Wybór parametrów spalinowo-elektrycznego układu napędowego dla lekkiego pojazdu szynowego na podstawie obliczeń i badań symulacyjnych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wybór parametrów spalinowo-elektrycznego układu napędowego dla lekkiego pojazdu szynowego na podstawie obliczeń i badań symulacyjnych"

Transkrypt

1 dr inż. Zygmunt Marciniak mgr inż. Adam Sienicki Instytut Pojazdów Szynowych Tabor Wybór parametrów spalinowo-elektrycznego układu napędowego dla lekkiego pojazdu szynowego na podstawie obliczeń i badań symulacyjnych Artykuł poświęcony jest obliczeniom i badaniom symulacyjnym lekkich pojazdów szynowych dla określenia głównych parametrów układu napędowego z wykorzystaniem zespołu silnik spalinowy prądnica silniki trakcyjne. Przedstawiono konfiguracje lekkich pojazdów szynowych, napędów oraz ich modele (mechaniczne i ideowe), na których prowadzone są analizy i badania, wykorzystując ich nominalne parametry. Szeroka analiza dotyczyła określenia charakterystyk trakcyjnych pojazdów z wyznaczeniem wielkości oporów ruchu przyspieszeń rozruchowych oraz wyznaczenia wartości współczynnika wykorzystania masy przyczepnej i przyspieszeń układu zawieszenia silnika trakcyjnego, co pozwoli na ostateczne sprecyzowanie parametrów układu. Artykuł powstał w wyniku realizacji projektu badawczego nr 4T 12D01227 pt.: Spalinowoelektryczny napęd dla lekkich wieloczłonowych pojazdów szynowych. 1. WSTĘP Analizy obliczeniowe i badania symulacyjne na modelach matematycznych oraz zaprogramowanych zależnościach są najprostszymi i najefektowniejszymi metodami wyznaczania optymalnych wielkości interesujących parametrów. Ponadto obliczenia są najtańszą metodą przetestowania wielu układów ze zmieniającymi się wielkościami parametrów bez konieczności budowy modeli rzeczywistych [2]. Taką właśnie metodę przyjęto dla określenia wielkości podstawowych (również optymalnych) parametrów maszyn i zespołów, wchodzących w skład układów napędowych, pozwalających na najkorzystniejszy, ale możliwy do realizacji, ich wybór dla nowoprojektowanych lekkich pojazdów szynowych. Ponadto zaletą wszelkich metod obliczeniowych z wykorzystaniem symulacji komputerowej jest możliwość uzyskania szerokiego wachlarza wyników dla wielkości (parametrów), które w badaniach doświadczalnych mogą być praktycznie nie do uzyskania. Wadą tych metod jest konieczność precyzyjnego definiowania związków matematyczno-fizycznych zachodzących w rozwiązaniach konstrukcyjnych modelowanych układów napędowych. Szczególnie wrażliwe na brak w precyzyjnym definiowaniu związków są zależności zarówno w określeniu sił na styku koła z szyną jak i zależności precyzujące pracę układów zawieszeń. W artykule skorzystano z tych zależności i programów, których wyniki potwierdziły się w badaniach doświadczalnych oraz przeszły pozytywne porównanie z podobnymi programami, stosowanymi w praktyce inżynierskiej [6]. 2. WYTYCZNE DO BUDOWY MODELI, MO- DELE ORAZ PARAMETRY DO ANALIZ I BADAŃ 2.1. Układy lekkich pojazdów szynowych Na podstawie dotychczasowych doświadczeń w projektowaniu i eksploatacji lekkich pojazdów szynowych w kraju i za granicą dla przeprowadzenia analiz obliczeniowych i symulacji komputerowej należy brać pod uwagę całą rodzinę jedno- i wieloczłonowych pojazdów o następujących konfiguracjach [1, 3, 4]: z wózkami jednoosiowymi i układem napędowym zabudowanym pod ostoją pojazdu: jednoczłon (s) o układzie osi Ao-1 lub Ao-Ao dwuczłon (s-s) o układzie osi Ao-1+1-Ao lub Ao-Ao+Ao-Ao trójczłon (s-d-s) o układzie osi Ao-Ao+1-1+Ao-Ao z wózkami dwuosiowymi i układem napędowym zabudowanym pod ostoją: jednoczłon (s) o układzie osi Bo-2 dwuczłon (s-s) o układzie osi Bo-2+2-Bo lub Bo-2-Bo trójczłon (s-d-s) o układzie osi Bo-Bo+2-2+ Bo-Bo; Bo Bo oraz Bo-2-2-Bo z wózkami dwuosiowymi i układem napędowym zabudowanym w specjalnym przedziale maszynowym znajdującym się wewnątrz: 1

2 - jednoczłon (s) o układzie osi Bo-2 - dwuczłon (s-s lub s-d) o układzie osi Bo-2+2- Bo; Bo-Bo+2-2 oraz Bo-2-Bo - trójczłon (s-d-s) o układzie osi Bo Bo; Bo-Bo+2-2+ Bo-Bo lub Bo-2-2-Bo gdzie: s - człon napędowy d - człon doczepny Ao- wózek jednoosiowy z napędem indywidualnym Bo- wózek dwuosiowy, w którym każda oś posiada napęd indywidualny 1 - wózek jednoosiowy toczny 2 - wózek dwuosiowy toczny Ponadto w pojazdach dwu- i trójczłonowych rozważono również zastosowanie wózków typu Jacobsa Konfiguracje układów napędowych Do badań i analiz wybrano następujące konfiguracje najczęściej spotykanych napędów (silnik trakcyjny przekładnia) w pojazdach wózkowych: silnik trakcyjny zawieszony za nos (konstrukcja klasyczna) przenoszący napęd na zestaw za pośrednictwem jedno- lub wielostopniowej nieodsprężynowanej przekładni osiowej silnik trakcyjny zawieszony elastycznie na ramie wózka przenoszący napęd za pośrednictwem przekładni odsprężynowanej zawieszonej na ramie wózka silnik trakcyjny zawieszony elastycznie pod ostoją realizujący przeniesienie napędu za pośrednictwem wału przegubowego i przekładni zabudowanej na osi zestawu kołowego. Pozostałe główne zespoły układu napędowego zabudowane są: dla układu podpodłogowego: - silnik spalinowy i prądnica na specjalnej ramie mocowanej do podwozia za pośrednictwem elementów elastycznych - przekształtnik, opornice hamowania oraz przetwornice na dachu pojazdu dla układu wewnątrzpojazdowego: - silnik spalinowy i prądnica na ramie zespołu prądotwórczego mocowanego elastycznie do ostoi - pozostałe urządzenia i maszyny w przestrzeni przedziału maszynowego Modele mechaniczne i ideowe układów napędowych Wózki jednoosiowe W dalszych analizach przyjęte zostały modele napędów przedstawione na rys Rys.1. Model i schemat ideowy silnika nieodsprężynowanego (zawieszenie systemem tramwajowym za nos ) 1- zestaw kołowy; 2 rama wózka; 3 elektryczny silnik trakcyjny; 4 wirnik silnika trakcyjnego; 5 obudowa silnika trakcyjnego; 6 przekładnia zębata; 7 obudowa przekładni; 8 łożyska zawieszenia silnika; 9 cięgło zawieszenia silnika; 10 sprężyste elementy gumowo-metalowe; 11 wspornik zawieszenia silnika. 2

3 Rys.2. Model i schemat ideowy silnika trakcyjnego odsprężynowanego (zawieszony elastycznie na ramie wózka) 1 zestaw kołowy; 2 rama wózka; 3 elektryczny silnik trakcyjny; 4 wspornik mocowania silnika do ramy; 5 cięgło podwieszenia przekładni; 6 przegub kulisty podwieszenia przekładni; 7 sprzęgło podatne; 8 przekładnia zębata; 9 obudowa przekładni. Rys.3. Model i schemat ideowy silnika trakcyjnego i przekładni zawieszonych elastycznie na ramie wózka 1 zestaw kołowy; 2 elementy elastycznego zawieszenia silnika i przekładni na ramie wózka; 3 wał drążony; 4 sprzęgło; 5 sprzęgło od strony przekładni; 6 przekładnia zębata; 7 wirnik silnika trakcyjnego; 8 obudowa silnika i przekładni. Rys.4. Model i schemat ideowy napędu z silnikiem trakcyjnym zawieszonym sztywno do ostoi pojazdu (przeniesienie napędu za pośrednictwem wału przegubowego) 1 zestaw kołowy; 2 rama wózka; 3 przekładnia osiowa; 4 obudowa przekładni; 5 cięgło podwieszenia przekładni; 6 przegub kulisty gumowo-metalowy; 7 wał napędowy; 8 silnik trakcyjny; 9 ostoja pojazdu. 3

4 Wózki dwuosiowe Do analiz i badań przyjęto modele jak dla wózków jednoosiowych (rys. 1 4), przy czym w wózkach dwuosiowych obie osie są napędne, a silniki trakcyjne skierowane no-sami do środka wózka. Ponadto w analizach roz-patrzono również modele zaprezentowane na rys Rys.5. Model i schemat ideowy napędu jednego zestawu kołowego wózka dwuosiowego (zawieszenie pod ostoją) 1 zestaw kołowy; 2 rama wózka; 3 przekładnia osiowa; 4 obudowa przekładni; 5 cięgło podwieszenia przekładni; 6 przegub kulisty gumowo-metalowy; 7 wał napędowy; 8 silnik trakcyjny. Rys.6. Model i schemat ideowy napędu zestawów kołowych wózka dwuosiowego za pośrednictwem silnika trakcyjnego zawieszonego pod ostoją pojazdu 1 zestaw kołowy; 2 rama wózka; 3 przekładnia osiowa; 4 obudowa przekładni; 5 cięgło podwieszenia przekładni; 6 przegub kulisty gumowo-metalowy; 7 wały napędowe; 8 silnik trakcyjny. Rys.7. Model i schemat ideowy napędu z silnikami zawieszonymi na ramie wózka (dla układów w zabudowie wewnątrzpojazdowej) 1 zestaw kołowy; 2 maźnice skrzydełkowe; 3 sprężyny śrubowe; 4 hydrauliczny tłumik pionowy; 5 silnik trakcyjny; 6 wspornik zawieszenia silnika; 7 cięgło przeniesienia siły pociągowej; 8 przekładnia Parametry pojazdów i ich układów napędowych Dla prowadzonych obliczeń analitycznych i badań symulacyjnych niezbędne jest określenie obszarów zmian parametrów charakteryzujących zarówno konstrukcję lekkich pojazdów szynowych jak i głównych maszyn i urządzeń wchodzących w skład układów napędowych. Parametry te dla trzech podstawowych konfiguracji pojazdów (jedno-, dwu- i trójczłonowych) z wózkami jedno- i dwuosiowymi z zabudową podpodłogową oraz wewnątrz pojazdu przedstawiono w tabelach

5 Lekkie pojazdy szynowe na wózkach jednoosiowych (układ napędowy zabudowany pod ostoją) Lekkie pojazdy szynowe na wózkach dwuosiowych (układ napędowy zabudowany pod ostoją) Lekkie pojazdy szynowe na wózkach dwuosiowych (układ napędowy zabudowany w członie napędowym) Tabela 1 L.p. Nazwa parametru Tabela 2 Jednoczłonowe Dwuczłonowe Trójczłonowe Masa własna (całkowita) Mg 32 43(43 53) 60 75(85 100) ( ) 2 Liczba miejsc siedzących Liczba miejsc stojących Długość części pasażerskiej m Prędkość eksploatacyjna km/h Nacisk zestawu kołowego na tor kn Przyspieszenie rozruchu m/s 2 0,6 0,8 8 Długość pojazdu m Baza pojazdu / członu m Baza wózka (tocznego i napędowego) m 2,0 2,5 11 Średnica toczna koła m 0,84 0,92 12 Moc silnika spalinowego kw x( ) 2x( ) 13 Moc prądnicy kw max 350 max. 2x300 max. 2x Moc falownika kw max 350 max. 2x300 max. 2x Moc silnika trakcyjnego kw Przełożenie przekładni - 5 6,5 Tabela 3 L.p. Nazwa parametru Jednostka Jednoczłonowe Dwuczłonowe Trójczłonowe Masa własna (całkowita) Mg 24(30) 44(56) 62(80) 2 Liczba miejsc siedzących Liczba miejsc stojących Długość części pasażerskiej m Prędkość eksploatacyjna km/h Przyspieszenie rozruchu m/s 2 0,6 0,8 7 Nacisk zestawu kołowego na tor kn Długość pojazdu m , , Baza pojazdu / członu m Średnica toczna koła m 0,84 0,92 11 Moc silnika spalinowego kw x( ) 2x( ) 12 Moc prądnicy kw x( ) 2x( ) 13 Moc falownika kw max 300 max 2x300 max 2x Moc silnika trakcyjnego kw Przełożenie przekładni - 5 6,5 Jednostka L.p. Nazwa parametru Jednostka Jednoczłonowe Dwuczłonowe Trójczłonowe Masa własna (całkowita) Mg 35 40(50 55) 65 75(95 105) ( ) 2 Liczba miejsc siedzących Liczba miejsc stojących Długość części pasażerskiej m Prędkość eksploatacyjna km/h Przyspieszenie rozruchu m/s 2 0,6 0,8 7 Nacisk zestawu kołowego na tor kn Długość pojazdu m Baza pojazdu / członu m Baza wózka (tocznego i napędowego) m 2,0 2,5 11 Średnica toczna koła m 0,84 0,92 12 Moc silnika spalinowego kw Moc prądnicy kw Moc falownika kw (2x ) 15 Moc silnika trakcyjnego kw ( ) 16 Przełożenie przekładni - 5 6,5 5

