NANOTECHNOLOGIA PERSPEKTYWY ROZWOJU I ZASTOSOWANIA

Wielkość: px
Rozpocząć pokaz od strony:

Download "NANOTECHNOLOGIA PERSPEKTYWY ROZWOJU I ZASTOSOWANIA"

Transkrypt

1 NANOTECHNOLOGIA PERSPEKTYWY ROZWOJU I ZASTOSOWANIA Przedrostek jednostki miary o symbolu n oznaczający mnożnik 0, = 10-9, a zatem jest to jedna miliardowa część danej jednostki. Przedrostek nano" pochodzi od greckiego słowa i znaczy karzeł". Zwykle nanotechnologią określa się badanie i działanie na materii mniejszej niż 100 nanometrów - w tej skali mieszczą się między innymi cząsteczki czy wirusy. Można tę odległość przybliżyć do 10 atomów wodoru umieszczonych tuż obok siebie i właśnie otrzymamy długość jednego nanometra. A milion nanometrów mieści się w jednym milimetrze. Pod koniec 1959 roku na dorocznym zjeździe jednego z oddziałów Amerykańskiego Towarzystwa Fizycznego na terenie Caltechu (Kalifornijskiego Instytutu Technologicznego) profesor Feynman wygłosił poobiedni wykład. Powiedział: Na poziomie molekularnym mamy nowe rodzaje sił, nowe możliwości, nowego rodzaju efekty. Problemy wytwarzania i replikacji materiałów będą tam zupełnie inne. Jak już wspomniałem, inspiracją są dla mnie procesy biologiczne, w których siły chemiczne wykorzystywane są w powtarzalny sposób do wytwarzania różnych dziwnych efektów. Obecnie jesteśmy świadkami cichej rewolucji, która nazywa się nanotechnologia. Bez głośnych fanfar zbliża się do nas mnóstwo innowacji. Do struktur nanometrycznych można zaliczyć: - studnie, druty i kropki kwantowe. tworzywa sztuczne których struktura jest kontrolowana na poziomie pojedynczych cząsteczek można w ten sposób uzyskiwać np. materiały o niespotykanych właściwościach mechanicznych. włókna sztuczne o bardzo precyzyjnej budowie molekularnej, które również

2 posiadają niespotykane właściwości mechaniczne. nanorurki czyli bardzo długie i puste w środku cząsteczki, oparte na węglu w wiązaniach o hybrydyzacji sp². materiały rozdrobnione do postaci pyłu o ziarnach będących np. klasterami atomów metalu. Na masową skalę wykorzystywane jest srebro w tej postaci, które ma silne właściwości antybakteryjne. elementy wykonywane elektronolitograficznie. fulereny, grafen. Jednowymiarowa nieskończona studnia kwantowa Nieskończona studnia kwantowa jest obiektem teoretycznym. Potencjał bariery jest nieskończony, czyli cząstka nawet o dowolnie dużej energii nie może opuścić studni. Funkcja falowa takiej cząstki zeruje się na ściankach studni, co daje warunek brzegowy w równaniu Schrödingera. Skończona prostokątna studnia kwantowa Cząstka o energii mniejszej od energii studni zachowuje się podobnie jak w studni o nieskończonej wysokości, energia cząstki może przyjmować tylko określone wartości, ale ze względu na to, że energia cząstki musi być mniejsza od energii wysokość potencjału studni, liczba poziomów energetycznych cząstki jest skończona. W studni o skończonej głębokości, w przeciwieństwie do studni o nieskończonej głębokości, cząstka "wnika" w obszar poza studnią, ale szansa znalezienia cząstki maleje wykładniczo wraz z odległością od brzegu studni. Zależy też od różnicy energii potencjału i energii cząstki. Jeżeli w pewnej odległości znajduje się obszar o energii mniejszej od energii cząstki cząstka może przeniknąć i pozostać w nim, jest to wytłumaczenie efektu tunelowego.

3 Cząstka, która ma energię większą od maksymalnego poziomu tej studni, jest cząstką swobodną, ale prawdopodobieństwo znalezienia jej w jednostkowym obszarze studni jest większe niż poza nią. Drut kwantowy Na początku lat osiemdziesiątych, dalszy rozwój technologii, a zwłaszcza bardzo precyzyjnych technik litograficznych, umożliwił związanie elektronów w strukturze kwazijednowymiarowej, czyli tzw. drucie kwantowym. Druty kwantowe wykonuje się w postaci miniaturowych pasków wytrawionych w próbce zawierającej studnię kwantową. Ze względu na ograniczone możliwości litografii ich wymiary poprzeczne ( nm) są zwykle wyraźnie większe niż grubość studni. Kropka kwantowa Niewielki obszar przestrzeni ograniczony w trzech wymiarach barierami potencjału, nazywany tak, gdy wewnątrz uwięziona jest cząstka o długości fali porównywalnej z rozmiarami kropki. Oznacza to, że opis zachowania cząstki musi być przeprowadzony z użyciem mechaniki kwantowej. Ograniczenie ruchu cząstki w trzech wymiarach oznacza kwantyzację w każdym z poszczególnych kierunków. Prowadzi to do sytuacji, gdy cząstka może znajdować się jedynie w pewnych stanach, określonych równaniem Schrödingera. Tylko dobrze określone, dyskretne poziomy energetyczne mogą być zajęte przez cząstkę. Z tego powodu kropki kwantowe nazywa się czasem sztucznymi atomami. Do najważniejszych metod wytwarzania kropek kwantowych w laboratoriach można zaliczyć: kropki spontanicznie powstają na granicy faz półprzewodników hodowanych metodą MBE (tzw. self-assembled quantum dots, SAQD), gdzie geometryczne

