Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - inż. Tomasz Kubik Politechnika
Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski
Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera
PL B1. POLITECHNIKA WARSZAWSKA, Warszawa, PL
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 232305 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 425576 (22) Data zgłoszenia: 17.05.2018 (51) Int.Cl. G01R 21/00 (2006.01)
Według raportu ISO z 1988 roku algorytm JPEG składa się z następujących kroków: 0.5, = V i, j. /Q i, j
Kompresja transformacyjna. Opis standardu JPEG. Algorytm JPEG powstał w wyniku prac prowadzonych przez grupę ekspertów (ang. Joint Photographic Expert Group). Prace te zakończyły się w 1991 roku, kiedy
Cyfrowe przetwarzanie i kompresja danych
Cyfrowe przetwarzanie i kompresja danych dr inż.. Wojciech Zając Wykład 5. Dyskretna transformata falkowa Schemat systemu transmisji danych wizyjnych Źródło danych Przetwarzanie Przesył Przetwarzanie Prezentacja
Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy
Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Grupa: wtorek 18:3 Tomasz Niedziela I. CZĘŚĆ ĆWICZENIA 1. Cel i przebieg ćwiczenia. Celem ćwiczenia
f = 2 śr MODULACJE
5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania
Teoria przetwarzania A/C i C/A.
Teoria przetwarzania A/C i C/A. Autor: Bartłomiej Gorczyński Cyfrowe metody przetwarzania sygnałów polegają na przetworzeniu badanego sygnału analogowego w sygnał cyfrowy reprezentowany ciągiem słów binarnych
System detekcji i analizowania osobliwości w sygnale cyfrowym
System detekcji i analizowania osobliwości w sygnale cyfrowym Wydział Informatyki, Politechnika Białostocka dr hab. inż. Waldemar Rakowski, prof. ndzw. dr inż. Paweł Tadejko inż. Michał Januszewski /4/20
AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ
AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 2 Filtry analogowe układy całkujące i różniczkujące Wersja opracowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Badanie i synteza kaskadowego adaptacyjnego układu regulacji do sterowania obiektu o
Podstawowe pojęcia. Teoria informacji
Kodowanie i kompresja informacji - Wykład 1 22 luty 2010 Literatura K. Sayood, Kompresja danych - wprowadzenie, READ ME 2002 (ISBN 83-7243-094-2) Literatura K. Sayood, Kompresja danych - wprowadzenie,
A3 : Wzmacniacze operacyjne w układach liniowych
A3 : Wzmacniacze operacyjne w układach liniowych Jacek Grela, Radosław Strzałka 2 kwietnia 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1.
Transformata Fouriera
Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli
KODOWANIE INFORMACJI DODATKOWYCH W STRUKTURZE
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Autoreferat rozprawy doktorskiej KODOWANIE INFORMACJI
Klasyfikacja metod kompresji
dr inż. Piotr Odya Klasyfikacja metod kompresji Metody bezstratne Zakodowany strumień danych po dekompresji jest identyczny z oryginalnymi danymi przed kompresją, Metody stratne W wyniku kompresji część
Przykładowe pytania 1/11
Parametry sygnałów Przykładowe pytania /. Dla okresowego przebiegu sinusoidalnego sterowanego fazowo (jak na rys) o kącie przewodzenia θ wyprowadzić zależność wartości skutecznej od kąta przewodzenia θ.