6 Zakresy zmian poszczególnych parametrów zostały określone na podstawie dotychczasowych doświadczeń w projektowaniu autobusów szynowych i elektrycznych zespołów trakcyjnych oraz z ich eksploatacji. Ponadto wpływ na przyjęte wartości parametrów miało szerokie studium literaturowe oraz przewidywane możliwości przemysłu w produkcji i dostawach głównych maszyn i urządzeń wchodzących w skład układów napędowych. 3. ZAKRES ORAZ METODYKI ANALIZ I BA- DAŃ SYMULACYJNYCH Zakres prowadzonych analiz i badań podzielono na dwa obszary. Pierwszy obszar zagadnień to: wyznaczenie charakterystyk trakcyjnych określenie wielkości oporów ruchu dla przyjętych parametrów linii kolejowej (łuki, pochylenia) określenie maksymalnych i średnich wartości przyspieszeń, z których wynika długość drogi potrzebnej od ruszenia do osiągnięcia wymaganej prędkości oraz czas niezbędny do osiągnięcia tej prędkości. Drugi obszar zagadnień to: wyznaczenie wartości współczynnika wykorzystania masy przyczepnej wyznaczenie wielkości przyspieszeń nadwozia i ram wózków od działającego napędu, czyli zbadanie wpływu zawieszenia silnika na dynamikę wózka i pojazdu. Rozwiązania poszczególnych zagadnień pozwolą na określenie wartości parametrów układu napędowego dla określonego pojazdu szynowego, z których można ostatecznie wybierać dane dla projektowania układu. Analizy obliczeniowe sił pociągowych oraz oporów ruchu wyznaczono dla następujących parametrów wyjściowych: dla pojazdu jednoczłonowego o masie własnej 24 Mg (z pasażerami 29 Mg), naciskach kn i prędkości maksymalnej 120 km/h dla pojazdu dwuczłonowego o masie własnej 46 Mg (z pasażerami 59 Mg), naciskach kn i prędkości maksymalnej 120 km/h dla pojazdu trójczłonowego o masie własnej 64 Mg (z pasażerami 82 Mg), naciskach kn i prędkości maksymalnej 120 km/h. Do wyznaczania charakterystyk trakcyjnych i oporów ruchu, a w zasadzie określenia przebiegu siły pociągowej i oporów ruchu (dla różnych wartości pochyleń toru) w funkcji prędkości jazdy pojazdu wykorzystano program Exel [6, 7]. Charakterystyki trakcyjne zostały zaprezentowane w rozdziale 4 dla różnych przyjętych wariantów parametrów. W obliczeniach symulacyjnych dla drugiego obszaru posłużono się programem komputerowym opartym na systemie symulacyjnym ACSL V.11.0 wykorzystującym programy do rozwiązywania zadań z algebry macierzowej, posiadającym również podprogramy do obróbki statystycznej i widmowej oraz do prezentacji wyników prowadzonych obliczeń [6, 7]. Program ten posiada dwa podstawowe moduły: moduł obliczeniowo nadzorujący, służący do formowania danych wejściowych i wyjściowych oraz do wykonywania opcjonalnych poleceń obliczeniowych moduł modelujący, który formułuje model matematyczny układu wielomasowego; składa się z programu sterującego, bloku inicjującego, bibliotek, modeli matematycznych, obszarów podatnych, biblioteki substruktur oraz podprogramów wyznaczających wielkości i zestawiających równania drgań. Dzięki modułowości programu jest możliwa dalsza rozbudowa bibliotek oraz jego substruktur. Możliwe jest również dalsze jego doskonalenie i dopasowanie do innego zakresu obliczeń i analiz. Struktura programu oraz jego wydruk, ze względu na dużą jego objętość, przedstawiona jest w pracy [6, 7]. Dużą zaletą zastosowanego programu symulacyjnego, który został ponadto wyposażony w szereg pre- i postprocesorów, jest szybkość wykonywania obliczeń, nawet szeregu skomplikowanych analiz matematycznych. 4. WYNIKI ANALIZ OBLICZENIOWYCH I BA- DAŃ SYMULACYJNYCH Głównym zadaniem prowadzonych analiz i badań było ustalenie najkorzystniejszych parametrów lekkich pojazdów szynowych oraz ich głównych maszyn i urządzeń, wchodzących w skład napędów. Funkcjami celu tak postawionego zadania były przede wszystkim własności ruchowe i trakcyjne układów napędowych analizowanych wariantów. Niezależnie od charakteru funkcji celów, z jakimi miano do czynienia, dokonano optymalnego wyboru parametrów poprzez analizę zmienności tych funkcji w zakresie parametrów dopuszczalnych. Wszystkie rezultaty prowadzonych obliczeń i badań symulacyjnych zostały przedstawione w formie tabel oraz wykresów, przedstawiających przebiegi sił trakcyjnych, opory ruchu i przyspieszeń w zależności od prędkości dla różnych pochyleń toru w zakresie parametrów wyjściowych przedstawionych w tabelach 1, 2 i 3. 6

7 Wszystkie obliczenia i analizy zostały podzielone na dwa obszary zagadnień podane w pkt. 3. Pierwszy obszar obejmował wyznaczenie szeregu charakterystyk trakcyjnych dla poszczególnych konfiguracji pojazdów oraz różnych parametrów wyjściowych, niezbędnych do wykreślenia (wyznaczenia) tych charakterystyk. Przykładowe charakterystyki przedstawiono na rys. 8 i 9 oraz w tabelach 4 i 5 dla lekkiego pojazdu jednoczłonowego z wózkami jednoosiowymi dla stanu próżnego i załadowanego (z pełnym obciążeniem pasażerami) oraz na rys.10 i 11 i w tabelach 6 i 7 dla lekkiego pojazdu dwuczłonowego z wózkami dwuosiowymi. Pozostałe wyniki obliczeń wraz z wyznaczonymi charakterystykami zostały szczegółowo podane w pracy [7]. Rys.9. Charakterystyka trakcyjna jednoczłonowego pojazdu szynowego z wózkami jednoosiowymi dla stanu załadowanego Rys.8. Charakterystyka trakcyjna jednoczłonowego pojazdu szynowego z wózkami jednoosiowymi dla stanu niezaładowanego Rys.10. Charakterystyka trakcyjna dwuczłonowego pojazdu szynowego z wózkami dwuosiowymi dla stanu niezaładowanego 7

8 Charakterystyka trakcyjna pojazdu dwuosiowego (wózki jednoosiowe) jednoczłonowego niezaładowanego Tabela 4 8

9 Charakterystyka trakcyjna pojazdu dwuosiowego (wózki jednoosiowe) jednoczłonowego załadowanego Tabela 5 9

10 Charakterystyka trakcyjna pojazdu ośmioosiowego (wózki dwuosiowe) dwuczłonowego niezaładowanego Tabela 6 10

11 Charakterystyka trakcyjna pojazdu ośmioosiowego (wózki dwuosiowe) dwuczłonowego załadowanego Tabela 7 11

12 Drugi obszar obejmował badania symulacyjne wpływu układu zawieszenia silnika trakcyjnego i przekładni osiowej na dynamikę wózka określoną poprzez wartości współczynnika wykorzystania masy napędowej (przyczepnej) oraz wartości przyspieszeń wzdłużnych i pionowych nadwozia i ramy wózka. Obliczenia wykonane zostały dla różnych konfiguracji lekkich pojazdów szynowych oraz różnych układów zawieszeń silnika trakcyjnego nieodsprężynowany i odsprężynowany na ramie wózka oraz zawieszony bezpośrednio do ostoi pojazdu. Przykładowe wyniki przeprowadzonych badań zostały przedstawione w tabelach 8 10 dla współczynnika wykorzystania masy napędowej oraz w tabelach dla przyspieszeń wzdłużnych i pionowych. Szczegółowe wyniki badań zawiera praca [7]. Rys.11. Charakterystyka trakcyjna dwuczłonowego pojazdu szynowego z wózkami dwuosiowymi dla stanu załadowanego Wartości współczynnika wykorzystania masy napędowej lekki pojazd szynowy dwuczłonowy wózki jednoosiowe, układ napędowy pod ostoją Tabela 8 Układ osi pojazdu Ao-1+1-Ao Ao-Ao+1-1 Ao-Ao+ Ao-Ao Masa pojazdu własna/obciążona [Mg] Rodzaj zawieszenia silnika trakcyjnego Wartości współczynnika wykorzyst. masy napędowej Na ramie wózka nieodsprężynowany 44 / / / 56 Na ramie wózka odsprężynpwany Do ostoi pojazdu Na ramie wózka nieodsprężynowany Na ramie wózka odsprężynowany Do ostoi pojazdu Na ramie wózka nieodsprężynowany Na ramie wózka odsprężynowany Do ostoi pojazdu 0,95/0,96 0,95/0,96 0,95/0,96 0,95/0,96 0,95/0,96 0,95/0,96 0,97/0,98 0,97/0,98 0,97/0,98 Wartości współczynnika wykorzystania masy napędowej lekki pojazd szynowy jednoczłonowy wózki dwuosiowe, układ napędowy wewnątrz pojazdu Tabela 9 Układ osi pojazdu B o-2 Masa pojazdu własna/obciążona [Mg] Rodzaj zawieszenia silnika trakcyjnego Wartości współczynnika wykorzyst. masy napędowej Na ramie wózka nieodsprężynowany / Na ramie wózka odsprężynowany Do ostoi pojazdu 0,83/0,86 0,89/0,92 0,93/0,94 Wartości współczynnika wykorzystania masy napędowej lekki pojazd szynowy trójczłonowy wózki dwuosiowe, układ napędowy wewnątrz pojazdu Tabela 10 Układ osi pojazdu Bo Bo Bo-Bo+2-2+ Bo-Bo Bo-2-2-Bo Masa pojazdu własna/obciążona [Mg] Rodzaj zawieszenia silnika trakcyjnego Wartości współczynnika wykorzyst. masy napędowej Na ramie wózka nieodsprężynowany / / / Na ramie wózka odsprężynowany Do ostoi pojazdu Na ramie wózka nieodsprężynowany Na ramie wózka odsprężynowany Do ostoi pojazdu Na ramie wózka nieodsprężynowany Na ramie wózka odsprężynowany Do ostoi pojazdu 0,80/0,83 0,86/0,89 0,90/0,93 0,86/0,89 0,90/0,93 0,94/0,95 0,83/0,86 0,89/0,92 0,93/0,94 12

13 Wartości przyspieszeń wzdłużnych i pionowych nadwozia i ramy wózka w zależności od zastosowanego układu osi pojazdu i zawieszenia silnika trakcyjnego pojazd trójczłonowy, wózki jednoosiowe, układ napędowy pod ostoją Tabela 11 Układ osi pojazdu Ao-Ao+1-1+Ao-Ao Masa pojazdu własna/obciążona [Mg] 62 / 80 Rodzaj zawieszenia silnika trakcyjnego Wartości przyspieszeń w m/s 2 wzdłużne nadwozia x& n Silnik nieodsprężynowany na ramie wózka Silnik odsprężynowany na ramie wózka & 1,65 1,51 1,37 Silnik zawieszony do ostoi pojazdu pionowe nadwozia & z& n 0,91 1,01 1,21 wzdłużne ramy wózka & x& w 2,48 1,97 1,25 pionowe ramy wózka & z& w 4,85 3,92 0,87 Układ osi pojazdu Ao-Ao+ Ao-Ao + Ao-Ao Masa pojazdu własna/obciążona [Mg] 62 / 80 Rodzaj zawieszenia silnika trakcyjnego Wartości przyspieszeń w m/s 2 wzdłużne nadwozia x& n Silnik nieodsprężynowany na ramie wózka Silnik odsprężynowany na ramie wózka & 1,69 1,55 1,39 Silnik zawieszony do ostoi pojazdu pionowe nadwozia & z& n 0,95 1,05 1,26 wzdłużne ramy wózka & x& w 2,52 1,99 1,27 pionowe ramy wózka & z& w 4,86 3,94 0,89 Wartości przyspieszeń wzdłużnych i pionowych nadwozia i ramy wózka w zależności od zastosowanego układu zawieszenia silnika trakcyjnego pojazd jednoczłonowy, wózki dwuosiowe, układ napędowy wewnątrz pojazdu Tabela 12 Układ osi pojazdu Bo-2 Masa pojazdu własna/obciążona [Mg] / Rodzaj zawieszenia silnika trakcyjnego Silnik nieodsprężynowany na ramie wózka Silnik odsprężynowany na ramie wózka wzdłużne nadwozia & x& n 1,49 1,41 1,07 Wartości przyspieszeń w m/s 2 Silnik zawieszony do ostoi pojazdu pionowe nadwozia & z& n 0,79 0,89 1,03 wzdłużne ramy wózka & x& w 1,97 1,62 0,98 pionowe ramy wózka & z& 3,71 2,95 0,65 w 5. PODSUMOWANIE Z przeprowadzonych analiz obliczeniowych i badań symulacyjnych można wyciągnąć następujące główne wnioski [3, 4]: Dynamika rozruchowa pojazdu jedno- lub wieloczłonowego zasadniczo nie zależy od konfiguracji pojazdu i jest tym większa im większa jest zainstalowana moc napędowa w stosunku do masy pojazdu. Dla większości pojazdów, których prędkości eksploatacyjne nie przekraczają 120 km/h, a takie przede wszystkim analizowano, optymalny stosunek mocy do masy własnej wynosi 9 10 kw/t. Quasi-statyczne przyspieszenia rozruchowe w zakresie prędkości 0 80 km/h osiągają wtedy wartości 0,7 1,0 m/s 2, tj. takie, które pozwalają na stosunkowo krótkie przejazdy odcinków międzyprzystankowych. Zainstalowana moc napędowa przy w/w optymalnym stosunku pozwala bez trudności osiągnąć prędkości maksymalne (120 km/h) na torze płaskim, jak również na niewielkich wzniesieniach. Osiągi te uzyskać można przy siłach napędowych ograniczonych podczas rozruchu do poziomu wynikającego z jesiennych współczynników przyczepności kół, tj. nie przekraczających wartości 0,20 0,25. 13