4 nierówności służą relaksacji napięcia spowodowanego różnicą stałych sieci (tzw. metoda Stranskiego-Krastanowa), nanokryształy przez ograniczenie ruchu elektronu przez granice kryształu, kropki elektrostatyczne w dwuwymiarowym gazie elektronowym na granicy faz półprzewodnikowych ogranicza się ruch lokalnie zubażając materiał poprzez przyłożenie napięcia do bramek metalicznych, znajdujących się w pobliżu (nie nadają się do konstrukcji laserów, bo chwytają tylko elektron albo tylko dziurę, więc nie jest możliwe uwięzienie ekscytonu), trawione kropki kwantowe, struktury zawierające studnie kwantowe wytrawione do postaci walców, np. za pomocą litografii elektronowej, lokalizacje naprężeniowe powstają w wyniku pojawienia się naprężeń w związku z nakładaniem materiałów prowadzących do powstania naprężenia, a w związku z tym występuje lokalna zmiana struktury energetycznej. Badając kropki kwantowe Profesor Sargent zauważył, że jeśli zmieni się rozmiar kropkami kwantowymi (półprzewodnika), zmienia się jej kolor. Tak naprawdę można otrzymać wszystkie kolory tęczy, używając tego samego materiału, zmieniając jedynie rozmiar kropki kwantowej Profesor Sargent opracował technologię wytwarzania kropek kwantowych: - świecących na niebiesko kropek wielkości 3 nanometrów, - świecących na czerwono kropek wielkości 4 nanometrów - i emitujących promienie podczerwone wielkości 5 nanometrów (ciepłokropki). W 2005 roku Sargent opublikował w Nature Materials artykuł, w którym pokazał, że wykorzystując 5-nanometrowe kropki kwantowe, można zrobić elastyczny materiał, który pochłania energię z promieni podczerwonych i zamienia ją na elektryczność. Teraz wystarczyło połączyć je z już istniejącymi pochłaniaczami widzialnych promieni słonecznych (tradycyjne elementy paneli słonecznych) i stworzyć wydajny system. I tak się stało, opracowano polimerowe ogniwo słoneczne, które można zakładać na ubranie, lub słoneczny dywan do rozkładania na dachu domu czy samochodu.

5 NANORURKI Nanorurki są jednymi z najwytrzymalszych i najsztywniejszych znanych materiałów. Wytrzymałość na rozciąganie nanorurek wielowarstwowych sięga 63 GPa. Dla porównania, hartowana stal osiąga wytrzymałość rzędu 1,2 GPa. W połączeniu z niewielką gęstością rzędu 1,3-1,4 g/cm, daje to najlepszy rezultat spośród znanych ludzkości materiałów. Opracowano już technologię wytwarzania cylindrów mogą o szerokości pół nanometra, i są one 100 razy wytrzymalsze niż stal i 6 razy lżejsze. Są najtwardszym, najsztywniejszym najtrwalszym znanym materiałem, a poza tym należą do najlepszych na świecie przewodników ciepła i elektryczności. Jednak początkowo produkowano niewiele nanorurek i były one bardzo drogie. Jeszcze w 2005 roku roczna produkcja na świecie wynosiła 300 kilogramów. Przy cenie 1000 dolarów za gram, nanorurki węglowe były 50 razy droższe niż złoto. Ale np. NRC we współpracy z University of Sherbrooke opatentowała proces produkcji w dużych ilościach nanorurek o szerokości 1,4 nanometra, nrzędu 1 kilogram dziennie. Nastąpił gwałtowny wzrost produkcji np. firma ARKEMA (Francja) rozpoczęła produkcję nanorurek węglowe w 2007 w ilości 8-10 ton, a w roku 2011 wyprodukowano już 400 ton.

6 W Tour de France w 2006 roku Floyd Landis korzystał z roweru, którego konstrukcję wzmocniono nanorurkami. Pozwoliło to zmniejszyć masę ramy roweru do jednego kilograma. Podczas badań, w 2006 roku znaleziono nanorurki w stali damasceńskiej, co mogłoby tłumaczyć jej legendarną twardość. Profesor University of Texas w Dallas Ray Baughman i jego ekipa opracowali sposób robienia włókien z węglowych nanorurek.włókna okazały się 4-krotnie mocniejsze niż nić pajęcza najmocniejsze włókno naturalne. Z włókien tych można by też robić kable do mostów wiszących znacznie dłuższe niż obecnie. Ponieważ przewodzą również elektryczność, z futurystycznych przędz można tkać inteligentne ubrania, które magazynowałyby elektryczność, byłyby potencjalnie kuloodporne i zawierały czujniki dopasowujące temperaturę odzieży. Nanorurki węglowe mogą przewodzić prąd o 1000-krotnie większym natężeniu niż przewody metalowe (np. miedziane) o analogicznej masie. W nanorurkach wielowarstwowych, wewnętrzne warstwy mogą ślizgać się prawie bez tarcia wewnątrz, tworząc idealne atomowe łożyska. Własności te wykorzystano do konstrukcji pierwszych prostych molekularnych mechanizmów: nanorotorów i nanopotencjometrów. Wszystkie nanorurki znakomicie przewodzą wzdłuż swojej struktury, ciepło (dzięki przewodnictwu balistycznemu), natomiast bardzo słabo przewodzą ciepło w poprzek. Przewiduje się że nanorurki węglowe mogą przewodzić do W/m K w temperaturze pokojowej. Dla porównania miedź, uznawana za znakomity przewodnik ciepła przewodzi 385 W/m K. Nanorurki wytrzymują temperatury do stopni w próżni i do około 750 stopni w powietrzu. Nanotaśmy stworzone w 2004 roku przez Raya Baughmana są trwalsze niż stal, przeźroczyste i bardzo, bardzo lekkie. Jeden ich hektar waży zaledwie 280 gramów. Ponieważ materiał jest tak lekki i trwały, ludzie zaczęli nazywać go mithril, czyli tak jak metal zbroi w filmie Władcy Pierścieni. Nanotaśma umieszczona pomiędzy dwoma kawałkami pleksiglasu wciąż przewodziła elektryczność i pozostała przezroczysta. Wstawiono te taśmy w przednie szyby samochodu przepuszczano przez nie prąd, co powodowało np. odmrażanie szyb samochodowych. Bharat Bhushan, profesor inżynierii mechanicznej z Ohio State University, stworzył supergładką powierzchnię, imitującą liście lotosu. Od dawna było znany fakt że z tych liści bardzo dobrze spływa woda. Sądzono że przyczyna takiego zachowania był fakt iż są woskowate. Naukowcy badając liście lotosu stwierdzili iż jest pokryty nanoguzkami. Bhushanowi udało się zrobić polimerową taśmę równie

