Elementy kognitywistyki III: Modele i architektury poznawcze
|
|
- Zuzanna Niemiec
- 9 lat temu
- Przeglądów:
Transkrypt
1 Elementy kognitywistyki III: Modele i architektury poznawcze Wykład III: Psychologiczne modele umysłu
2 Gwoli przypomnienia: Kroki w modelowaniu kognitywnym: teoretyczne ramy pojęciowe (modele pojęciowe) przeformułowanie założeń w precyzyjnym języku dodatkowe założenia szacowanie parametrów na podstawie danych empirycznych porównywanie przewidywań konkurujących modeli
3 ...w psychologii: Modele modularne - blokowe 1. Blokowe modele umysłu: przepływ informacji w systemie poznawczym (umyśle) struktura systemu poznawczego (bloki, moduły) zasady ich wyróżniania procesy charakterystyczne Atkinson, Shiffrin (1968, 1971)
4 Model blokowy Blokowy model Atkinsona i Shiffrina (1968)
5 Model blokowy zapoczątkował nowe podejście w psychologii poznawczej oparty na badaniach nad pamięcią (np. G Sperling pamięć ikoniczna) informacja przetwarzana sekwencyjnie i oddolnie (bottom-up) nast. po sobie etapy, realizowane w kolejnych blokach procesów przetwarzania informacji sekwencyjność działania sprzeczna z licznymi danymi empirycznymi (por. Pandemonium Selfridge, Neisser) blok zespół proc. p.i. o podobnym charakterze i zadaniach, obsługujący wyróżnioną czynność poznawczą z krytyki wyrosło podejście koneksjonistyczne
6 Pandemonium
7 Pandemonium bodziec mechanizmy rozpoznające proste cechy ( demony cech ) mechanizmy aktywowane przez demony cech (demony kognitywne mechanizm podejmowania decyzji i rozpoznania (demon decyzyjny) zjawisko mam to na końcu języka...
8 Koncepcja poziomów przetwarzania Craik, Lockhart (1972) jako ramy teoretyczne badań nad pamięcią każda informacja przetwarzana jest przez te same struktury, ale na różnym poziomie głębokości głębokość - liczba, złożoność operacji poziom płytki sensoryczna analiza danych poziom głęboki semantyczna analiza odbieranego sygnału poziom trzeci (najgłębszy) aktywizacja skojarzeń ze zanalizowanym sensorycznie i semantycznie sygnałem obieg pierwotny: dane odbierane na poziomie płytkim, poziom głęboki, najgłębszy obieg wtórny włączane dane zakodowane w pamięci
9 Koncepcja poziomów przetwarzania
10 Koncepcja poziomów przetwarzania Model jednolity, zakłada oddolny charakter przetwarzania dwa źródła informacji podlegających przetwarzaniu wejście do systemu na dowolnym poziomie wnioski: efektywność pracy systemu zależy od głębokości przetworzenia informacji podatność na zakłócenia i zapominanie zależna od głębokości przetwarzania o wyborze poziomu przetwarzania decydują czynniki zewnętrzne (rodzaj zadania) lub wewnętrzne (wymagania przyjęte przez sam system poznawczy)
11 Intermezzo: symbole i neurony
12 Intermezzo: symbole i neurony Poznanie: mentalna manipulacja mentalnych reprezentacji świata; modelujemy manipulacje symbolami Operacje obliczeniowe Reprezentacje symboliczne Poznanie: propagacja pobudzeń w sieciach prostych jednostek; modelujemy aktywacje jednostek i architektury sieci neuronowych Operacje obliczeniowe Reprezentacje sieciowe (lokalne/rozproszone)
13 Modele sieciowe McClelland, Rumelhart, grupa badawcza PDP (Parallel Distributed Processing) Założenia: przetwarzanie odbywa się dzięki aktywności licznych, prostych jednostek tworzą one sieć, której węzły (tj. jednostki) aktywizują się nie sekwencyjne, ale równocześnie model ma symulować pracę mózgu architektura sieci neuronowych: neuronowa warstwa wejściowa, wyjściowa i ukryte (pośredniczące)
14 Modele sieciowe