14 Wartości przyspieszeń wzdłużnych i pionowych nadwozia i ramy wózka w zależności od zastosowanego układu osi pojazdu i zawieszenia silnika trakcyjnego pojazd dwuczłonowy, wózki dwuosiowe, układ napędowy wewnątrz pojazdu Tabela 13 Układ osi pojazdu Bo-Bo+2-2 Masa pojazdu własna/obciążona [Mg] / Silnik Silnik nieodsprężynowany odsprężynowany Silnik zawieszony do na ramie wózka na ramie wózka ostoi pojazdu wzdłużne nadwozia & x& n 1,63 1,52 1,15 pionowe nadwozia & z& n 0,84 0,94 1,10 wzdłużne ramy wózka & x& w 2,05 1,81 1,05 pionowe ramy wózka & z& 3,95 3,10 0,74 Rodzaj zawieszenia silnika trakcyjnego Wartości przyspieszeń w m/s 2 w Układ osi pojazdu Bo-2+2-Bo Masa pojazdu własna/obciążona [Mg] / Silnik Silnik nieodsprężynowany odsprężynowany Silnik zawieszony do na ramie wózka na ramie wózka ostoi pojazdu wzdłużne nadwozia & x& n 1,47 1,40 1,06 pionowe nadwozia & z& n 0,77 0,87 1,01 wzdłużne ramy wózka & x& w 1,97 1,62 0,98 pionowe ramy wózka & z& 2,71 2,95 0,65 Rodzaj zawieszenia silnika trakcyjnego Wartości przyspieszeń w m/s 2 w Współczynnik wykorzystania masy przyczepnej wcn, informujący o zdolności układu napędowego pojazdu do rozwijania maksymalnych sił pociągowych bez ryzyka poślizgu, zależy głównie od wartości odciążeń kół napędowych podczas rozruchu. Największe odciążenia kół powstają w układach napędowych mocowanych do zestawów kołowych (zabudowanych w ramach wózków jednoosiowych lub dwuosiowych), mniejsze odciążenia uzyskuje się dla układów zawieszonych na ramach wózków a najmniejsze, gdy są zamocowane do nadwozi. Niewielki wpływ na wcn ma konfiguracja całego pojazdu. Jak widać, najlepszy wcn bo niewiele mniejszy od wartości 1, osiągany jest dla napędów trakcyjnych zawieszonych (umocowanych) do nadwozi. Niestety ten typ zawieszeń, ze względów konstrukcyjnych, jest rzadko stosowany. Najczęściej jest stosowany nieco gorszy, lecz łatwy konstrukcyjnie, system elastycznych zawieszeń na ramach wózków. Wtedy osiągane są wartości wcn w zadawalającym zakresie 0,88 0,95, pozwalającym względnie łatwo opanować poślizgi kół w porach roku, gdy szyny są śliskie. Dynamiczne przyspieszenia chwilowe w kierunku wzdłużnym i pionowym na korpusach reagujących na zmienność sił napędowych (ramy wózków i nadwozia), dla każdego z analizowanych systemów zawieszeń nie przekraczają wartości dopuszczalnych przez odpowiednie normy krajowe (PN) i zagraniczne (UIC, EN). Największe przyspieszenia wzdłużne i pionowe nadwozia występują dla napędów zawieszonych do nadwozia, a największe przyspieszenia wzdłużne i pionowe ram wózków występują, gdy napędy są na nich zawieszone. Podstawowo chroni się obsługę pojazdu i pasażerów przed skutkami przyspieszeń, dlatego stosowanie zawieszeń napędów do nadwozi jest niekorzystne, a stosowane wyłącznie z konieczności. Przyspieszenia drgań ram wózków oddziaływują niekorzystnie na układy zabudowane na wózkach i torowisko. Ponieważ skutki tych przyspieszeń są stosunkowo łatwe do usunięcia, a nie wywołują drgań nadwozi, należy preferować systemy napędowe mocowane do ram wózków. Mocowania systemów napędowych na zestawach kołowych należy unikać nie tylko z punktu widzenia drgań wywołanych przez siły napędowe, ale również z punktu widzenia sił poprzecznych i pionowych na kołach jezdnych, wywołanych zwiększonymi masami nieodsprężynowanymi. 14

15 W przypadku prowadzenia dalszych prac projektowych nad spalinowo-elektrycznymi układami napędowymi należy dążyć do przestrzegania następujących zasad: zawieszenie silnika trakcyjnego i przekładni nie powinno powodować wzrostu mas nieodsprężynowanych ponad masę zestawu przy prędkościach do 120 km/h, a dla mas przekładni do 0,5 t można zastosować oparcie przekładni bezpośrednio na zestawie kołowym średnie przyspieszenie jazdy pojazdu nie powinno przekraczać 1,0 m/s 2 (najlepiej pomiędzy 0,6 0,8 m/s 2 ) ze względu na stan torów należy dążyć do zastosowania odsprężynowanych układów napędowych i sprzęgieł elastycznych dla zespołu prądotwórczego (układ wewnątrzpojazdowy), należy dążyć by jego posadowienie było możliwie miękkie tak, aby drgania własne zespołu były zdecydowanie poniżej prędkości obrotowych silnika. Ponadto pod uwagę należy wziąć następujące obszary głównych parametrów pojazdów i ich podstawowych zespołów dla prędkości ruchu km/h: masy własne: t jednoczłon t dwuczłon t trójczłon moce silników spalinowych: kw (jednoczłon) oraz kw (dwuczłoni trójczłon) moce silników trakcyjnych kw. Dla pozostałych maszyn elektrycznych należy przyjąć następujące parametry (przy założeniu ich sprawności): dla prądnic moc identyczną jak dla silnika spalinowego dla przekształtników moc pozwalającą zrealizować zasilanie silników trakcyjnych, uwzględniając 40% ich przeciążalność dla opornic hamowania moc identyczną jak dla zastosowanych prądnic dla przetwornicy do napędów pomocniczych moc nie przekraczającą 30kW. Ponadto nie należy odrzucać (ze względu na osiągane rezultaty) żadnej z przyjętych konfiguracji pojazdów, zarówno dla wózków jednoosiowych jak i dwuosiowych [5]. W rzeczywistości jednak o parametrach pojazdu i jego konfiguracji decydować będą względy ekonomiczne i użytkowe określone przez Zamawiającego lub Użytkownika. LITERATURA [1] Grzechowiak R., Marciniak Z., Sienicki A.: Wybór układu biegowego i napędowego dla krajowego autobusu szynowego. Pojazdy Szynowe nr 4/2003. [2] Grzechowiak R., Marciniak Z., Sienicki A.: Symulacja komputerowa przy wyborze koncepcji i parametrów układów biegowych autobusu szynowego. Pojazdy Szynowe nr 2/2003. [3] Marciniak Z.: Układy napędowe krajowych autobusów szynowych dla ruchu lokalnego. Pojazdy Szynowe nr 3/2003. [4] Marciniak Z.: Przegląd lekkich wieloczłonowych pojazdów szynowych z napędem spalinowo-elektrycznym. Pojazdy Szynowe nr 2/2006. [5] Marciniak Z.: Koncepcja spalinowo-elektrycznych układów napędowych dla lekkich pojazdów szynowych. Materiały XVII Konferencji Naukowej Pojazdy Szynowe Kazimierz Dolny [6] Praca zbiorowa pod kierunkiem Z. Marciniaka: Opracowanie i wybór na podstawie badań symulacyjnych układu napędowego i biegowego autobusu szynowego dla ruchu lokalnego. Projekt badawczy KBN nr 9T12C Praca niepublikowana. IPS Tabor Poznań [7] Praca zbiorowa pod kierunkiem Z. Marciniaka: Spalinowo-elektryczny napęd dla lekkich wieloczłonowych pojazdów szynowych. Projekt badawczy KBN nr 4T12D Praca niepublikowana. IPS Tabor Poznań

16 mgr inż. Ryszard Grzechowiak dr inż. Zygmunt Marciniak mgr inż. Zdzisław Pawlak mgr inż. Tomasz Wierzejewski Instytut Pojazdów Szynowych Tabor Spalinowo-elektryczne układy napędowe dla krajowego lekkiego pojazdu szynowego Koncepcje i założenia W artykule zaprezentowano wymagania i wytyczne techniczno-eksploatacyjne dla lekkich pojazdów szynowych oraz spalinowo-elektrycznych układów napędowych. Przedstawiono koncepcje rozwiązań układów do zabudowy podpodłogowej oraz zabudowy wewnątrzpojazdowej z wykorzystaniem wózków jedno- i dwuosiowych. Ponadto przedstawiono założenia dla proponowanych do wykonania w kraju układów napędowych z wykorzystaniem zespołów prądotwórczych silnik spalinowy + prądnica synchroniczna. Artykuł powstał w wyniku realizacji projektu badawczego nr 4T12DO1227 pt.: Spalinowoelektryczny napęd dla lekkich wieloczłonowych pojazdów szynowych. 1. WSTĘP Układ napędowy spalinowo-elektryczny stanowi zespół urządzeń służących do przeniesienia momentu obrotowego, wytwarzanego przez silnik spalinowy, na osie napędowe pojazdu. W skład zespołu wchodzą: silniki spalinowe, prądnice, prostowniki, przekształtniki, silniki trakcyjne (prądu stałego lub zmiennego), wały przegubowe lub drążone, sprzęgła i przekładnie osiowe. Urządzenia te pośredniczą w przeniesieniu momentu (mocy) i łączą silnik spalinowy z napędowymi zestawami kołowymi. Oprócz przeniesienia momentu układ napędowy winien spełniać dodatkowe zadanie, jakim jest pełne wykorzystanie mocy silnika w możliwie szerokim zakresie prędkości pojazdu, a więc jak najlepsze spełnienie wymagań trakcyjnych. Ponadto układ napędowy winien zapewniać możliwość zmiany kierunku obrotów zestawu kołowego oraz umożliwiać odłączenie silnika spalinowego od osi w czasie rozruchu, postoju lub holowania, jak również cechować się zwartą budową pozwalającą na uzyskanie jak największej przestrzeni w członach pasażerskich [2]. Ze względu na zastosowany układ napędowy lekkie pojazdy szynowe, zwane autobusami szynowymi, dzieli się na [1]: z napędem spalinowym i przekładnią hydrauliczną (hydromechaniczną) z napędem spalinowo-elektrycznym i przekładnią elektryczną z napędem elektrycznym. W artykule przedstawiono tylko układy napędowe z przekładnią elektryczną, w których zastosowane są lub będą zespoły prądotwórcze, a więc silniki spalinowe i prądnice, najczęściej synchroniczne. Takie układy napędowe znane i stosowane są od kilkudziesięciu lat w spalinowych zespołach trakcyjnych, a ostatnio od kilku lat wracają z powodzeniem w zastosowaniu również do napędów autobusów szynowych. Ich podstawową cechą jest przede wszystkim wysoka trwałość i niezawodność oraz możliwość realizowania wyższych mocy w ograniczonej przestrzeni. W starszych rozwiązaniach, stosowanych w zasadzie w spalinowych zespołach trakcyjnych, całe układy napędowe zabudowane są pod ostojami członów napędowych. Przykładami mogą tu być zespoły serii VT610, BM/BS92 oraz VT/VS2E przeznaczone zasadniczo do obsługi ruchu regionalnego. Ich szczegółowe opisy wraz z charakterystykami przedstawiono w pracy [4]. W nowszych konstrukcjach lekkich pojazdów szynowych, a w zasadzie w autobusach szynowych, spotkać można dwie konfiguracje układów napędowych: układ podpodłogowy tzw. power-pack, na którym zabudowany jest tylko silnik spalinowy, prądnica oraz urządzenia i aparaty gwarantujące prawidłową pracę zespołu prądotwórczego w tym chłodzenie i sterowanie. Układ power-pack podwieszony jest do ostoi członu napędowego z przodu pojazdu lub bezpośrednio za wózkiem napędowym, na którym zabudowane są silniki trakcyjne i przekładnie osiowe. Pozostałe aparaty i urządzenia wchodzące w skład układu napędowego lokalizowane są zarówno pod ostoją, wewnątrz pojazdu lub też na dachach np.: przekształtnik, hamulec elektrodynamiczny w tym oporniki oraz układy chłodzące. Przykładami autobusów z takimi rozwiązaniami są VT644 (Talent) oraz najnowsze autobusy firmy Bombardier serii DMU i EDMU [4], 16