7 gładką jak liście lotosu. Nakładając ją na szkło, otrzymał szyby nie wymagające mycia. Inny przykłady zastosowania Muszla klozetowa jest pokryta supergładką emalią, która ma mikroskopijne otwory, ich wielkość to nawet nie 30 nanometrów. Są one mniejsze niż bakterie czy cząsteczki pleśni, więc brud nie ma dość miejsca, aby przyczepić się do porowatej powierzchni. I wystarczy tylko spłukiwać po sobie toaletę. Są już skarpetki, które nigdy źle nie pachną, spodnie odporne na plamy, okna odstraszające brud, samooczyszczające się toalety, piłki tenisowe nietracące sprężystości i piłeczki golfowe korygujące własny tor lotu. FULERENY Są to cząsteczki składające się z parzystej liczby atomów węgla, tworzące zamkniętą, pustą w środku bryłę. Cząsteczki fulerenów zawierają od 28 do ok atomów węgla.

8 Za odkrycie fulerenów Harold Kroto z Uniwersytetu Sussex w Brighton (Wielka Brytania) oraz zespół R.E. Smalley i R.F. Curl jr. z Uniwersytetu Rice w Huston (Teksas, USA) w 1996 roku otrzymali Nagrodę Nobla z dziedziny chemii. Na początku wydawało się, że są one tylko kolejną ciekawostką przyrodniczą, w toku badań okazało się jednak, że mogą znaleźć wiele praktycznych zastosowań. Fulereny, o metalicznym połysku, posiadają własności nadprzewodzące i półprzewodnikowe. Ich unikatową własnością jest również możliwość zamykania w ich wnętrzu innych cząsteczek. Można je przyłączać do polimerów, uzyskując w ten sposób środki smarujące i tworzywa o unikatowych własnościach elektrooptycznych. Można zamykać wewnątrz fulerenów atomy pierwiastków. Opracowano wydajną metodą płomieniowa otrzymywania fulerenów. Polega ona na spalaniu substancji organicznych (najczęściej jest to toluen). Dzięki tej metodzie produkcja fulerenów na świecie wynosi obecnie kilkanaście ton. Mamy zatem: 1. Piłki tenisowe pokryte nanocząsteczkami zachowające sprężystość 2 razy dłużej niż te zwyczajne. 2. Śmierdzące skarpetki staną się odległym wspomnieniem dzięki wplecionym w nie niciom z nanocząsteczkami srebra. 3. Nici zrobione z nanorurek węglowych są 17 razy wytrzymalsze niż włókna kevlarowe w kamizelkach kuloodpornych. 4. Samoczyszczące się muszle klozetowe (są już dostępne).

9 5. Przy produkcji powiększonego samochodu hummer w 14 elementach wykorzystano nanoinżynierię. 6. Piłeczki golfowe dzięki nanotechnologii lecą po mniejszym łuku, bo mniej wirują. 7. Nanospodnie które nigdy się nie plamią, bo ich materiał imituje skórkę brzoskwini i dzięki temu nie wchłania płynów. Ciekawostka W 2007 roku nanotechnolodzy z Technionu umieścili cały hebrajski tekst Starego Testamentu na obszarze zaledwie 0,5 milimetra kwadratowego na pokrytej złotem krzemowej płytce. Tekst został wryty przez skierowanie na płytkę skupionego strumienia jonów galu. Warto zwrócić też uwagę, że "nanotechnologię" uprawiają już od dawna wszystkie organizmy żywe. Wiele struktur występujących wewnątrz komórek to rodzaje mikromaszyn, struktura takich naturalnych materiałów, jak drewno, łodygi roślin, kości czy skóra to tworzywa, których struktura jest kontrolowana na poziomie pojedynczych cząsteczek. Zagadnienia te bada nanobiotechnologia Aby przyspieszyć gojenie i zapobiec infekcji, starożytni Grecy używali płytek ze srebra. Jednak sposób ten poszedł w zapomnienie, od kiedy na rynku są antybiotyki. Nucryst wskrzesił i ulepszył starą metodę, pokrywając bandaż nanocząsteczkami srebra, które łatwiej wchodzą w reakcje niż duży kawałek tego szlachetnego metalu. Przedostają się w głąb skóry i działają równomiernie. W rezultacie np. ofiarom poparzeń wystarczy zmieniać opatrunek tylko raz na tydzień. Przedtem bandaże należało zmieniać kilka razy dziennie i była to bolesna procedura wiążąca się z usunięciem kremu wspomagającego gojenie się ran. W 2004 roku Nucryst wyprodukował ponad 3 miliony bandaży, a jego zyski wyniosły aż 30 milionów dolarów. U 70 procent pacjentów z ranami przewlekłymi, z wrzodami stóp wywołanymi cukrzycą, których rany nie goiły się w zadowalającym tempie, nastąpiło polepszenie po użyciu tych opatrunków potwierdził to doktor Gary Sibbald z University of Toronto i dyrektor Kliniki Dermatologii w Sunnybrook.