15 Modele sieciowe od warstwy wejściowej, do efektorów sterowanych warstwą wejściową badacz dostarcza informacji zwrotnej uaktywnienie jednostki zależy od sumy wartości pobudzeń (wartość progowa) skuteczność przekazu zależy od wagi połączeń między neuronami operuje strukturami subsymbolicznymi działanie chaotyczne informacje zwrotne uczenie się usuwanie fragmentów wyuczonej sieci symulacja pacjentów z uszkodzeniami mózgu
Elementy kognitywistyki III: Modele i architektury poznawcze
Elementy kognitywistyki III: Modele i architektury poznawcze Wykład II: Modele pojęciowe Gwoli przypomnienia: Kroki w modelowaniu kognitywnym: teoretyczne ramy pojęciowe (modele pojęciowe) przeformułowanie
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD XII: Modele i architektury poznawcze
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD XII: Modele i architektury poznawcze Architektury poznawcze Architektura poznawcza jako teoria poznania ludzkiego Anderson (1993): Architektura
Elementy kognitywistyki III: Modele i architektury poznawcze
Elementy kognitywistyki III: Modele i architektury poznawcze Wykład IV: Reprezentacje jako Modele symboliczne I: Rachunek predykatów, Sieci semantyczne Gwoli przypomnienia: Kroki w modelowaniu kognitywnym:
Elementy kognitywistyki III: Modele i architektury poznawcze
Elementy kognitywistyki III: Modele i architektury poznawcze Wykład I: Pomieszanie z modelem w środku Czym jest kognitywistyka? Dziedzina zainteresowana zrozumieniem procesów, dzięki którym mózg (zwł.
Elementy kognitywistyki III: Modele i architektury poznawcze
Elementy kognitywistyki III: Modele i architektury poznawcze Wykład VII: Modelowanie uczenia się w sieciach neuronowych Uczenie się sieci i trening nienaruszona struktura sieci (z pewnym ale ) nienaruszone
Wstęp do kognitywistyki. Wykład 6: Psychologia poznawcza
Wstęp do kognitywistyki Wykład 6: Psychologia poznawcza Sześciokąt nauk kognitywnych I. Psychologia poznawcza Poznanie to zdolność człowieka do odbierania informacji z otoczenia i przetwarzania ich w celu
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD X: Sztuczny neuron
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD X: Sztuczny neuron Koneksjonizm: wprowadzenie 1943: Warren McCulloch, Walter Pitts: ogólna teoria przetwarzania informacji oparta na sieciach binarnych
Pamięć i uczenie się Organizacja pamięci: systemy i procesy
Pamięć i uczenie się Organizacja pamięci: systemy i procesy Pamięć (Tulving) to hipotetyczny system w umyśle (mózgu) przechowujący informacje W 4 dr Łukasz Michalczyk Pamięć to zdolność, to procesy poznawcze,
Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.
Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD XI: Sztuczne sieci neuronowe
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD XI: Sztuczne sieci neuronowe [pattern associator], PA struktura: Sieci kojarzące wzorce programowanie: wyjście jednostki = aktywacji sieciowej (N)
Wstęp do kognitywistyki. Wykład 5: Rewolucja kognitywna?
Wstęp do kognitywistyki Wykład 5: Rewolucja kognitywna? Schizma dwie metodologie, dwa obszary zainteresowań: adaptacja i życie znaczenie i umysł interpretacja celu, miejsce znaczenia ciało i umysł: te
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
Uczenie sieci neuronowych i bayesowskich
Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10
Główne problemy kognitywistyki: Reprezentacja
Główne problemy kognitywistyki: Reprezentacja Wykład dziesiąty Hipoteza języka myśli (LOT): źródła i założenia Andrzej Klawiter http://www.amu.edu.pl/~klawiter klawiter@amu.edu.pl Filozoficzne źródła:
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Wstęp do teorii sztucznej inteligencji Wykład II. Uczenie sztucznych neuronów.