17 układ wewnątrzpojazdowy, znajdujący się najczęściej między dwoma członami pasażerskimi lub też bezpośrednio za kabiną sterowniczą, co zwiększa bezpieczeństwo obsługi i pasażerów w przypadku ewentualnych kolizji. Taka zabudowa zespołów, maszyn i aparatów w wydzielonym członie daje następujące korzyści: lekką i prostą konstrukcję członów pasażerskich oszczędność w kosztach obsługi optymalną przyczepność osi napędowych oddzielenie źródła hałasu od przedziału pasażerskiego doskonały dostęp do aparatury trakcyjnej od wewnątrz i z zewnątrz pojazdu możliwość wymiany członu napędowego w ciągu kilku godzin. Ponadto zaletą autobusu o takiej konfiguracji jest również swoboda zestawiania większej liczby członów z miejscami dla pasażerów w zależności od potrzeb przewozowych i, co bardzo ważne, autobus po 35-letniej eksploatacji może być poddany recyklingowi, a część surowców użytych do jego budowy ponownie wykorzystanych. Przykładami takich rozwiązań są autobusy firmy Stadler serii GTW 2/6 i GTW 4/8 dla Polskich Kolei Państwowych [4]. 2. WYMAGANIA STAWIANE NOWOCZES- NYM LEKKIM POJAZDOM SZYNOWYM (AUTOBUSOM SZYNOWYM) Lekkie kolejowe pojazdy szynowe, dla wykonywania kolejowych regionalnych przewozów pasażerskich, winny charakteryzować się nowoczesnością konstrukcji, a jednocześnie posiadać sprawdzone i stosowane w przemyśle motoryzacyjnym i kolejnictwie podzespoły (dotyczy to w szczególności silnika spalinowego i przekładni). Ponadto autobus powinien charakteryzować się prostotą obsługi technicznej oraz niskimi kosztami eksploatacji. Przewidywać należy również, że tego typu pojazdy mogą być wykonywane (zamawiane) w następujących konfiguracjach członów: s, s-s, s-d, s-d-s i d-s-d; gdzie : s - człon silnikowy tj. człon, w którym zabudowane są główne maszyny i zespoły układu napędowego, w tym wózki d - człon doczepny, beznapędowy, oparty na wózkach tocznych. Istotne z punktu widzenia napędu spalinowoelektrycznego są następujące wymagania i wytyczne dla lekkiego pojazdu szynowego: prędkość eksploatacyjna najczęściej km/h skrajnia kinematyczna wg UIC [5] wytrzymałość pudła kategoria P3 wg normy PN-EN [9], z dodatkowym wyposażeniem w elementy pochłaniające energię zderzenia czołowego moc znamionowa silnika ok. 6,5 8 kw/t (nawet do 10 kw/t) przyspieszenie rozruchu (przy pełnym obciążeniu) 0,5 m/s 2 (zazwyczaj 0,6 0,8) opóźnienie hamowania ok. 1 m/s 2 największe wzniesienie, na którym pojazd powinien ruszać z pełnym obciążeniem > koła jezdne o profilu 28 UIC o szerokości obrzeża 135 mm eksploatacyjny zakres temperatur otoczenia od -30 o C do +40 o C poziom hałasu (zewnętrznego i wewnętrznego) przy pracującym silniku spalinowym i pozostałych maszynach zgodnie z normą PN-92/K [10] bezpieczeństwo ruchu podczas eksploatacji z maksymalnymi prędkościami wg UIC 518 [6] przy zachowaniu wskaźnika komfortu < 2,5 wg UIC [7] minimalny promień łuku warsztatowego m minimalny promień łuku w eksploatacji 150 m maksymalny nacisk zestawu kołowego na tor w stanie służbowym z pełnym obciążeniem kn. W zakresie wymagań dotyczących utrzymania pojazd powinien zapewniać (z punktu widzenia spalinowo-elektrycznego układu napędowego): żywotność przez okres ponad 30 lat prostą lokalizację uszkodzeń zespołów i podzespołów łatwą wykrywalność uszkodzeń i stanu osiągania granicznych parametrów technicznych poprzez zastosowanie elementów elektronicznego systemu diagnostyki (system elektronicznej diagnostyki podstawowych parametrów ekspolatacyjnych i lokalizacji uszkodzeń) budowę modułową umożliwiającą demontaż i montaż poszczególnych zespołów unifikację części dla ograniczenia niezbędnych narzędzi i oprzyrządowania współczynnik gotowości technicznej przekraczający 92% minimalną liczbę przeglądów i napraw, a więc zwiększenie przebiegów między przeglądami i naprawami. Ponadto należy zapewnić, aby konstrukcja, parametry techniczne i eksploatacyjne pojazdu spełniały wymagania przynależnych norm krajowych (w szczególności PN, PN-EN, BN i ZN), międzynarodowych 17

18 IEC, EN oraz przepisów i zaleceń ERRI (ORE), kart UIC i Dyrektyw Parlamentu Europejskiego (Komisji Europejskich). Oczywistym jest również, że każdy wyprodukowany lekki pojazd przed wejściem do eksploatacji powinien: zostać odebrany wg opracowanych Warunków Technicznych Odbioru przejść próby i badania stacjonarne i ruchowe wg opracowanego programu prób i badań zawierającego także eksploatację nadzorowaną (obserwowaną) spełniać warunki techniczne i wymagania zapewniające bezpieczeństwo ruchu i ochronę środowiska posiadać świadectwo dopuszczenia do eksploatacji typu pojazdu kolejowego posiadać świadectwo sprawności technicznej posiadać dokumentację techniczno-ruchową, zawierającą opis pojazdu, instrukcję obsługi, instrukcję przeglądów i napraw oraz katalog części zamiennych posiadać dokumentację technologiczną systemu utrzymania. 3. WYMAGANIA DLA UKŁADÓW SPALINO- WO-ELEKTRYCZNYCH ORAZ ICH GŁÓW- NYCH MASZYN I URZĄDZEŃ Konfiguracja układu napędowego powinna uwzględniać kryteria wyjściowe podane w [1]. Głównymi zespołami i maszynami w obu ww. konfiguracjach (niezależnie od zabudowanego wózka napędowego) są: silniki spalinowe, prądnice główne, prostowniki, przekształtniki trakcyjne, przetwornice statyczne, opornice hamulca elektrodynamicznego, silniki trakcyjne, przekładnie osiowe i zestawy kołowe napędowe. Ponadto w układach tych zabudowane są urządzenia, układy i aparaty związane z silnikiem spalinowym, napędami pomocniczymi i hamulcem mechanicznym na wózkach [4] Wymagania dla maszyn i zespołów układów podpodłogowych Szczegółowe wymagania i wytyczne, za wyjątkiem ram mocujących, ram wózków z ich usprężynowaniem, tłumieniem, łożyskowaniem i przeniesieniem sił wzdłużnych dla poszczególnych głównych maszyn i zespołów, są następujące [4]: Silnik spalinowy wysokoprężny o wtrysku bezpośrednim, w wersji leżącej, chłodzony cieczą i charakteryzujący się: mocą gwarantującą osiągnięcie prędkości 80 km/h na wzniesieniach do emisją spalin zgodnie z Dyrektywą 26/2004 Parlamentu Europejskiego (Komisji Europejskiej) z r., Rozporządzeniem Ministra Gospodarki i Pracy z r. w sprawie szczegółowych wymagań dla silników spalinowych w zakresie emisji substancji toksycznych oraz z kartą UIC 624 [8] jednostkowym zużyciem paliwa do 200 g/kwh jednostkowym zużyciem oleju smarnego do 0,5% jednostkowego zużycia paliwa czasem pracy do przeglądu tłoków powyżej godz. czasem pracy do naprawy głównej powyżej godz. Ponadto w układach związanych z silnikiem winien znajdować się zbiornik paliwa o pojemności wystarczającej do przebiegu około 1000 km. Prądnica główna trójfazowa synchroniczna, służąca do zasilania napędów i układów pomocnicznych, o następujących wymaganiach: wykonanie trakcyjne, chłodzenie powietrzem praca ze stałą optymalną prędkością obrotową wykonanie jednołożyskowe praca ciągła. Dla układów podpodłogowych moc prądnicy powinna wynosić kw a prędkość obrotowa obr/min. Prostownik diodowy służący do wyprostowania napięcia trójfazowego prądnicy głównej, a następnie do zasilania trójfazowego przekształtnika napędowego. Przewidywane napięcie wejściowe winno wynosić V AC, wyjściowe V DC, moc około 300 kw. Prostownik powinien być chłodzony powietrzem wymuszonym (dopuszcza się chłodzenie naturalne) i być wyposażony w układ pomiaru temperatury elementów wewnętrznych. Przekształtnik trakcyjny składający się z falownika napędowego i przekształtnika hamowania oporowego. Falownik zbudowany na tranzystorach IGBT będzie zasilał silnik trakcyjny, a przekształtnik hamowania w procesie zmniejszania prędkości wykorzysta energię do zasilania przetwornicy pomocniczej statycznej, a w przypadku nadmiaru mocy będzie wytracał energię w rezystorach hamowania. Dla układów podpodłogowych należy przewidzieć falownik o mocy około 300 kw, a przekształtnik hamowania oporowego o mocy około 230 kw. Przekształtnik powinien posiadać chłodzenie naturalne lub wymuszone i być wyposażony w układ diagnostyki. Przetwornica statyczna przeznaczona do zasilania napędów i urządzeń pomocniczych napięciem pośrednim przekształtnika. Może to być oddzielne urządzenie lub wchodzić w skład przekształtnika trakcyjnego. Proponowana zabudowa pod ostoją lub na dachu.

19 Proponuje się przetwornice o mocy kw z napięciem wyjściowym 3x400V 50Hz i 28V DC. Przetwornica winna być chłodzona naturalnie lub powietrzem wymuszonym oraz posiadać układ diagnostyki wewnętrznej. Opornice hamulca (rezystory hamowania) służą do odbioru nadmiaru energii wytwarzanej podczas hamowania elektrodynamicznego. Przewidywana moc opornicy około 230 kw, napięcie maksymalne 800 V a rezystancja ok. 2 Ω. Opornica powinna być w wykonaniu trakcyjnym i zabudowana na dachu pojazdu. Silnik trakcyjny asynchroniczny przeznaczony do napędu zestawu kołowego. Podstawowe wymagania dla silnika są następujące: 3-fazowy z wirnikiem klatkowym w wykonaniu trakcyjnym, zasilany z falownika przystosowany do pracy poziomej ciągłej w obudowie zamkniętej o stopniu ochrony IP54 i izolacji klasy H chłodzony wentylatorem własnym (dopuszcza się chłodzenie cieczą) zapewniający dowolny kierunek obrotów i przystosowany do pracy prądnicowej podczas hamowania elektrodynamicznego. Podstawowe dane techniczne silnika przewidywanego do zabudowy podpodłogowej to: moc ok kw i prędkość obrotowa 1900 obr/min, a maksymalnie ok obr/min. Przekładnia osiowa winna cechować się płynną pracą wraz ze zmianą prędkości, odpornością na wszelkiego rodzaju przeciążenia, prostotą obsługi i napraw, wysoką trwałością i niskimi kosztami utrzymania oraz posiadać zwartą budowę i gabaryty umożliwiające zabudowę wzdłużną i poprzeczną. W lekkich pojazdach szynowych można zastosować przekładnie jedno- lub dwustopniowe z kołami walcowymi lub stożkowymi, a ostateczny wybór rodzaju winien zależeć od głównych parametrów pojazdu oraz dysponowanego miejsca pod zabudowę. Przyjmując średnicę toczną kół 840 mm (zużytych 780 mm) przełożenie przekładni winno wynosić odpowiednio dla v = 100 km/h 6,24 6,25 a dla v = 120 km/h nie więcej niż 5,2. Zestaw kołowy napędowy o następujących ogólnych wymaganiach: średnica koła możliwie mała by zapewnić maksimum obniżonej podłogi w pojeździe, a jednocześnie spełnić wymagania w zakresie skrajni i dopuszczalnych nacisków zestawu na szynę (dla ø mm 20 t, a dla ø mm 18 t) minimalna masa nieodsprężynowana duża trwałość, a więc duży przebieg do przetoczenia oś standardowa z czopami łożyskowymi o średnicy ø130 mm. Dla układów napędowych preferowane winny być zestawy kołowe (toczne i napędowe) z kołami bezobręczowymi o średnicy ø840 mm, wykonane z materiału R8T lub R9T. Hamulec dla lekkiego pojazdu szynowego winien spełniać następujące wymagania: umożliwić zatrzymanie w każdych warunkach eksploatacyjnych, a więc z v = 100 km/h na drodze 600 (700) m, a z v = 120 km/h na drodze 800 m zapewnić utrzymanie pojazdu na wzniesieniu 45 posiadać elektroniczny układ przeciwpoślizgowy działający przy ruszaniu i hamowaniu posiadać okładziny cierne nie zawierające azbestu posiadać system wewnętrzny umożliwiający przeprowadzenie samotestu przed wyjazdem na trasę. W lekkich pojazdach szynowych, niezależnie od zastosowanych wózków, hamulcem mechanicznym może być zarówno hamulec klockowy jak i tarczowy, przy czym tarcze hamulcowe mogą być zabudowane zarówno na kole jezdnym osi zestawu kołowego lub na wale drążonym, jeżeli taki układ przeniesienia napędu z silnika trakcyjnego na zestaw kołowy będzie zastosowany. Dokonując wyboru zabudowy tarcz hamulcowych należy brać pod uwagę: możliwość zabudowy na wózkach jedno- i dwuosiowych unifikację zabudowy na wózkach tocznych i napędowych możliwość zastosowania obniżonej podłogi nad wózkiem tocznym zwartość konstrukcji tj. jak najmniejszą odległość między osią zestawu kołowego a osią silnika trakcyjnego. W układach napędowych lekkich pojazdów preferowany byłby układ hamulca tarczowego (z tarczami zabudowanymi na kołach zestawów kołowych), przy czym ilość tarcz zależeć winna od szczegółowych obliczeń układu. Jeżeli wymagają tego warunki eksploatacyjne należy również dopuścić zastosowanie tzw. klocka czyszczącego, zwłaszcza w obszarach eksploatacji z automatycznymi urządzeniami sterowania ruchem kolejowym, dla pojazdów o bazie przekraczającej 6 m (odległości między wózkami jednoosiowymi) Wymagania dla maszyn i zespołów w zabudowie wewnątrzpojazdowej Szczegółowe wymagania i wytyczne dla poszczególnych maszyn i zespołów w zabudowie wewnątrzpojazdowej są następujące: 19