10 Hicham Fenniri, profesor chemii z University of Alberta, pokrył implant z tytanu nanorurkami. Okazało się że warstwa nanorurek bardzo dobrze naśladuje kolagen i przyciąga komórki kości zwane osteoblastami bardzo przyspieszając rozrost kości, pomagając przyłączyć sztuczny staw do ciała. Doktor Franiak-Pietryga przypadkiem odkryła, że pewien rodzaj dendrymerów potrafi zmusić komórkę białaczkową do samobójstwa. Za swój pomysł na zastosowanie nanocząstek w leczeniu tej odmiany białaczki dr Franiak-Pietryga otrzymała złoty medal na odbywających się w maju Międzynarodowych Targach Wynalazczości "Concours Lepine" w Paryżu. W listopadzie wynalazek pokazany zostanie w Brukseli na światowych targach medycznych, a w przyszłym roku w USA. Polimery dendryczne - Dendron drzewo po grecku, Mer cząsteczka polietylenu. Ryszard Kordas Wrocław

Wstęp. 1 Historia nanotechnologii. 2 Nanotechnologia a organizmy żywe

Wstęp. 1 Historia nanotechnologii. 2 Nanotechnologia a organizmy żywe Wstęp Nanotechnologia to ogólna nazwa całego zestawu technik i sposobów tworzenia rozmaitych struktur o rozmiarach nanometrycznych (od 0,1 do 100 nanometrów), czyli na poziomie pojedynczych atomów i cząsteczek.

Bardziej szczegółowo

Cząstka w pudle potencjału. Jan Bojanowski 201034 Nowoczesna synteza i analiza organiczna

Cząstka w pudle potencjału. Jan Bojanowski 201034 Nowoczesna synteza i analiza organiczna Cząstka w pudle potencjału Jan Bojanowski 201034 Nowoczesna synteza i analiza organiczna 1 Plan prezentacji Czym jest cząstka w pudle potencjału? Czym się różni od piłki w pudle kartonowym? Teoria jednowymiarowego

Bardziej szczegółowo

Wytwarzanie niskowymiarowych struktur półprzewodnikowych

Wytwarzanie niskowymiarowych struktur półprzewodnikowych Większość struktur niskowymiarowych wytwarzanych jest za pomocą technik epitaksjalnych. Najczęściej wykorzystywane metody wzrostu: - epitaksja z wiązki molekularnej (MBE Molecular Beam Epitaxy) - epitaksja

Bardziej szczegółowo

Wiesz zapewne że wszystko zbudowane jest z atomów. Kamień, pióro, gra video, TV, pies, i Ty też, wszystko składa się z atomów.

Wiesz zapewne że wszystko zbudowane jest z atomów. Kamień, pióro, gra video, TV, pies, i Ty też, wszystko składa się z atomów. Wiesz zapewne że wszystko zbudowane jest z atomów. Kamień, pióro, gra video, TV, pies, i Ty też, wszystko składa się z atomów. Atomy budują cząsteczki i tworzą materiały. Nanotechnologia zajmuje się manipulowaniem

Bardziej szczegółowo

Pasmowa teoria przewodnictwa. Anna Pietnoczka

Pasmowa teoria przewodnictwa. Anna Pietnoczka Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki

Bardziej szczegółowo

Materiały nieorganiczne można otrzymywać drogą pirolizy (termicznej przebudowy) materiałów organicznych Procesy takie mogą prowadzić do otrzymywania

Materiały nieorganiczne można otrzymywać drogą pirolizy (termicznej przebudowy) materiałów organicznych Procesy takie mogą prowadzić do otrzymywania MATERIAŁY WĘGLOWE Główne zastosowania Materiały porowate: konstrukcyjne, izolacyjne Włókna węglowe do zbrojenia lamintów (kompozytów) oraz rzadziej osnowa w kompozytach Materiały biomedyczne Materiały

Bardziej szczegółowo

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki

Bardziej szczegółowo

dr Rafał Szukiewicz WROCŁAWSKIE CENTRUM BADAŃ EIT+ WYDZIAŁ FIZYKI I ASTRONOMI UWr

dr Rafał Szukiewicz WROCŁAWSKIE CENTRUM BADAŃ EIT+ WYDZIAŁ FIZYKI I ASTRONOMI UWr dr Rafał Szukiewicz WROCŁAWSKIE CENTRUM BADAŃ EIT+ WYDZIAŁ FIZYKI I ASTRONOMI UWr WYTWARZANIE I ZASTOSOWANIE NANOCZĄSTEK O OKREŚLONYCH WŁAŚCIWOŚCIACH WROCŁAWSKIE CENTRUM BADAŃ EIT+ WIELKOŚCI OBSERWOWANYCH

Bardziej szczegółowo

Podstawy fizyki wykład 2

Podstawy fizyki wykład 2 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

Grafen perspektywy zastosowań

Grafen perspektywy zastosowań Grafen perspektywy zastosowań Paweł Szroeder 3 czerwca 2014 Spis treści 1 Wprowadzenie 1 2 Właściwości grafenu 2 3 Perspektywy zastosowań 2 3.1 Procesory... 2 3.2 Analogoweelementy... 3 3.3 Czujniki...