Przekształcenia punktowe
Przekształcenia punktowe Przekształcenia punktowe realizowane sa w taki sposób, że wymagane operacje wykonuje sie na poszczególnych pojedynczych punktach źródłowego obrazu, otrzymujac w efekcie pojedyncze
Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych
Zakres wymaganych wiadomości do testów z przedmiotu Metrologia Ćwiczenie 1 Wprowadzenie do obsługi multimetrów analogowych i cyfrowych budowa i zasada działania przyrządów analogowych magnetoelektrycznych
AKADEMIA GÓRNICZO-HUTNICZA im. St. Staszica w Krakowie
AKADEMIA GÓRNICZO-HUTNICZA im. St. Staszica w Krakowie WEAIiE, Katedra Automatyki Laboratorium Biocybernetyki Przedmiot: Przetwarzanie sygnałów w systemach diagnostyki medycznej. Temat projektu: Określenie
TRANSFORMATA FALKOWA. Joanna Świebocka-Więk
TRANSFORMATA FALKOWA Joanna Świebocka-Więk Plan prezentacji 1. Fala a falka czyli porównanie transformaty Fouriera i falkowej 2. Funkcja falkowa a funkcja skalująca 3. Ciągła transformata falkowa 1. Skala
AKADEMIA GÓRNICZO-HUTNICZA im. St. Staszica w Krakowie
AKADEMIA GÓRNICZO-HUTNICZA im. St. Staszica w Krakowie WEAIiE, Katedra Automatyki Laboratorium Biocybernetyki Przedmiot: Przetwarzanie sygnałów w systemach diagnostyki medycznej. Temat projektu: Obliczenie
OCENA JAKOŚCI DOSTAWY ENERGII ELEKTRYCZNEJ
OCENA JAKOŚCI DOSTAWY ENERGII ELEKTRYCZNEJ dr inż. KRZYSZTOF CHMIELOWIEC KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII AGH KRAKÓW PODSTAWY PRAWNE WSKAŹNIKI JAKOŚCI ANALIZA ZDARZEŃ
Cyfrowe Przetwarzanie Obrazów i Sygnałów
Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX3 Globalne transformacje obrazów Joanna Ratajczak, Wrocław, 2018 1 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami globalnych
Dodatek A Odprowadzenia i techniki rejestracji badania EKG. 178
Dodatki Dodatek A Odprowadzenia i techniki rejestracji badania EKG. 178 Dodatek B Związki zachodzące w sercu i ich wpływ na zmiany pola elektrycznego oraz związany z tym proces tworzenia elektrokardiogramu
Cyfrowy system łączności dla bezzałogowych statków powietrznych średniego zasięgu. 20 maja, 2016 R. Krenz 1
Cyfrowy system łączności dla bezzałogowych statków powietrznych średniego zasięgu R. Krenz 1 Wstęp Celem projektu było opracowanie cyfrowego system łączności dla bezzałogowych statków latających średniego
1.ABSTRAKT REZULTATY I WNIOSKI PODSUMOWANIE LITERATURA...5 DODATEK C. OPIS INFORMATYCZNY PROCEDUR... 7
AKADEMIA GÓRNICZO-HUTNICZA im. St. Staszica w Krakowie WEAIiE, Katedra Automatyki Laboratorium Biocybernetyki Przedmiot: Przetwarzanie sygnałów w systemach diagnostyki medycznej. Temat projektu: Klasyfikacja
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1C400027 Temat ćwiczenia:
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1C400027 Temat ćwiczenia:
Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych
XXXVIII MIĘDZYUCZELNIANIA KONFERENCJA METROLOGÓW MKM 06 Warszawa Białobrzegi, 4-6 września 2006 r. Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych Eligiusz PAWŁOWSKI Politechnika
Ćwiczenie 21. Badanie właściwości dynamicznych obiektów II rzędu. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:
Ćwiczenie Badanie właściwości dynamicznych obiektów II rzędu Program ćwiczenia:. Pomiary metodą skoku jednostkowego a. obserwacja charakteru odpowiedzi obiektu dynamicznego II rzędu w zależności od współczynnika
Wybrane metody kompresji obrazów
Wybrane metody kompresji obrazów Celem kodowania kompresyjnego obrazu jest redukcja ilości informacji w nim zawartej. Redukcja ta polega na usuwaniu informacji nadmiarowej w obrazie, tzw. redundancji.