20 Silnik spalinowy o wymaganiach jak w pkt przy czym winna być zastosowana wersja stojąca (układ cylindrów rzędowy lub widlasty), zabudowany na wspólnej ramie z prądnicą główną tworząc zespół prądotwórczy. Rozważyć należy zwiększoną (około dwukrotnie) moc silnika, zapewniając w ten sposób pełne jego wykorzystanie w przypadku napędów zabudowanych na wszystkich zestawach kołowych. Prądnica główna o wymaganiach jak w pkt o mocy kw i obrotach silnika spalinowego, połączona elastycznie (sprzęgło elastyczne) lub sztywno za pośrednictwem kołnierza. Prostownik o wymaganiach jak w pkt o zwiększonej mocy tj kw. Przekształtnik trakcyjny identyczny jak w pkt dla zachowania tej samej konfiguracji układu napędowego. W przypadku zastosowania tylko jednego wózka napędowego dwuosiowego i silników trakcyjnych o zwiększonej mocy ( kw) wymagane byłoby zastosowanie przekształtnika trakcyjnego o mocy falownika do 600 kw i przekształtnika hamowania oporowego do około 500 kw, przy zachowaniu tych samych parametrów napięciowoprądowych. Przetwornica statyczna o mocy kw przy zachowaniu pozostałych wymagań jak w pkt a biorąc pod uwagę zastosowanie tylko jednego przekształtnika trakcyjnego, moc przetwornicy winna być zwiększona do 50 kw. Wymagania dla pozostałych maszyn układu napędowego, a więc opornic hamowania oraz silników trakcyjnych winny być identyczne jak przedstawiono w pkt. 3.1., przy czym ich moce wyjściowe w przypadku zastosowania tylko jednego przekształtnika trakcyjnego (napędowego) oraz jednego wózka napędowego powinny być zwiększone dwukrotnie. Pozostałe zespoły i urządzenia zastosowane w konfiguracji wewnątrzpojazdowej napędu, a więc przekładnie osiowe, zestawy kołowe i układy hamulcowe winny spełniać wymagania i wytyczne podane w pkt KONCEPCJE I ZAŁOŻENIA PROJEKTO- WE DLA KRAJOWYCH SPALINOWO - ELEKTRYCZNYCH NAPĘDÓW LEKKICH POJAZDÓW SZYNOWYCH Analiza krajowego rynku wykazała, że poza spalinowymi zespołami trakcyjnymi (prawie 40-letnimi) sprowadzanymi z Niemiec, eksploatowane są autobusy szynowe z układami napędowymi opartymi o silniki spalinowe i przekładnie hydrauliczne (hydromechaniczne), Pesy Bydgoszcz, ZNTK-Poznań i byłego Kolzamu Racibórz. Do grona wymienionych pretenduje również Bumar-Fablok Chrzanów. Obecnie coraz częściej potencjalni Użytkownicy zgłaszają zainteresowanie autobusami szynowymi z układami napędowymi spalinowo-elektrycznymi. Tak więc już teraz, wychodząc naprzeciw oczekiwaniom należałoby opracować projekty techniczne i przebadać takie układy w miarę możliwości oparte o maszyny, zespoły i urządzenia produkowane lub możliwe do produkcji w kraju. Jako podstawę należy przyjąć założenie ukierunkowujące prace nad rozwiązaniem następujących układów: do zabudowy podpodłogowej tzw. Power-Pack do zabudowy wewnątrz pojazdu. Pierwszy z tych układów może być zamienny z dotychczasowymi z przekładnią hydrauliczną, natomiast dla drugiego należałoby zaprojektować przedział (moduł) napędowy, najlepiej wydzielony z dostępem do niego od zewnątrz i wewnątrz Koncepcje i założenia projektowe dla lekkich pojazdów szynowych ze spalinowo-elektrycznymi układami napędowymi Koncepcje i założenia spalinowo-elektrycznych układów napędowych nie mogą abstrahować od budowy samych lekkich pojazdów, dla których układy będą projektowane i wdrażane. Dla warunków krajowych przyjęto układ napędowy, który składać się będzie z: silnika spalinowego, prądnicy synchronicznej, przekształtnika tranzystorowego (falownik, przekształtnik hamowania), silników trakcyjnych asynchronicznych, przekładni osiowych i zestawów kołowych napędowych. W związku z tym, że istnieją już zaprojektowane i eksploatowane autobusy proponuje się wykorzystać jednoczłon typu 211M, dwuczłon 212M i trójczłon 210M oraz ich nowe (wydłużone) warianty do zabudowy układów podpodłogowych zarówno w oparciu o dotychczasowe wózki jednoosiowe jak i nowe wózki dwuosiowe, specjalnie zaprojektowane. Dla zabudowy wewnętrznej układów należy przewidywać autobusy szynowe (jedno-, dwu- i trójczłonowe) o wydłużonym nadwoziu i zwiększonej liczbie miejsc siedzących. Ogólne widoki wybranych i proponowanych autobusów szynowych dla zabudowy proponowanych układów napędowych przedstawiono na rys.1 3. Reasumując, dla rozwijanych układów napędowych można zaproponować następujące konfiguracje wieloczłonowych autobusów szynowych: autobusy dotychczasowe z wózkiem jednoosiowym: jednoczłon z jednym wózkiem napędowym i jednym tocznym- układ osi (A +1) dwuczłon z dwoma wózkami napędowymi i dwoma tocznymi układ osi (A +1)-(1+A ) trójczłon z dwoma wózkami napędowymi i czterema wózkami tocznymi w układzie osi (A +1)-(1+1)-(1+A ) 20

21 autobusy do zaprojektowania z wózkami jednoi dwuosiowymi: jednoczłon z jednym wózkiem napędowym i jednym tocznym układ osi (Bo-2) dwuczłon zarówno z wózkami jednoosiowymi i dwuosiowymi o układach osi (Bo+1)(1+Bo); (Bo+2)-(2+Bo); Bo-2-Bo - trójczłon z wózkami jedonosiowymi i dwuosiowymi o układach osi (Bo+1)+(1-1)- (1+Bo); (Bo+2)-( )-(2+Bo); Bo-2-2-Bo. Ostateczny wybór konfiguracji oraz szczegółowych parametrów autobusów zależeć będzie od precyzyjnych wymagań przyszłego Użytkownika i zadań do spełnienia w określonych warunkach eksploatacyjnych. Rys.1. Ogólny widok autobusu dwuczłonowego typu 212M o układzie osi (A +1)-(1+A ) Rys.2. Ogólny widok autobusu trójczłonowego o układzie osi (Bo+1)-(1+1)-(1+Bo) Rys.3. Ogólny widok autobusu jednoczłonowego w wersji wydłużonej o układzie osi (B o-2) 21

TRAMWAJ. Spis treści. Nevelo. Charakterystyka Eksploatacja Przestrzeń pasażerska Kabina motorniczego Cechy użytkowe.

TRAMWAJ. Spis treści. Nevelo. Charakterystyka Eksploatacja Przestrzeń pasażerska Kabina motorniczego Cechy użytkowe. TRAMWAJ Spis treści Nevelo Charakterystyka Eksploatacja Przestrzeń pasażerska Kabina motorniczego Cechy użytkowe O firmie Newag 3 4 TRAMWAJ nevelo Wieloletnie doświadczenia NEWAG S.A. w budowie pojazdów

Bardziej szczegółowo

Naszą misją jest. spełnianie obecnych i przyszłych oczekiwań. krajowych i zagranicznych właścicieli taboru szynowego. poprzez

Naszą misją jest. spełnianie obecnych i przyszłych oczekiwań. krajowych i zagranicznych właścicieli taboru szynowego. poprzez Lokomotywy Naszą misją jest spełnianie obecnych i przyszłych oczekiwań krajowych i zagranicznych właścicieli taboru szynowego poprzez budowę, unowocześnianie oraz naprawę taboru, przy zapewnieniu dobrej

Bardziej szczegółowo

MODERNIZACJA NAPĘDU ELEKTRYCZNEGO WIRÓWKI DO TWAROGU TYPU DSC/1. Zbigniew Krzemiński, MMB Drives sp. z o.o.

MODERNIZACJA NAPĘDU ELEKTRYCZNEGO WIRÓWKI DO TWAROGU TYPU DSC/1. Zbigniew Krzemiński, MMB Drives sp. z o.o. Zakres modernizacji MODERNIZACJA NAPĘDU ELEKTRYCZNEGO WIRÓWKI DO TWAROGU TYPU DSC/1 Zbigniew Krzemiński, MMB Drives sp. z o.o. Wirówka DSC/1 produkcji NRD zainstalowana w Spółdzielni Mleczarskiej Maćkowy

Bardziej szczegółowo

PL B1. SOLARIS BUS & COACH SPÓŁKA AKCYJNA, Bolechowo-Osiedle, PL BUP 21/15. DARIUSZ ANDRZEJ MICHALAK, Puszczykowo, PL

PL B1. SOLARIS BUS & COACH SPÓŁKA AKCYJNA, Bolechowo-Osiedle, PL BUP 21/15. DARIUSZ ANDRZEJ MICHALAK, Puszczykowo, PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 227514 (13) B1 (21) Numer zgłoszenia: 407740 (51) Int.Cl. B61F 5/02 (2006.01) B61D 13/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

Konfiguracja układów napędowych. Opracował: Robert Urbanik Zespół Szkół Mechanicznych w Opolu

Konfiguracja układów napędowych. Opracował: Robert Urbanik Zespół Szkół Mechanicznych w Opolu Konfiguracja układów napędowych Opracował: Robert Urbanik Zespół Szkół Mechanicznych w Opolu Ogólna klasyfikacja układów napędowych Koła napędzane Typ układu Opis Przednie Przedni zblokowany Silnik i wszystkie

Bardziej szczegółowo

Potencjał modernizacyjny lokomotyw spalinowych NEWAG S.A.

Potencjał modernizacyjny lokomotyw spalinowych NEWAG S.A. Potencjał modernizacyjny lokomotyw spalinowych NEWAG S.A. Krystian Kiercz Kierownik projektu Nowe strategie i technologie w transporcie, spedycji i logistyce Sosnowiec, 17 Kwiecień 2012 r. Plan prezentacji

Bardziej szczegółowo

Układ ENI-EBUS/URSUS stanowi kompletny zespół urządzeń napędu i sterowania przeznaczony do autobusu EKOVOLT produkcji firmy URSUS..

Układ ENI-EBUS/URSUS stanowi kompletny zespół urządzeń napędu i sterowania przeznaczony do autobusu EKOVOLT produkcji firmy URSUS.. Strona 1/11 Układ ENI-EBUS/URSUS Układ ENI-EBUS/URSUS stanowi kompletny zespół urządzeń napędu i sterowania przeznaczony do autobusu EKOVOLT produkcji firmy URSUS.. Układ ten umożliwia: napędzanie i hamowanie

Bardziej szczegółowo

Platforma lokomotyw BAZA PLATFORMY. Modułowa konstrukcja układu napędowego zapewnia 82% wspólnych podzespołów dla lokomotyw elektrycznych platformy

Platforma lokomotyw BAZA PLATFORMY. Modułowa konstrukcja układu napędowego zapewnia 82% wspólnych podzespołów dla lokomotyw elektrycznych platformy 1 PLATFORMA LOKOMOTYW strona 2 Platforma lokomotyw BAZA PLATFORMY KONSTRUKCJA PUDŁA/ NADWOZIE WÓZEK KOMPLETNY UKŁAD NAPĘDOWY Modułowa konstrukcja układu napędowego zapewnia 82% wspólnych podzespołów dla

Bardziej szczegółowo

1. Obliczenia wytrzymałościowe elementów maszyn przy obciążeniu zmiennym PRZEDMOWA 11

1. Obliczenia wytrzymałościowe elementów maszyn przy obciążeniu zmiennym PRZEDMOWA 11 SPIS TREŚCI 1. Obliczenia wytrzymałościowe elementów maszyn przy obciążeniu zmiennym PRZEDMOWA 11 1. ZARYS DYNAMIKI MASZYN 13 1.1. Charakterystyka ogólna 13 1.2. Drgania mechaniczne 17 1.2.1. Pojęcia podstawowe

Bardziej szczegółowo

Opis wyników projektu

Opis wyników projektu Opis wyników projektu Nowa generacja wysokosprawnych agregatów spalinowoelektrycznych Nr projektu: WND-POIG.01.03.01-24-015/09 Nr umowy: UDA-POIG.01.03.01-24-015/09-01 PROJEKT WSPÓŁFINANSOWANY PRZEZ UNIĘ

Bardziej szczegółowo

Urząd Marszałkowski Województwa Zachodniopomorskiego. AUTOBUS SZYNOWY 212M serii SA 109

Urząd Marszałkowski Województwa Zachodniopomorskiego. AUTOBUS SZYNOWY 212M serii SA 109 Urząd Marszałkowski Województwa Zachodniopomorskiego AUTOBUS SZYNOWY 212M serii SA 109 Pojazdy typu 212 M oznaczenie kolejowe SA109. Kolejowe Zakłady Maszyn Kolzam S.A. producent omawianego pojazdu szynowego

Bardziej szczegółowo

ElektrycznE Zespoły TrakcyjnE

ElektrycznE Zespoły TrakcyjnE ElektrycznE Zespoły TrakcyjnE nowoczesne rozwiązania dla transportu kolejowego ElektrycznE ZespÓłY TrakcyjnE Impuls nowoczesność i komfort Najnowsze produkty Spółki NEWAG S.A. - Elektryczne Zespoły Trakcyjne

Bardziej szczegółowo

Elektryczne zespoły trakcyjne

Elektryczne zespoły trakcyjne Elektryczne zespoły trakcyjne Naszą misją jest spełnianie obecnych i przyszłych oczekiwań krajowych i zagranicznych właścicieli taboru szynowego poprzez budowę, unowocześnianie oraz naprawę taboru, przy

Bardziej szczegółowo

Załącznik nr 1 do RPK Zakres tematyczny konkursu 5/1.2/2016/POIR

Załącznik nr 1 do RPK Zakres tematyczny konkursu 5/1.2/2016/POIR Załącznik nr 1 do RPK Zakres tematyczny konkursu 5/1.2/2016/POIR A. Rozwój i wdrożenie nowoczesnych rozwiązań konstrukcyjnych i technologii w pojazdach wysokich prędkości oraz pojazdach kolejowych spełniających

Bardziej szczegółowo

ZAAWANSOWANE ROZWIĄZANIA TECHNICZNE I BADANIA EKSPLOATACYJNE MIEJSKIEGO SAMOCHODU OSOBOWEGO Z NAPĘDEM ELEKTRYCZNYM e-kit

ZAAWANSOWANE ROZWIĄZANIA TECHNICZNE I BADANIA EKSPLOATACYJNE MIEJSKIEGO SAMOCHODU OSOBOWEGO Z NAPĘDEM ELEKTRYCZNYM e-kit Instytut Napędów i Maszyn Elektrycznych KOMEL ZAAWANSOWANE ROZWIĄZANIA TECHNICZNE I BADANIA EKSPLOATACYJNE MIEJSKIEGO SAMOCHODU OSOBOWEGO Z NAPĘDEM ELEKTRYCZNYM e-kit dr hab. inż. Jakub Bernatt, prof.