Wstęp do teorii sztucznej inteligencji Wykład II Uczenie sztucznych neuronów. 1 - powtórzyć o klasyfikacji: Sieci liniowe I nieliniowe Sieci rekurencyjne Uczenie z nauczycielem lub bez Jednowarstwowe I
Wykład 1: Wprowadzenie do sieci neuronowych
Wykład 1: Wprowadzenie do sieci neuronowych Historia badań nad sieciami neuronowymi. - początki: badanie komórek ośrodkowego układu nerwowego zwierząt i człowieka, czyli neuronów; próby wyjaśnienia i matematycznego
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką
WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice)
WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO Stanisław Kowalik (Poland, Gliwice) 1. Wprowadzenie Wstrząsy podziemne i tąpania występujące w kopalniach
Wstęp do kognitywistyki. Wykład 12: Wprowadzenie do SI. Obliczeniowa teoria umysłu
Wstęp do kognitywistyki Wykład 12: Wprowadzenie do SI. Obliczeniowa teoria umysłu Sztuczna inteligencja...to próba zrozumienia i wyjaśnienia jednostek inteligentnych. Specyfika SI polega na metodzie: wyjaśnianie
Elementy kognitywistyki III: Modele i architektury poznawcze
Elementy kognitywistyki III: Modele i architektury poznawcze Wykład X/XI: Architektury poznawcze (symboliczne) III: GLAIR/SNePS GLAIR/SNePS - przegląd GLAIR/SNePS (Grounded Layered Architecture with Integrated
Czy architektura umysłu to tylko taka sobie bajeczka? Marcin Miłkowski
Czy architektura umysłu to tylko taka sobie bajeczka? Marcin Miłkowski Architektura umysłu Pojęcie używane przez prawie wszystkie współczesne ujęcia kognitywistyki Umysł Przetwornik informacji 2 Architektura
Percepcja, język, myślenie
Psychologia procesów poznawczych Percepcja, język, myślenie Wprowadzenie w problematykę zajęć. Podstawowe pojęcia. W 1 1.Wprowadzenie w problematykę zajęć. Podstawowe pojęcia. 2. Historia psychologii poznawczej.
Pamięć i uczenie się Pamięć długotrwała: semantyczna i epizodyczna
Pamięć i uczenie się Pamięć długotrwała: semantyczna i epizodyczna W 5 dr Łukasz Michalczyk pamięć składa się z różnych magazynów pamięć sensoryczna pamięć krótkotrwała (STM) pamięć długotrwała (LTM) model
Definicje. Algorytm to:
Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi
SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe
SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe JOANNA GRABSKA-CHRZĄSTOWSKA Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA BUDOWA RZECZYWISTEGO NEURONU
Elementy kognitywistyki III: Modele i architektury poznawcze
Elementy kognitywistyki III: Modele i architektury poznawcze Wykład IX: Architektury poznawcze (symboliczne) II: Soar Soar - przegląd Soar (Start Operator And Result, od 1983) John Laird, Allen Newell,
ZARZĄDZANIE PROCESAMI I PROJEKTAMI. Zakres projektu. dr inż. ADAM KOLIŃSKI ZARZĄDZANIE PROCESAMI I PROJEKTAMI. Zakres projektu. dr inż.
1 ZARZĄDZANIE PROCESAMI I PROJEKTAMI 2 ZAKRES PROJEKTU 1. Ogólna specyfika procesów zachodzących w przedsiębiorstwie 2. Opracowanie ogólnego schematu procesów zachodzących w przedsiębiorstwie za pomocą
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE INSTYTUT TECHNOLOGII MECHANICZNEJ Metody Sztucznej Inteligencji Sztuczne Sieci Neuronowe Wstęp Sieci neuronowe są sztucznymi strukturami, których
Pamięć i uczenie się Pamięć przemijająca: krótkotrwała, robocza
Pamięć i uczenie się Pamięć przemijająca: krótkotrwała, robocza W 5 Pamięć krótkotrwała George Miller - pojemność pamięci krótkotrwałej 7 (+/-2) pytanie: 7 (+/-2) czego? 7 (+/-2) elementów (ang. chunks).