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

Wprowadzenie do struktur niskowymiarowych

Wprowadzenie do struktur niskowymiarowych Wprowadzenie do struktur niskowymiarowych W litym krysztale ruch elektronów i dziur nie jest ograniczony przestrzennie. Struktury niskowymiarowe pozwalają na ograniczenie (częściowe lub całkowite) ruchu

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/

Bardziej szczegółowo

Sprawy organizacyjne

Sprawy organizacyjne 1 Sprawy organizacyjne Zajęcia laboratoryjne: CHEMIA: piątki, 14:15 18:00 TECHNOLOGIA CHEMICZNA: środy, 10:15 14:00 Miejsce zajęć (zgodnie z podanym planem): Katedra Fizyki Molekularnej (dr Izabela Bobowska)

Bardziej szczegółowo

Energia emitowana przez Słońce

Energia emitowana przez Słońce Energia słoneczna i ogniwa fotowoltaiczne Michał Kocyła Problem energetyczny na świecie Przewiduje się, że przy obecnym tempie rozwoju gospodarczego i zapotrzebowaniu na energię, paliw kopalnych starczy

Bardziej szczegółowo

Energetyka konwencjonalna odnawialna i jądrowa

Energetyka konwencjonalna odnawialna i jądrowa Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa

Bardziej szczegółowo

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy

Bardziej szczegółowo

CZYM JEST NANOSREBRO?

CZYM JEST NANOSREBRO? CZYM JEST NANOSREBRO? Nanosrebro jest produktem wykazującym niespotykane właściwości. Srebro jako metal szlachetny cechuje się niską reaktywnością i wysoką stabilnością, oraz silnymi właściwościami biobójczymi

Bardziej szczegółowo

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Fizyka 2 Wykład 4 1 Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Niezależne od czasu równanie Schödingera ma postać: 2 d ( x)

Bardziej szczegółowo

Elektrostatyka, część pierwsza

Elektrostatyka, część pierwsza Elektrostatyka, część pierwsza ZADANIA DO PRZEROBIENIA NA LEKJI 1. Dwie kulki naładowano ładunkiem q 1 = 1 i q 2 = 3 i umieszczono w odległości r = 1m od siebie. Oblicz siłę ich wzajemnego oddziaływania.

Bardziej szczegółowo

PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.

PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. Pracę oznaczamy literą W Pracę obliczamy ze wzoru: W = F s W praca;

Bardziej szczegółowo

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

MATERIAŁOZNAWSTWO. dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu )

MATERIAŁOZNAWSTWO. dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu ) MATERIAŁOZNAWSTWO dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu ) jhucinsk@pg.gda.pl MATERIAŁOZNAWSTWO dziedzina nauki stosowanej obejmująca badania zależności

Bardziej szczegółowo

Wykład Budowa atomu 2

Wykład Budowa atomu 2 Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie

Bardziej szczegółowo

Szkło kuloodporne: składa się z wielu warstw różnych materiałów, połączonych ze sobą w wysokiej temperaturze. Wzmacnianie szkła

Szkło kuloodporne: składa się z wielu warstw różnych materiałów, połączonych ze sobą w wysokiej temperaturze. Wzmacnianie szkła Wzmacnianie szkła Laminowanie szkła. Są dwa sposoby wytwarzania szkła laminowanego: 1. Jak na zdjęciach, czyli umieszczenie polimeru pomiędzy warstwy szkła i sprasowanie całego układu; polimer (PVB ma

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

Elektronika z plastyku

Elektronika z plastyku Elektronika z plastyku Adam Proń 1,2 i Renata Rybakiewicz 2 1 Komisariat ds Energii Atomowej, Grenoble 2 Wydział Chemiczny Politechniki Warszawskiej Elektronika krzemowa Krzem Jan Czochralski 1885-1953

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

gęstością prawdopodobieństwa

gęstością prawdopodobieństwa Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)

Bardziej szczegółowo

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość

Bardziej szczegółowo

Studnia kwantowa. Optyka nanostruktur. Studnia kwantowa. Gęstość stanów. Sebastian Maćkowski

Studnia kwantowa. Optyka nanostruktur. Studnia kwantowa. Gęstość stanów. Sebastian Maćkowski Studnia kwantowa Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Studnia kwantowa

Bardziej szczegółowo

Temat: Przykłady zjawisk kwantowych.

Temat: Przykłady zjawisk kwantowych. Temat: Przykłady zjawisk kwantowych. Cele poznawcze: mechanika klasyczna jest teorią. deterministyczną - cząstki które poruszają się w tym samym polu sił i mają te same warunki początkowe będą w każdej

Bardziej szczegółowo

Wrocław dn. 23 listopada 2005 roku

Wrocław dn. 23 listopada 2005 roku Piotr Chojnacki IV rok, informatyka chemiczna Liceum Ogólnokształcące Nr I we Wrocławiu Wrocław dn. 23 listopada 2005 roku Temat lekcji: Elektroujemność. + kartkówka z układu okresowego Cel ogólny lekcji:

Bardziej szczegółowo

STRUKTURA PASM ENERGETYCZNYCH

STRUKTURA PASM ENERGETYCZNYCH PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

Woda. Najpospolitsza czy najbardziej niezwykła substancja Świata?

Woda. Najpospolitsza czy najbardziej niezwykła substancja Świata? Woda Najpospolitsza czy najbardziej niezwykła substancja Świata? Cel wykładu Odpowiedź na pytanie zawarte w tytule A także próby odpowiedzi na pytania typu: Dlaczego woda jest mokra a lód śliski? Dlaczego

Bardziej szczegółowo

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne

Bardziej szczegółowo

Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią?

Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią? Własności optyczne materii Jak zachowuje się światło w zetknięciu z materią? Właściwości optyczne materiału wynikają ze zjawisk: Absorpcji Załamania Odbicia Rozpraszania Własności elektrycznych Refrakcja

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy

Bardziej szczegółowo

1. Wprowadzenie: dt q = - λ dx. q = lim F

1. Wprowadzenie: dt q = - λ dx. q = lim F PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwiczenia: WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODNOŚCI

Bardziej szczegółowo

KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW III ETAP WOJEWÓDZKI. 09 lutego 2015

KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW III ETAP WOJEWÓDZKI. 09 lutego 2015 KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW III ETAP WOJEWÓDZKI 09 lutego 2015 Ważne informacje: 1. Masz 120 minut na rozwiązanie wszystkich zadań. 2. Zapisuj szczegółowe obliczenia i komentarze

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

E e l kt k r t o r n o ow o a w a s t s r t u r kt k u t ra r a at a o t m o u

E e l kt k r t o r n o ow o a w a s t s r t u r kt k u t ra r a at a o t m o u Elektronowa struktura atomu Anna Pietnoczka BUDOWA ATOMU CZĄSTKA SYMBOL WYSTĘPOWANIE MASA ŁADUNEK ELEKTRYCZNY PROTON p + jądroatomowe około 1 u + 1 NEUTRON n 0 jądroatomowe około 1u Brak ELEKTRON e - powłoki

Bardziej szczegółowo

Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Magnetyzm to zjawisko przyciągania kawałeczków stali przez magnesy. 2. Źródła pola magnetycznego. a. Magnesy

Bardziej szczegółowo

Struktura krystaliczna i amorficzna metali

Struktura krystaliczna i amorficzna metali Co to jest ciało amorficzne? Ciało amorficzne (bezpostaciowe) jest to ciało stałe nie wykazujące charakterystycznego dla kryształu okresowego uporządkowania atomów (cząsteczek) i wynikających z niego właściwości.

Bardziej szczegółowo

Studnia skończona. Heterostruktury półprzewodnikowe studnie kwantowe (cd) Heterostruktury mogą mieć różne masy efektywne w różnych obszarach:

Studnia skończona. Heterostruktury półprzewodnikowe studnie kwantowe (cd) Heterostruktury mogą mieć różne masy efektywne w różnych obszarach: Heterostruktury półprzewodnikowe studnie kwantowe (cd) Studnia skończona Heterostruktury mogą mieć różne masy efektywne w różnych obszarach: V z Okazuje się, że zamiana nie jest dobrym rozwiązaniem problemu

Bardziej szczegółowo

MATERIAŁOZNAWSTWO. Prof. dr hab. inż. Andrzej Zieliński Katedra Inżynierii Materiałowej Pok. 204

MATERIAŁOZNAWSTWO. Prof. dr hab. inż. Andrzej Zieliński Katedra Inżynierii Materiałowej Pok. 204 MATERIAŁOZNAWSTWO Prof. dr hab. inż. Andrzej Zieliński Katedra Inżynierii Materiałowej Pok. 204 PODRĘCZNIKI Leszek A. Dobrzański: Podstawy nauki o materiałach i metaloznawstwo K. Prowans: Materiałoznawstwo

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech

Fizyka 1 Wróbel Wojciech w poprzednim odcinku 1 Stany skupienia materii Ciała stałe Ciecze Płyny Gazy 2 Stany skupienia materii Ciała stałe Ciecze Płyny Gazy Plazma 3 Ciało stałe ustalony kształt i objętość uporządkowanie dalekiego

Bardziej szczegółowo

Wykład IX: Odkształcenie materiałów - właściwości plastyczne

Wykład IX: Odkształcenie materiałów - właściwości plastyczne Wykład IX: Odkształcenie materiałów - właściwości plastyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Odkształcenie

Bardziej szczegółowo

Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu rubidowego

Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu rubidowego Prof. dr hab. Jan Mostowski Instytut Fizyki PAN Warszawa Warszawa, 15 listopada 2010 r. Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu

Bardziej szczegółowo

Ruch ładunków w polu magnetycznym

Ruch ładunków w polu magnetycznym Ruch ładunków w polu magnetycznym Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Ruch ładunków w polu magnetycznym

Bardziej szczegółowo

1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r

1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r 1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r. Sporządź wykres zależności F(r) dla tych ładunków. 2. Naelektryzowany płatek waty zbliża się do przeciwnie

Bardziej szczegółowo

Chemia teoretyczna I Semestr V (1 )

Chemia teoretyczna I Semestr V (1 ) 1/ 6 Chemia Chemia teoretyczna I Semestr V (1 ) Osoba odpowiedzialna za przedmiot: dr hab. inż. Aleksander Herman. 2/ 6 Wykład Program Podstawy mechaniki kwantowej Ważne problemy modelowe Charakterystyka

Bardziej szczegółowo

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : Zestaw zadań na I etap konkursu fizycznego Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : A) 5m/s B) 10m/s C) 20m/s D) 40m/s. Zad.2 Samochód o masie 1 tony poruszał

Bardziej szczegółowo

Redefinicja jednostek układu SI

Redefinicja jednostek układu SI CENTRUM NAUK BIOLOGICZNO-CHEMICZNYCH / WYDZIAŁ CHEMII UNIWERSYTETU WARSZAWSKIEGO Redefinicja jednostek układu SI Ewa Bulska MIERZALNE WYZWANIA ŚWIATA MIERZALNE WYZWANIA ŚWIATA MIERZALNE WYZWANIA ŚWIATA

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię

Bardziej szczegółowo

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Plan ogólny Kryształy, półprzewodniki, nanotechnologie, czyli czym będziemy się

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

Zasady obsadzania poziomów

Zasady obsadzania poziomów Zasady obsadzania poziomów Model atomu Bohra Model kwantowy atomu Fala stojąca Liczby kwantowe -główna liczba kwantowa (n = 1,2,3...) kwantuje energię elektronu (numer orbity) -poboczna liczba kwantowa

Bardziej szczegółowo

WYNIKI BADAŃ. Otrzymane wyniki podzielono na kilka grup, obejmujące swym zakresem: Parametry charakteryzujące wyrób.