Bardziej szczegółowo

Spis treści. Przedmowa 11

Spis treści. Przedmowa 11 Przykłady obliczeń z podstaw konstrukcji maszyn. [Tom] 2, Łożyska, sprzęgła i hamulce, przekładnie mechaniczne / pod redakcją Eugeniusza Mazanka ; autorzy: Andrzej Dziurski, Ludwik Kania, Andrzej Kasprzycki,

Bardziej szczegółowo

PL B1. Instytut Pojazdów Szynowych TABOR, Poznań,PL BUP 20/06

PL B1. Instytut Pojazdów Szynowych TABOR, Poznań,PL BUP 20/06 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 204675 (13) B1 (21) Numer zgłoszenia: 373778 (51) Int.Cl. B61F 5/30 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 18.03.2005

Bardziej szczegółowo

Układ napędowy. Silnik spalinowy CAT C27 Typ silnika CAT C 27. Zespół prądnic synchronicznych. Znamionowa prędkość obrotowa

Układ napędowy. Silnik spalinowy CAT C27 Typ silnika CAT C 27. Zespół prądnic synchronicznych. Znamionowa prędkość obrotowa Układ napędowy Silnik spalinowy CAT C27 Typ silnika CAT C 27 Moc znamionowa Znamionowa prędkość obrotowa 708 kw 1800 obr/min Obroty biegu jałowego 600 obr/min Ilość i układ cylindrów V 12 Stopień sprężania

Bardziej szczegółowo

Mechanika ruchu / Leon Prochowski. wyd. 3 uaktual. Warszawa, Spis treści

Mechanika ruchu / Leon Prochowski. wyd. 3 uaktual. Warszawa, Spis treści Mechanika ruchu / Leon Prochowski. wyd. 3 uaktual. Warszawa, 2016 Spis treści Wykaz ważniejszych oznaczeń 11 Od autora 13 Wstęp 15 Rozdział 1. Wprowadzenie 17 1.1. Pojęcia ogólne. Klasyfikacja pojazdów

Bardziej szczegółowo

Załącznik nr 1.1 do zapytania ofertowego 008-BR dla przekształtników silników trakcyjnych

Załącznik nr 1.1 do zapytania ofertowego 008-BR dla przekształtników silników trakcyjnych ZabudowTyp pojazdu: 227M Komponent: Załącznik nr 1.1 do zapytania ofertowego 008BR12019 dla przekształtników silników trakcyjnych 10.01.2019 r. wersja 5 1. Warunki eksploatacyjne i klimatyczne 1.1. Zabudowa

Bardziej szczegółowo

Załącznik nr 1.2 do Zapytania ofertowego nr 008-BR dla przetwornicy pomocniczej

Załącznik nr 1.2 do Zapytania ofertowego nr 008-BR dla przetwornicy pomocniczej Typ pojazdu: 227M Komponent: Załącznik nr 1.2 do Zapytania ofertowego nr 008BR12019 dla przetwornicy pomocniczej 13.12.2018 r. wersja 3 1. Warunki eksploatacyjne i klimatyczne 1.1. Zabudowa przetwornicy

Bardziej szczegółowo

OSIE ELEKTRYCZNE SERII SHAK GANTRY

OSIE ELEKTRYCZNE SERII SHAK GANTRY OSIE ELEKTRYCZNE SERII SHAK GANTRY 1 OSIE ELEKTRYCZNE SERII SHAK GANTRY Osie elektryczne serii SHAK GANTRY stanowią zespół zmontowanych osi elektrycznych SHAK zapewniający obsługę dwóch osi: X oraz Y.

Bardziej szczegółowo

Układy napędowe maszyn - opis przedmiotu

Układy napędowe maszyn - opis przedmiotu Układy napędowe maszyn - opis przedmiotu Informacje ogólne Nazwa przedmiotu Układy napędowe maszyn Kod przedmiotu 06.1-WM-MiBM-P-59_15gen Wydział Kierunek Wydział Mechaniczny Mechanika i budowa maszyn

Bardziej szczegółowo

Parametry elektryczne i czasowe układów napędowych wentylatorów głównego przewietrzania kopalń z silnikami asynchronicznymi

Parametry elektryczne i czasowe układów napędowych wentylatorów głównego przewietrzania kopalń z silnikami asynchronicznymi dr inż. ANDRZEJ DZIKOWSKI Instytut Technik Innowacyjnych EMAG Parametry elektryczne i czasowe układów napędowych wentylatorów głównego przewietrzania kopalń z silnikami asynchronicznymi zasilanymi z przekształtników

Bardziej szczegółowo

Rys. 1. Krzywe mocy i momentu: a) w obcowzbudnym silniku prądu stałego, b) w odwzbudzanym silniku synchronicznym z magnesem trwałym

Rys. 1. Krzywe mocy i momentu: a) w obcowzbudnym silniku prądu stałego, b) w odwzbudzanym silniku synchronicznym z magnesem trwałym Tytuł projektu : Nowatorskie rozwiązanie napędu pojazdu elektrycznego z dwustrefowym silnikiem BLDC Umowa Nr NR01 0059 10 /2011 Czas realizacji : 2011-2013 Idea napędu z silnikami BLDC z przełączalną liczbą

Bardziej szczegółowo

Informacja prasowa. Istotne zmiany odświeżonej Kia Sorento. Paryż, DANE TECHNICZNE (EUROPA)

Informacja prasowa. Istotne zmiany odświeżonej Kia Sorento. Paryż, DANE TECHNICZNE (EUROPA) Informacja prasowa Paryż, 27.09.2012 Istotne zmiany odświeżonej Kia Sorento DANE TECHNICZNE (EUROPA) Nadwozie i napęd Pięciodrzwiowe, siedmiomiejscowe typu SUV klasy średniej, konstrukcja stalowa, samonośna.

Bardziej szczegółowo

f r = s*f s Rys. 1 Schemat układu maszyny dwustronnie zasilanej R S T P r Generator MDZ Transformator dopasowujący Przekształtnik wirnikowy

f r = s*f s Rys. 1 Schemat układu maszyny dwustronnie zasilanej R S T P r Generator MDZ Transformator dopasowujący Przekształtnik wirnikowy PORTFOLIO: Opracowanie koncepcji wdrożenia energooszczędnego układu obciążenia maszyny indukcyjnej dla przedsiębiorstwa diagnostyczno produkcyjnego. (Odpowiedź na zapotrzebowanie zgłoszone przez przedsiębiorstwo

Bardziej szczegółowo

Technika napędowa a efektywność energetyczna.

Technika napędowa a efektywność energetyczna. Technika napędowa a efektywność energetyczna. Technika napędów a efektywność energetyczna. Napędy są w chwili obecnej najbardziej efektywnym rozwiązaniem pozwalającym szybko i w istotny sposób zredukować

Bardziej szczegółowo

Politechnika Śląska. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki. Praca dyplomowa inżynierska. Wydział Mechaniczny Technologiczny

Politechnika Śląska. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki. Praca dyplomowa inżynierska. Wydział Mechaniczny Technologiczny Politechnika Śląska Wydział Mechaniczny Technologiczny Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki Praca dyplomowa inżynierska Temat pracy Symulacja komputerowa działania hamulca tarczowego

Bardziej szczegółowo

Układ napędu asynchronicznego ENI-ZNAP/3C przeznaczony do tramwajów MODERUS BETA MF02AC

Układ napędu asynchronicznego ENI-ZNAP/3C przeznaczony do tramwajów MODERUS BETA MF02AC Układ napędu asynchronicznego ENI-ZNAP/3C przeznaczony do tramwajów MODERUS BETA MF02AC Układ napędu asynchronicznego ENI-ZNAP/3C Informacje ogólne Układ ENI-ZNAP/3C przeznaczony jest do stosowania w tramwajach

Bardziej szczegółowo

Zestawy pompowe PRZEZNACZENIE ZASTOSOWANIE OBSZAR UŻYTKOWANIA KONCEPCJA BUDOWY ZALETY

Zestawy pompowe PRZEZNACZENIE ZASTOSOWANIE OBSZAR UŻYTKOWANIA KONCEPCJA BUDOWY ZALETY PRZEZNACZENIE Zestawy pompowe typu z przetwornicą częstotliwości, przeznaczone są do tłoczenia wody czystej nieagresywnej chemicznie o ph=6-8. Wykorzystywane do podwyższania ciśnienia w instalacjach. Zasilane

Bardziej szczegółowo

Stanowisko do diagnostyki wielofunkcyjnego zestawu napędowego operującego w zróżnicowanych warunkach pracy

Stanowisko do diagnostyki wielofunkcyjnego zestawu napędowego operującego w zróżnicowanych warunkach pracy Stanowisko do diagnostyki wielofunkcyjnego zestawu napędowego operującego w zróżnicowanych warunkach pracy 1. Opis stanowiska laboratoryjnego. Budowę stanowiska laboratoryjnego przedstawiono na poniższym

Bardziej szczegółowo

Załącznik na 1.2 do postępowania nr 072-BR Wymagania techniczne dla przetwornicy pomocniczej

Załącznik na 1.2 do postępowania nr 072-BR Wymagania techniczne dla przetwornicy pomocniczej Typ pojazdu: 227M Komponent: Załącznik na 1.2 do postępowania nr 072BR12019 Wymagania techniczne dla przetwornicy pomocniczej 25.04.2019 r. wersja 5 1. Warunki eksploatacyjne i klimatyczne 1.1. Zabudowa

Bardziej szczegółowo

PL 210006 B1. POLITECHNIKA WARSZAWSKA, Warszawa, PL

PL 210006 B1. POLITECHNIKA WARSZAWSKA, Warszawa, PL RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS PATENTOWY (19) PL (11) 210006 (21) Numer zgłoszenia: 380722 (22) Data zgłoszenia: 01.10.2006 (13) B1 (51) Int.Cl. A61G 5/02 (2006.01)

Bardziej szczegółowo

Dobór silnika serwonapędu. (silnik krokowy)

Dobór silnika serwonapędu. (silnik krokowy) Dobór silnika serwonapędu (silnik krokowy) Dane wejściowe napędu: Masa całkowita stolika i przedmiotu obrabianego: m = 40 kg Współczynnik tarcia prowadnic = 0.05 Współczynnik sprawności przekładni śrubowo

Bardziej szczegółowo

Specyfikacja techniczna autobusów

Specyfikacja techniczna autobusów Załącznik nr 6 do SIWZ Specyfikacja techniczna autobusów Niepodzielone fragmenty tabeli należy uznać za wspólne dla obydwu typów autobusów 1. Pojemność autobusu - ilość pasażerskich miejsc siedzących od

Bardziej szczegółowo

Przenośniki Układy napędowe

Przenośniki Układy napędowe Przenośniki układy napędowe Katedra Maszyn Górniczych, Przeróbczych i Transportowych AGH Przenośniki Układy napędowe Dr inż. Piotr Kulinowski pk@imir.agh.edu.pl tel. (12617) 30 74 B-2 parter p.6 konsultacje:

Bardziej szczegółowo

Trójfazowe silniki indukcyjne. serii dskgw do napędu organów urabiających kombajnów górniczych. 2006 Wkładka katalogowa nr 11a

Trójfazowe silniki indukcyjne. serii dskgw do napędu organów urabiających kombajnów górniczych. 2006 Wkładka katalogowa nr 11a Trójfazowe silniki indukcyjne serii dskgw do napędu organów urabiających kombajnów górniczych 2006 Wkładka katalogowa nr 11a ZASTOSOWANIE Silniki indukcyjne górnicze serii dskgw przeznaczone są do napędu

Bardziej szczegółowo

Specyfikacja techniczna do zapotrzebowania nr ELT/TME/000263/16

Specyfikacja techniczna do zapotrzebowania nr ELT/TME/000263/16 Specyfikacja techniczna do zapotrzebowania nr ELT/TME/000263/16 I. DANE TECHNICZNE Do oferty dla każdego proponowanego silnika oferent dołączy również: - rysunek wymiarowy silnika; - charakterystyki momentu

Bardziej szczegółowo

SPRZĘGŁA MIMOŚRODOWE INKOMA TYP KWK Inkocross

SPRZĘGŁA MIMOŚRODOWE INKOMA TYP KWK Inkocross - 2 - Spis treści 1.1 Sprzęgło mimośrodowe INKOMA Inkocross typ KWK - Informacje ogólne... - 3-1.2 Sprzęgło mimośrodowe INKOMA Inkocross typ KWK - Informacje techniczne... - 4-1.3 Sprzęgło mimośrodowe

Bardziej szczegółowo

NOWOCZESNE ŹRÓDŁA ENERGII

NOWOCZESNE ŹRÓDŁA ENERGII NOWOCZESNE ŹRÓDŁA ENERGII Kierunki zmian układów napędowych (3 litry na 100 km było by ideałem) - Bardziej efektywne przetwarzanie energii (zwiększenie sprawności cieplnej silnika z samozapłonem do 44%)

Bardziej szczegółowo

Spalinowe zespoły trakcyjne

Spalinowe zespoły trakcyjne Spalinowe zespoły trakcyjne Naszą misją jest spełnianie obecnych i przyszłych oczekiwań krajowych i zagranicznych właścicieli taboru szynowego poprzez budowę, unowocześnianie oraz naprawę taboru, przy

Bardziej szczegółowo

Gdansk Possesse, France Tel (0)

Gdansk Possesse, France Tel (0) Elektrownia wiatrowa GP Yonval 40-16 została zaprojektowana, aby osiągnąć wysoki poziom produkcji energii elektrycznej zgodnie z normą IEC 61400-2. Do budowy elektrowni wykorzystywane są niezawodne, europejskie

Bardziej szczegółowo

Sunbreaker SB300 ruchomy

Sunbreaker SB300 ruchomy KARTA KATALOGOWA PRODUKTU Strona 1 z 6 Sunbreaker 300 ruchomy to osłona przeciwsłoneczna zewnętrzna mocowana za zewnątrz elewacji lub fasady. Stanowi ją zespół obracanych wielkogabarytowych piór aluminiowych

Bardziej szczegółowo

Interfejsy pomiędzy taborem a podsystemami Energia i Infrastruktura. Artur Rojek

Interfejsy pomiędzy taborem a podsystemami Energia i Infrastruktura. Artur Rojek Interfejsy pomiędzy taborem a podsystemami Energia i Infrastruktura Artur Rojek 1 Interfejsy dotyczą obszarów: skrajnia; oddziaływanie taboru na drogę kolejową, zestawy kołowe a parametry geometryczne

Bardziej szczegółowo

Stanowisko napędów mechanicznych

Stanowisko napędów mechanicznych Stanowisko napędów mechanicznych Światowe zapotrzebowanie na wykwalifikowanych mechaników w przemyśle stale wzrasta. Polegamy na ich pracy przy montażu, konserwacji, naprawach i wymianach wyposażenia mechanicznego.