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęd: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z podstawowymi
Akustyka muzyczna ANALIZA DŹWIĘKÓW MUZYCZNYCH
Akustyka muzyczna ANALIZA DŹWIĘKÓW MUZYCZNYCH Dźwięk muzyczny Dźwięk muzyczny sygnał wytwarzany przez instrument muzyczny. Najważniejsze parametry: wysokość związana z częstotliwością podstawową, barwa
CZAZ GT BIBLIOTEKA FUNKCJI PRZEKAŹNIKI, LOGIKA, POMIARY. DODATKOWE ELEMENTY FUNKCJONALNE DSP v.2
CZAZ GT CYFROWY ZESPÓŁ AUTOMATYKI ZABEZPIECZENIOWEJ GENERATORA / BLOKU GENERATOR -TRANSFORMATOR BIBLIOTEKA FUNKCJI PRZEKAŹNIKI, LOGIKA, POMIARY DODATKOWE ELEMENTY FUNKCJONALNE DSP v.2 Modyfikacje funkcjonalne
Przetwarzanie analogowo-cyfrowe sygnałów
Przetwarzanie analogowo-cyfrowe sygnałów A/C 111111 1 Po co przekształcać sygnał do postaci cyfrowej? Można stosować komputerowe metody rejestracji, przetwarzania i analizy sygnałów parametry systemów
BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat
BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,
Prof. Stanisław Jankowski
Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny
Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2.
Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Technika obrazu 24 W.3. Normalizacja w zakresie obrazu cyfrowego
TRANSFORMATA FALKOWA 2D. Oprogramowanie Systemów Obrazowania 2016/2017
TRANSFORMATA FALKOWA 2D Oprogramowanie Systemów Obrazowania 2016/2017 Wielorozdzielczość - dekompozycja sygnału w ciąg sygnałów o coraz mniejszej rozdzielczości na wielu poziomach gdzie: s l+1 - aproksymata
Tranzystor bipolarny LABORATORIUM 5 i 6
Tranzystor bipolarny LABORATORIUM 5 i 6 Marcin Polkowski (251328) 10 maja 2007 r. Spis treści I Laboratorium 5 2 1 Wprowadzenie 2 2 Pomiary rodziny charakterystyk 3 II Laboratorium 6 7 3 Wprowadzenie 7
PL B BUP 16/04. Kleczkowski Piotr,Kraków,PL WUP 04/09
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 201536 (13) B1 (21) Numer zgłoszenia: 358531 (51) Int.Cl. G10L 21/02 (2006.01) H03G 3/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Waldemar Izdebski - Wykłady z przedmiotu SIT / Mapa zasadnicza 30
Waldemar Izdebski - Wykłady z przedmiotu SIT / Mapa zasadnicza 30 2.3. Model rastrowy Rastrowy model danych wykorzystywany jest dla gromadzenia i przetwarzania danych pochodzących ze skanowania istniejących
Przetwarzanie sygnałów
Przetwarzanie sygnałów Ćwiczenie 5 Filtry o nieskończonej odpowiedzi impulsowej (NOI) Spis treści 1 Wprowadzenie 1 1.1 Filtry jednobiegunowe....................... 1 1.2 Filtry wąskopasmowe........................
Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji
Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji Wiesław Miczulski* W artykule przedstawiono wyniki badań ilustrujące wpływ nieliniowości elementów układu porównania napięć na
LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q
LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone
10. Zmiany elektrokardiograficzne
10. Zmiany elektrokardiograficzne w różnych zespołach chorobowyh 309 Zanim zaczniesz, przejrzyj streszczenie tego rozdziału na s. 340 342. zmiany elektrokardiograficzne w różnych zespołach chorobowych
Przetwarzanie A/C i C/A
Przetwarzanie A/C i C/A Instrukcja do ćwiczenia laboratoryjnego opracował: Łukasz Buczek 05.2015 Rev. 204.2018 (KS) 1 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przetwornikami: analogowo-cyfrowym