WYNIKI BADAŃ. Otrzymane wyniki podzielono na kilka grup, obejmujące swym zakresem: Parametry charakteryzujące wyrób. W celu oceny właściwości Materiału termoizolacyjnego THERMOHIT wykonano szereg badań. Przeprowadzone one były w : Instytucie Inżynierii Materiałów Polimerowych i Barwników Oddział Farb i Lakierów w Gliwicach,

Bardziej szczegółowo

Energetyka w Środowisku Naturalnym

Energetyka w Środowisku Naturalnym Energetyka w Środowisku Naturalnym Energia w Środowisku -technika ograniczenia i koszty Wykład 12 17/24 stycznia 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/

Bardziej szczegółowo

Oto dane dla niektórych pierwiastków przy 25ºC. Niemetale zaznaczono kursywą.

Oto dane dla niektórych pierwiastków przy 25ºC. Niemetale zaznaczono kursywą. 20. O cząsteczkach łańcuchowych, gazie niedoskonałym i metalach bez gazu elektronowego. Dzieląc masę molową Mmol (wyrażoną w gramach masę atomową lub cząsteczkową) przez gęstość pierwiastka lub związku

Bardziej szczegółowo

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,

Bardziej szczegółowo

III. EFEKT COMPTONA (1923)

III. EFEKT COMPTONA (1923) III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.

Bardziej szczegółowo

Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie. Co to jest ekscyton? Co to jest ekscyton? e πε. E = n. Sebastian Maćkowski

Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie. Co to jest ekscyton? Co to jest ekscyton? e πε. E = n. Sebastian Maćkowski Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Co to jest ekscyton? Co to jest ekscyton? h 2 2 2 e πε m* 4 0ε s Φ

Bardziej szczegółowo

Przykłady: zderzenia ciał

Przykłady: zderzenia ciał Strona 1 z 5 Przykłady: zderzenia ciał Zderzenie, to proces w którym na uczestniczące w nim ciała działają wielkie siły, ale w stosunkowo krótkim czasie. Wynikają z tego ważne dla praktycznej analizy wnioski

Bardziej szczegółowo

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Siła Coulomba. F q q = k r 1 = 1 4πεε 0 q q r 1. Pole elektrostatyczne. To przestrzeń, w której na ładunek

Bardziej szczegółowo

Model wiązania kowalencyjnego cząsteczka H 2

Model wiązania kowalencyjnego cząsteczka H 2 Model wiązania kowalencyjnego cząsteczka H 2 + Współrzędne elektronu i protonów Orbitale wiążący i antywiążący otrzymane jako kombinacje orbitali atomowych Orbital wiążący duża gęstość ładunku między jądrami

Bardziej szczegółowo

Nanostruktury i nanotechnologie

Nanostruktury i nanotechnologie Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka

Bardziej szczegółowo

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis Nauka o Materiałach Wykład IX Odkształcenie materiałów właściwości plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Odkształcenie plastyczne 2. Parametry makroskopowe 3. Granica plastyczności

Bardziej szczegółowo

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie

Bardziej szczegółowo

INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 2

INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 2 INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 2 BADANIA ODPORNOŚCI NA KOROZJĘ ELEKTROCHEMICZNĄ SYSTEMÓW POWŁOKOWYCH 1. WSTĘP TEORETYCZNY Odporność na korozję

Bardziej szczegółowo

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz

Bardziej szczegółowo

Atomy wieloelektronowe

Atomy wieloelektronowe Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,

Bardziej szczegółowo

LABORATORIUM PRZEMIAN ENERGII

LABORATORIUM PRZEMIAN ENERGII LABORATORIUM PRZEMIAN ENERGII BADANIE OGNIWA PALIWOWEGO TYPU PEM I. Wstęp Ćwiczenie polega na badaniu ogniwa paliwowego typu PEM. Urządzenia tego typy są obecnie rozwijane i przystosowywane do takich aplikacji

Bardziej szczegółowo

Nauka o Materiałach dr hab. inż. Mirosław Bućko, prof. AGH B-8, p. 1.13, tel

Nauka o Materiałach dr hab. inż. Mirosław Bućko, prof. AGH B-8, p. 1.13, tel Nauka o Materiałach dr hab. inż. Mirosław Bućko, prof. AGH B-8, p. 1.13, tel. 12 617 3572 www.kcimo.pl, bucko@agh.edu.pl Plan wykładów Monokryształy, Materiały amorficzne i szkła, Polikryształy budowa,

Bardziej szczegółowo

PRZYGOTOWANIE PRÓBEK DO MIKROSKOPI SKANINGOWEJ

PRZYGOTOWANIE PRÓBEK DO MIKROSKOPI SKANINGOWEJ Ewa Teper PRZYGOTOWANIE PRÓBEK DO MIKROSKOPI SKANINGOWEJ WIELKOŚĆ I RODZAJE PRÓBEK Maksymalne wymiary próbki, którą można umieścić na stoliku mikroskopu skaningowego są następujące: Próbka powinna się