Bardziej szczegółowo

Nr post. 36/520/AM/2019 Gdańsk, dnia r. WYJAŚNIENIA I ZMIANA TREŚCI SIWZ Korekta pisma z dnia r.

Nr post. 36/520/AM/2019 Gdańsk, dnia r. WYJAŚNIENIA I ZMIANA TREŚCI SIWZ Korekta pisma z dnia r. Nr post. 36/520/AM/2019 Gdańsk, dnia 01.07.2019 r. WYJAŚNIENIA I ZMIANA TREŚCI SIWZ Korekta pisma z dnia 21.06.2019 r. Dot. Przetarg nieograniczony sektorowy na naprawę główną i modernizację tramwajów

Bardziej szczegółowo

Wybieranie ramy pomocniczej i mocowania. Opis. Zalecenia

Wybieranie ramy pomocniczej i mocowania. Opis. Zalecenia Opis Opis Rama, rama pomocnicza i wzmocnienia współpracują z sobą, zapewniając wytrzymałość na wszelkie rodzaje naprężeń mogących powstać w czasie eksploatacji. Wymiary i konstrukcja ramy, mocowania oraz

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 742

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 742 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 742 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa, ul. Szczotkarska 42 Wydanie nr 8, Data wydania: 16 maja 2016 r. Nazwa i adres AB 742 INSTYTUT

Bardziej szczegółowo

Struktura manipulatorów

Struktura manipulatorów Temat: Struktura manipulatorów Warianty struktury manipulatorów otrzymamy tworząc łańcuch kinematyczny o kolejnych osiach par kinematycznych usytuowanych pod kątem prostym. W ten sposób w zależności od

Bardziej szczegółowo

Naszą misją jest. spełnianie obecnych i przyszłych oczekiwań. krajowych i zagranicznych właścicieli taboru szynowego. poprzez

Naszą misją jest. spełnianie obecnych i przyszłych oczekiwań. krajowych i zagranicznych właścicieli taboru szynowego. poprzez Tramwaje Naszą misją jest spełnianie obecnych i przyszłych oczekiwań krajowych i zagranicznych właścicieli taboru szynowego poprzez budowę, unowocześnianie oraz naprawę taboru, przy zapewnieniu dobrej

Bardziej szczegółowo

Układ napędowy tramwaju niskopodłogowego na przykładzie układu ENI-ZNAP/RT6N1

Układ napędowy tramwaju niskopodłogowego na przykładzie układu ENI-ZNAP/RT6N1 Układ napędowy tramwaju niskopodłogowego na przykładzie układu ENI-ZNAP/RT6N1 1 ZAKRES PROJEKTU ENIKI dla RT6N1 PROJEKT ELEKTRYCZNY OPROGRAMOWANIE URUCHOMIENIE Falownik dachowy ENI-FT600/200RT6N1 2 szt.

Bardziej szczegółowo

ĆWICZENIE NR.6. Temat : Wyznaczanie drgań mechanicznych przekładni zębatych podczas badań odbiorczych

ĆWICZENIE NR.6. Temat : Wyznaczanie drgań mechanicznych przekładni zębatych podczas badań odbiorczych ĆWICZENIE NR.6 Temat : Wyznaczanie drgań mechanicznych przekładni zębatych podczas badań odbiorczych 1. Wstęp W nowoczesnych przekładniach zębatych dąży się do uzyskania małych gabarytów w stosunku do

Bardziej szczegółowo

PRZEKŁADNIE CIERNE PRZEKŁADNIE MECHANICZNE ZĘBATE CIĘGNOWE CIERNE ŁAŃCUCHOWE. a) o przełożeniu stałym. b) o przełożeniu zmiennym

PRZEKŁADNIE CIERNE PRZEKŁADNIE MECHANICZNE ZĘBATE CIĘGNOWE CIERNE ŁAŃCUCHOWE. a) o przełożeniu stałym. b) o przełożeniu zmiennym PRZEKŁADNIE CIERNE PRZEKŁADNIE MECHANICZNE ZĘBATE CIĘGNOWE CIERNE PASOWE LINOWE ŁAŃCUCHOWE a) o przełożeniu stałym a) z pasem płaskim a) łańcych pierścieniowy b) o przełożeniu zmiennym b) z pasem okrągłym

Bardziej szczegółowo

LINOWE URZĄDZENIA PRZETOKOWE LTV PV

LINOWE URZĄDZENIA PRZETOKOWE LTV PV LINOWE URZĄDZENIA PRZETOKOWE LTV PV M Soft Sp. z o. o. Siedziba firmy: ul. Grota Roweckiego 42 43-100 Tychy Tel./fax: (32) 449 14 32 E-mail: msoft@op.pl OPIS URZĄDZENIA I ZASADA JEGO DZIAŁANIA Linowe urządzenie

Bardziej szczegółowo

PRZEGLĄD DOKUMENTACYJNY 2012

PRZEGLĄD DOKUMENTACYJNY 2012 PRZEGLĄD DOKUMENTACYJNY 2012 SPIS TREŚCI nr 1 1. Zestawy kołowe. Koła zestawu. Osie zestawu 1 2. Pulpit sterowniczy. Kabina sterownicza 1 3. Hamulec szynowy cierny. Hamulec na prądy wirowe 1 4. Hamulec

Bardziej szczegółowo

Moc w ciągłej dyspozycji. Technika produkcji lokomotyw

Moc w ciągłej dyspozycji. Technika produkcji lokomotyw Moc w ciągłej dyspozycji. Technika produkcji lokomotyw Voith Turbo Lokomotivtechnik Od 25 roku firma Voith łączy kompetencje w dziedzinie techniki lokomotyw - od konstruowania, poprzez produkcję, po usługi

Bardziej szczegółowo

WYMAGANIA TECHNICZNE DLA POMP WIROWYCH DŁAWNICOWYCH STOSOWANYCH W W.S.C.

WYMAGANIA TECHNICZNE DLA POMP WIROWYCH DŁAWNICOWYCH STOSOWANYCH W W.S.C. WYMAGANIA TECHNICZNE DLA POMP WIROWYCH DŁAWNICOWYCH STOSOWANYCH W W.S.C. Wymagania techniczne dla pomp dławnicowych do c.o. i c.t. (przeznaczonych głównie do wyposażania węzłów cieplnych grupowych i ciepłowni

Bardziej szczegółowo

SEW-EURODRIVE PRZEKŁADNIE PRZEMYSŁOWE A MOTOREDUKTORY PODOBIEŃSTWA I RÓŻNICE PRZY ZASTOSOWANIU ICH W PRZEMYŚLE

SEW-EURODRIVE PRZEKŁADNIE PRZEMYSŁOWE A MOTOREDUKTORY PODOBIEŃSTWA I RÓŻNICE PRZY ZASTOSOWANIU ICH W PRZEMYŚLE SEW-EURODRIVE PRZEKŁADNIE PRZEMYSŁOWE A MOTOREDUKTORY PODOBIEŃSTWA I RÓŻNICE PRZY ZASTOSOWANIU ICH W PRZEMYŚLE 1 Zakres momentów przenoszonych przez przekładnie przemysłowe w zestawieniu do motoreduktorów

Bardziej szczegółowo

Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 1 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych

Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 1 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Napędy urządzeń mechatronicznych - projektowanie Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Miniaturowy siłownik liniowy (Oleksiuk, Nitu 1999) Śrubowy mechanizm zamiany

Bardziej szczegółowo

Betonomieszarki. Konstrukcja. Zabudowa betonomieszarki jest skrętnie podatna.

Betonomieszarki. Konstrukcja. Zabudowa betonomieszarki jest skrętnie podatna. Ogólne informacje na temat betonomieszarek Ogólne informacje na temat betonomieszarek Zabudowa betonomieszarki jest skrętnie podatna. Konstrukcja Betonomieszarki nie mają funkcji wywrotki, ale ponieważ

Bardziej szczegółowo

3RS SZYNOWO-DROGOWY WÓZEK MANEWROWY

3RS SZYNOWO-DROGOWY WÓZEK MANEWROWY 3RS SZYNOWO-DROGOWY WÓZEK MANEWROWY GŁÓWNE PARAMETRY TECHNICZNE Maksymalna masa pojazdu do przetaczania: Maks. prędkość jazdy szynowej z obciążeniem / bez obciążenia: 350 t 3 / 6 km/h 3RS 1 / 5 PRZEZNACZENIE

Bardziej szczegółowo

SILNIKI PRĄDU STAŁEGO SERII G

SILNIKI PRĄDU STAŁEGO SERII G SILNIKI PRĄDU STAŁEGO SERII G Ogólna charakterystyka serii Silniki prądu stałego serii G przystosowane są do zasilania z przekształtników tyrystorowych. Wykonywane są jako silniki obcowzbudne w stopniu

Bardziej szczegółowo

Układ ENI-EBUS/ELTR/ZF/AVE

Układ ENI-EBUS/ELTR/ZF/AVE Strona 1/12 Układ ENI-EBUS/ELTR/ZF/AVE Układ ENI-EBUS/ELTR/ZF/AVE stanowi kompletny zespół urządzeń napędu i sterowania przeznaczony do autobusu ELECTRON firmy ELECTRONTRANS.. Układ ten umożliwia: napędzanie

Bardziej szczegółowo

LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH

LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH -CEL- LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH PODSTAWOWE CHARAKTERYSTYKI I PARAMETRY SILNIKA RELUKTANCYJNEGO Z KLATKĄ ROZRUCHOWĄ (REL) Zapoznanie się z konstrukcją silników reluktancyjnych. Wyznaczenie

Bardziej szczegółowo

Pomiary pól magnetycznych generowanych przez urządzenia elektroniczne instalowane w taborze kolejowym

Pomiary pól magnetycznych generowanych przez urządzenia elektroniczne instalowane w taborze kolejowym PROBLEMY KOLEJNICTWA RAILWAY REPORT Zeszyt 181 (grudzień 2018) ISSN 0552-2145 (druk) ISSN 2544-9451 (on-line) 25 Pomiary pól magnetycznych generowanych przez urządzenia elektroniczne instalowane w taborze

Bardziej szczegółowo

PL B1. Zespół napędowy pojazdu mechanicznego, zwłaszcza dla pojazdu przeznaczonego do użytkowania w ruchu miejskim

PL B1. Zespół napędowy pojazdu mechanicznego, zwłaszcza dla pojazdu przeznaczonego do użytkowania w ruchu miejskim PL 224683 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 224683 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 410139 (22) Data zgłoszenia: 14.11.2014 (51) Int.Cl.

Bardziej szczegółowo

Katalog szkoleń technicznych. Schaeffler Polska Sp. z o.o.

Katalog szkoleń technicznych. Schaeffler Polska Sp. z o.o. Katalog szkoleń technicznych Schaeffler Polska Sp. z o.o. 08/2015 Treść katalogu szkoleń nie stanowi oferty w rozumieniu odpowiednich przepisów prawa. Informacje na temat wszystkich szkoleń dostępne są

Bardziej szczegółowo

Przyczyny nierównomiernego zużywania się zestawów kołowych w wagonach towarowych

Przyczyny nierównomiernego zużywania się zestawów kołowych w wagonach towarowych Przyczyny nierównomiernego zużywania się zestawów kołowych w wagonach towarowych Warszawa, 10 kwietnia 2018 r. mgr inż. Andrzej Zbieć Laboratorium Badań Taboru Ilostan wagonów PKP Cargo Polscy przewoźnicy

Bardziej szczegółowo

STRONG GEAR! SLC NAPĘDY

STRONG GEAR! SLC NAPĘDY STRONG GEAR! SLC NAPĘDY PRZEKŁADNIE ŚLIMAKOWE TYP SWG 0-3 MOCNE, NIEZAWODNE, CICHOBIEŻNE TECHNOLOGIA Jakość Niemiecki produkt optymalna geometria uzębienia zapewnia wysoką cichobieżność przekładni Ułatwiona

Bardziej szczegółowo

ENIKA Sp. z o.o. Jesteśmy firmą specjalizującą się w projektowaniu i produkcji wysokiej jakości urządzeń.

ENIKA Sp. z o.o. Jesteśmy firmą specjalizującą się w projektowaniu i produkcji wysokiej jakości urządzeń. ENIKA Sp. z o.o. Jesteśmy firmą specjalizującą się w projektowaniu i produkcji wysokiej jakości urządzeń GŁÓWNA SIEDZIBA W ŁODZI energoelektronicznych. Istniejemy od 1992 roku, firma w 100% z polskim kapitałem.

Bardziej szczegółowo

Doświadczenia praktyczne z eksploatacji samochodów elektrycznych

Doświadczenia praktyczne z eksploatacji samochodów elektrycznych Instytut Napędów i Maszyn Elektrycznych KOMEL Doświadczenia praktyczne z eksploatacji samochodów elektrycznych mgr inż. Bartłomiej Będkowski Instytut Napędów i Maszyn Elektrycznych KOMEL PL - 40-203 Katowice

Bardziej szczegółowo

Silnik indukcyjny - historia

Silnik indukcyjny - historia Silnik indukcyjny - historia Galileo Ferraris (1847-1897) - w roku 1885 przedstawił konstrukcję silnika indukcyjnego. Nicola Tesla (1856-1943) - podobną konstrukcję silnika przedstawił w roku 1886. Oba

Bardziej szczegółowo

'MAPOSTAW' Praca zespołowa: Sylwester Adamczyk Krzysztof Radzikowski. Promotor: prof. dr hab. inż. Bogdan Branowski

'MAPOSTAW' Praca zespołowa: Sylwester Adamczyk Krzysztof Radzikowski. Promotor: prof. dr hab. inż. Bogdan Branowski Mały pojazd miejski o napędzie spalinowym dla osób w starszym wieku i samotnych 'MAPOSTAW' Praca zespołowa: Sylwester Adamczyk Krzysztof Radzikowski Promotor: prof. dr hab. inż. Bogdan Branowski Cel pracy

Bardziej szczegółowo

STANOWISKOWE BADANIE ZESPOŁU PRZENIESIENIA NAPĘDU NA PRZYKŁADZIE WIELOSTOPNIOWEJ PRZEKŁADNI ZĘBATEJ

STANOWISKOWE BADANIE ZESPOŁU PRZENIESIENIA NAPĘDU NA PRZYKŁADZIE WIELOSTOPNIOWEJ PRZEKŁADNI ZĘBATEJ Postępy Nauki i Techniki nr 12, 2012 Jakub Lisiecki *, Paweł Rosa *, Szymon Lisiecki * STANOWISKOWE BADANIE ZESPOŁU PRZENIESIENIA NAPĘDU NA PRZYKŁADZIE WIELOSTOPNIOWEJ PRZEKŁADNI ZĘBATEJ Streszczenie.

Bardziej szczegółowo

3RS SZYNOWO-DROGOWY WÓZEK MANEWROWY

3RS SZYNOWO-DROGOWY WÓZEK MANEWROWY 3RS SZYNOWO-DROGOWY WÓZEK MANEWROWY GŁÓWNE PARAMETRY TECHNICZNE Maksymalna masa pojazdu do przetaczania: Maks. prędkość jazdy szynowej z obciążeniem / bez obciążenia: 350 t 2 / 6 km/h 3RS 1 / 5 PRZEZNACZENIE

Bardziej szczegółowo

Czy w przyczepach do podwózki potrzebne są hamulce?

Czy w przyczepach do podwózki potrzebne są hamulce? Czy w przyczepach do podwózki potrzebne są hamulce? Producent, Dealer: "TAK" - bezpieczeństwo - obowiązujące przepisy Kupujący "TO ZALEŻY" - cena O jakich kosztach mówimy Wartość dopłaty do hamulaców w

Bardziej szczegółowo

Siły i ruchy. Definicje. Nadwozie podatne skrętnie PGRT

Siły i ruchy. Definicje. Nadwozie podatne skrętnie PGRT Definicje Definicje Prawidłowe przymocowanie zabudowy jest bardzo ważne, gdyż nieprawidłowe przymocowanie może spowodować uszkodzenie zabudowy, elementów mocujących i ramy podwozia. Nadwozie podatne skrętnie

Bardziej szczegółowo

Silniki indukcyjne. Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe.

Silniki indukcyjne. Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe. Silniki indukcyjne Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe. Silniki pierścieniowe to takie silniki indukcyjne, w których

Bardziej szczegółowo

Opis oferowanego Pojazdu

Opis oferowanego Pojazdu Załącznik nr 4 do SIWZ Opis oferowanego Pojazdu I. Konstrukcja i wyposażenie Pojazdów 1. Szerokość toru 1435 mm 2. Skrajnia UIC 505-1, PN-EN 15273-2:2013 3. Napięcie zasilania 3kV DC 4. Układ osi Bo Bo

Bardziej szczegółowo

BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5

BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5 BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5 BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO 1. Wiadomości wstępne Silniki asynchroniczne jednofazowe są szeroko stosowane wszędzie tam, gdzie

Bardziej szczegółowo

Układy rozruchowe gwiazda - trójkąt od 7,5kW do 160kW

Układy rozruchowe gwiazda - trójkąt od 7,5kW do 160kW UKŁADY GWIAZDA - TRÓJKĄT I REWERSYJNE Układy rozruchowe gwiazda - trójkąt od 7,5kW do 160kW Gotowe układy rozruchowe gwiazda - trójkąt do bezpośredniego montażu Znamionowy prąd AC3 / 400V: od 16A do 300A

Bardziej szczegółowo

SERIA MP POMPY WIELOSTOPNIOWE WIELKOŚCI DN 40 - DN 125

SERIA MP POMPY WIELOSTOPNIOWE WIELKOŚCI DN 40 - DN 125 POMPY WIELOSTOPNIOWE WIELKOŚCI DN 40 - DN 125 Wielostopniowe pompy VOGEL wykorzystują ideę budowy modułowej,która maksymalizuje wymienność komponentów. System budowy modułowej pozwala na techniczne dopasowanie

Bardziej szczegółowo

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH Nr 2 POMIAR I KASOWANIE LUZU W STOLE OBROTOWYM NC Poznań 2008 1. CEL ĆWICZENIA Celem ćwiczenia jest

Bardziej szczegółowo

FARMALL A STAGE IIIB

FARMALL A STAGE IIIB FARMALL 55 65 75 A STAGE IIIB Models line up 3 modele FARMALL 55 A FARMALL 65 A FARMALL 75 A Silnik Moc znamionowa [KM] Przekładnia ManualDrive Dopuszczalna masa całkowita Wersja bez kabiny ROPS Wersja

Bardziej szczegółowo

KARTA KATALOGOWA SILNIKÓW PRĄDU STAŁEGO

KARTA KATALOGOWA SILNIKÓW PRĄDU STAŁEGO KARTA KATALOGOWA SILNIKÓW PRĄDU STAŁEGO 1. OGÓLNA CHARAKTERYSTYKA SERII Silniki prądu stałego serii G przystosowane są do zasilania z przekształtników tyrystorowych. Wykonywane są jako silniki obcowzbudne

Bardziej szczegółowo

Ramy pojazdów samochodowych

Ramy pojazdów samochodowych Ramy pojazdów samochodowych Opracował: Robert Urtbanik Zespół Szkół Mechanicznych w Opolu Nadwozie ramowe- nieniosące Nadwozie ramowe (nieniosące) oparte jest na sztywnej ramie, która przenosi całość obciążeń

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA TRANSPORTU 1) z dnia 1 września 2006 r. (Dz. U. z dnia 14 września 2006 r.)

ROZPORZĄDZENIE MINISTRA TRANSPORTU 1) z dnia 1 września 2006 r. (Dz. U. z dnia 14 września 2006 r.) ROZPORZĄDZENIE MINISTRA TRANSPORTU 1) z dnia 1 września 2006 r. zmieniające rozporządzenie w sprawie badań zgodności pojazdów zabytkowych i pojazdów marki "SAM" z warunkami technicznymi (Dz. U. z dnia

Bardziej szczegółowo

Nowoczesne systemy napędów w pojazdach elektrycznych. Green cars

Nowoczesne systemy napędów w pojazdach elektrycznych. Green cars Nowoczesne systemy napędów w pojazdach elektrycznych. Green cars dr hab. inż. Jerzy Jantos, profesor PO prof. dr hab. inż. Bronisław Tomczuk dr inż. Jan Zimon mgr inż. Andrzej Lechowicz 1 Katedra Pojazdów

Bardziej szczegółowo

WYMAGANIA TECHNICZNE DLA POMP WIROWYCH BEZDŁAWNICOWYCH STOSOWANYCH W W.S.C.

WYMAGANIA TECHNICZNE DLA POMP WIROWYCH BEZDŁAWNICOWYCH STOSOWANYCH W W.S.C. WYMAGANIA TECHNICZNE DLA POMP WIROWYCH BEZDŁAWNICOWYCH STOSOWANYCH W W.S.C. Wymagania techniczne dla pomp bezdławnicowych do c.o., c.w. i c.t. (przeznaczonych głównie do wyposażania węzłów cieplnych indywidualnych)

Bardziej szczegółowo

POLSKIE NORMY ZHARMONIZOWANE DYREKTYWA 2008/57/WE. Polskie Normy opublikowane do Wykaz norm z dyrektywy znajduje się również na

POLSKIE NORMY ZHARMONIZOWANE DYREKTYWA 2008/57/WE. Polskie Normy opublikowane do Wykaz norm z dyrektywy znajduje się również na Załącznik nr 22 POLSKIE NORMY ZHARMONIZOWANE DYREKTYWA 2008/57/WE Na podstawie publikacji w Dzienniku Urzędowym Unii Europejskiej (2011/C 214/02) z 20.07.2011 Polskie Normy opublikowane do 31.12.2012 Wykaz

Bardziej szczegółowo

Spis treści. 6Dg 15D 16D. O firmie Newag

Spis treści. 6Dg 15D 16D. O firmie Newag LOKOMOTYWY SPALINOWE Spis treści 6Dg Zakres modernizacji System sterowania i zasilania Kabina maszynisty Technologie przyjazne środowisku Dane techniczne 15D 16D Zakres modernizacji System sterowania i

Bardziej szczegółowo

Normowe pompy klasyczne

Normowe pompy klasyczne PRZEZNACZENIE Pompy przeznaczone są do tłoczenia cieczy rzadkich, czystych i nieagresywnych bez cząstek stałych i włóknistych o temperaturze nie przekraczającej 140 C. Pompowane ciecze nie mogą posiadać

Bardziej szczegółowo

SPRĘŻARKI ŚRUBOWE AIRPOL WERSJA PODSTAWOWA

SPRĘŻARKI ŚRUBOWE AIRPOL WERSJA PODSTAWOWA Sprężarka śrubowa Airpol A37 37kW 13bar 290m3/h Numer artykułu: A37-13 Opis SPRĘŻARKI ŚRUBOWE AIRPOL WERSJA PODSTAWOWA Projektowane i produkowane przez rmę Airpol sprężarki śrubowe są niezależnymi urządzeniami,

Bardziej szczegółowo

Załącznik nr 20 Specyfikacja techniczna zakupu taboru dla SKA_5pojazdow_pesa

Załącznik nr 20 Specyfikacja techniczna zakupu taboru dla SKA_5pojazdow_pesa Załącznik nr 20 Specyfikacja techniczna zakupu taboru dla SKA_5pojazdow_pesa Strona 1 z 5 Wymagania techniczne dla lekkich pojazdów pasażerskich do obsługi kolejowego ruchu regionalnego. 1. Uwagi wstępne.

Bardziej szczegółowo

PL B1. FABRYKA MASZYN GÓRNICZYCH PIOMA SPÓŁKA AKCYJNA, Piotrków Trybunalski, PL INSTYTUT TECHNIKI GÓRNICZEJ KOMAG, Gliwice, PL

PL B1. FABRYKA MASZYN GÓRNICZYCH PIOMA SPÓŁKA AKCYJNA, Piotrków Trybunalski, PL INSTYTUT TECHNIKI GÓRNICZEJ KOMAG, Gliwice, PL PL 214191 B1 RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS PATENTOWY (19) PL (11) 214191 (21) Numer zgłoszenia: 379094 (22) Data zgłoszenia: 03.03.2006 (13) B1 (51) Int.Cl.

Bardziej szczegółowo

Hamulce pojazdów szynowych / Tadeusz Piechowiak. Poznań, Spis treści

Hamulce pojazdów szynowych / Tadeusz Piechowiak. Poznań, Spis treści Hamulce pojazdów szynowych / Tadeusz Piechowiak. Poznań, 2012 Spis treści 1. Wstęp 9 2. Pojazdy szynowe - zagadnienia ogólne 11 2.1. Rodzaje transportu szynowego 11 2.2. Historia hamulców kolejowych 13

Bardziej szczegółowo

Hamulce szynowe magnetyczne

Hamulce szynowe magnetyczne HAMULCE SZYNOWE Podział hamulców szynowych Hamulce szynowe magnetyczne Cierne Wiroprądowe Wiroprądowe tarczowe Na prądy wirowe Foucalta Podział hamulców szynowych Hamulec szynowy (cierny) nazywany jest

Bardziej szczegółowo

ANALIZA ENERGOCHŁONNOŚCI RUCHU TROLEJBUSÓW

ANALIZA ENERGOCHŁONNOŚCI RUCHU TROLEJBUSÓW ANALIZA ENERGOCHŁONNOŚCI RUCHU TROLEJBUSÓW Mgr inż. Ewa Siemionek* *Katedra Pojazdów Samochodowych, Wydział Mechaniczny, Politechnika Lubelska 20-618 Lublin, ul. Nadbystrzycka 36 1. WSTĘP Komunikacja miejska

Bardziej szczegółowo

Cysterny. Informacje ogólne na temat samochodów cystern. Konstrukcja PGRT. Nadwozia typu cysterna uważane są za bardzo sztywne skrętnie.

Cysterny. Informacje ogólne na temat samochodów cystern. Konstrukcja PGRT. Nadwozia typu cysterna uważane są za bardzo sztywne skrętnie. Informacje ogólne na temat samochodów cystern Informacje ogólne na temat samochodów cystern Nadwozia typu cysterna uważane są za bardzo sztywne skrętnie. Konstrukcja Rozstaw osi powinien być możliwie jak

Bardziej szczegółowo