Bardziej szczegółowo

Fizyka 3.3. prof.dr hab. Ewa Popko p.231a

Fizyka 3.3. prof.dr hab. Ewa Popko   p.231a Fizyka 3.3 prof.dr hab. Ewa Popko www.if.pwr.wroc.pl/~popko ewa.popko@pwr.edu.pl p.231a Fizyka 3.3 Literatura 1.J.Hennel Podstawy elektroniki półprzewodnikowej WNT Warszawa 1995. 2.W.Marciniak Przyrządy

Bardziej szczegółowo

Struktura materiałów. Zakres tematyczny. Politechnika Rzeszowska - Materiały lotnicze - I LD / dr inż. Maciej Motyka.

Struktura materiałów. Zakres tematyczny. Politechnika Rzeszowska - Materiały lotnicze - I LD / dr inż. Maciej Motyka. STRUKTURA, KLASYFIKACJA I OGÓLNA CHARAKTERYSTYKA MATERIAŁÓW INŻYNIERSKICH Zakres tematyczny y 1 Struktura materiałów MATERIAŁAMI (inżynierskimi) nazywa się skondensowane (stałe) substancje, których właściwości

Bardziej szczegółowo

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x.

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x. Równanie falowe Schrödingera h Ψ( x, t) + V( x, t) Ψ( x, t) W jednym wymiarze ( ) ( ) gdy V x, t = V x x Ψ = ih t Gdy V(x,t)=V =const cząstka swobodna, na którą nie działa siła Fala biegnąca Ψ s ( x, t)

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

Własności jąder w stanie podstawowym

Własności jąder w stanie podstawowym Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów

Bardziej szczegółowo

wrzenie - np.: kotły parowe, wytwornice pary, chłodziarki parowe, chłodzenie (np. reaktory jądrowe, silniki rakietowe, magnesy nadprzewodzące)

wrzenie - np.: kotły parowe, wytwornice pary, chłodziarki parowe, chłodzenie (np. reaktory jądrowe, silniki rakietowe, magnesy nadprzewodzące) Wymiana ciepła podczas wrzenia 1. Wstęp wrzenie - np.: kotły parowe, wytwornice pary, chłodziarki parowe, chłodzenie (np. reaktory jądrowe, silniki rakietowe, magnesy nadprzewodzące) współczynnik wnikania

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

PDF stworzony przez wersję demonstracyjną pdffactory

PDF stworzony przez wersję demonstracyjną pdffactory Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna

Bardziej szczegółowo

FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N

FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N OPTYKA FALOWA I KWANTOWA 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N 8 D Y F R A K C Y J N A 9 K W A N T O W A 10 M I R A Ż 11 P

Bardziej szczegółowo

!!!DEL są źródłami światła niespójnego.

!!!DEL są źródłami światła niespójnego. Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

ZADANIA Z FIZYKI NA II ETAP

ZADANIA Z FIZYKI NA II ETAP ZADANIA Z FIZYKI NA II ETAP 1. 2 pkt. Do cylindra nalano wody do poziomu kreski oznaczającej 10 cm 3 na skali. Po umieszczeniu w menzurce 10 jednakowych sześcianów ołowianych, woda podniosła się do poziomu

Bardziej szczegółowo

Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA

Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA Temat 10 : PRAWO HUBBLE A. TEORIA WIELKIEGO WYBUCHU. 1) Prawo Hubble a [czyt. habla] 1929r. Edwin Hubble, USA, (1889-1953) Jedno z największych

Bardziej szczegółowo

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Metale i niemetale. Krystyna Sitko

Metale i niemetale. Krystyna Sitko Metale i niemetale Krystyna Sitko Substancje proste czyli pierwiastki dzielimy na : metale np. złoto niemetale np. fosfor półmetale np. krzem Spośród 115 znanych obecnie pierwiastków aż 91 stanowią metale

Bardziej szczegółowo

Informacje wstępne. Witamy serdecznie wszystkich uczestników na pierwszym etapie konkursu.

Informacje wstępne. Witamy serdecznie wszystkich uczestników na pierwszym etapie konkursu. Informacje wstępne Witamy serdecznie wszystkich uczestników na pierwszym etapie konkursu. Szanowny uczestniku, poniżej znajduje się zestaw pytań zamkniętych i otwartych. Pytania zamknięte są pytaniami

Bardziej szczegółowo

Nanokompozyty polimerowe. Grzegorz Nieradka Specjalista ds. procesu technologicznego Krosno,

Nanokompozyty polimerowe. Grzegorz Nieradka Specjalista ds. procesu technologicznego Krosno, Nanokompozyty polimerowe Grzegorz Nieradka Specjalista ds. procesu technologicznego Krosno, 19.11.2015 PLAN PREZENTACJI Nanotechnologia czym jest i jakie ma znaczenie we współczesnym świecie Pojęcie nanowłókna

Bardziej szczegółowo

Zespolona funkcja dielektryczna metalu

Zespolona funkcja dielektryczna metalu Zespolona funkcja dielektryczna metalu Przenikalność elektryczna ośrodków absorbujących promieniowanie elektromagnetyczne jest zespolona, a także zależna od częstości promieniowania, które przenika przez

Bardziej szczegółowo

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej Nanomateriałów Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej POLITECHNIKA GDAŃSKA Centrum Zawansowanych Technologii Pomorze ul. Al. Zwycięstwa 27 80-233

Bardziej szczegółowo