Wstęp do kognitywistyki
Wstęp do kognitywistyki Wykład szósty W poszukiwaniu metody badania umysłu. Druga rewolucja w wiedzy o poznaniu i powstanie kognitywistyki Andrzej Klawiter http://www.staff.amu.edu.pl/~klawiter klawiter@amu.edu.pl
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe wykład 1. Właściwości sieci neuronowych Model matematyczny sztucznego neuronu Rodzaje sieci neuronowych Przegląd d głównych g
Sztuczne sieci neuronowe
www.math.uni.lodz.pl/ radmat Cel wykładu Celem wykładu jest prezentacja różnych rodzajów sztucznych sieci neuronowych. Biologiczny model neuronu Mózg człowieka składa się z około 10 11 komórek nerwowych,
S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor
S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.
Sieci neuronowe jako sposób na optymalizacje podejmowanych decyzji. Tomasz Karczyoski Wydział W-08 IZ
optymalizacje podejmowanych decyzji Tomasz Karczyoski Wydział W-08 IZ Czym są sieci neuronowe Struktura matematycznych oraz programowy lub sprzętowy model, realizujących obliczenia lub przetwarzanie sygnałów
KIERUNEK: KOGNITYWISTYKA
KIERUNEK: KOGNITYWISTYKA Plan studiów pierwszego stopnia Cykl kształcenia 2018-2021 Rok akademicki 2018/2019 Zbo zaliczenie bez oceny Z zaliczenie z oceną E egzamin Jeżeli wykłady odbywają się równolegle
Wstęp do kognitywistyki. Wykład 3: Logiczny neuron. Rachunek sieci neuronowych
Wstęp do kognitywistyki Wykład 3: Logiczny neuron. Rachunek sieci neuronowych Epistemologia eksperymentalna W. McCulloch: Wszystko, czego dowiadujemy się o organizmach wiedzie nas do wniosku, iż nie są
Kognitywistyka: odkrywanie labiryntu umysłu z różnymi nićmi Ariadny w ręku
Kognitywistyka: odkrywanie labiryntu umysłu z różnymi nićmi Ariadny w ręku Piotr Konderak kondorp@bacon.umcs.lublin.pl Zakład Logiki i Filozofii Nauki WFiS UMCS Kognitywistyka: odkrywanie labiryntu umysłu
O REDUKCJI U-INFORMACJI
O REDUKCJI U-INFORMACJI DO DANYCH Cztery punkty odniesienia (dla pojęcia informacji) ŚWIAT ontologia fizyka UMYSŁ psychologia epistemologia JĘZYK lingwistyka nauki o komunikacji KOMPUTER informatyka elektronika
Poznawcze i innowacyjne aspekty zarządzania wiedzą w organizacji. Halina Tomalska
VI konferencja Innowacja i kooperacja symbioza nauki i biznesu WSB NLU, Nowy Sącz, 20.01.2012 r. Poznawcze i innowacyjne aspekty zarządzania wiedzą w organizacji Halina Tomalska I. Co myśleć o procesach
Wykład I. Wprowadzenie do baz danych
Wykład I Wprowadzenie do baz danych Trochę historii Pierwsze znane użycie terminu baza danych miało miejsce w listopadzie w 1963 roku. W latach sześcdziesątych XX wieku został opracowany przez Charles
Księgarnia PWN: Szymon Wróbel - Umysł, gramatyka, ewolucja
Księgarnia PWN: Szymon Wróbel - Umysł, gramatyka, ewolucja WSTĘP. MIĘDZY KRYTYKĄ A OBRONĄ ROZUMU OBLICZENIOWEGO 1. INteNCjA 2. KoMPozyCjA 3. tytuł CZĘŚĆ I. WOKÓŁ METODOLOGII ROZDZIAŁ 1. PO CZYM POZNAĆ
Wstęp do kognitywistyki. Wykład 7: Psychologia poznawcza: nietrwałe reprezentacje mentalne
Wstęp do kognitywistyki Wykład 7: Psychologia poznawcza: nietrwałe reprezentacje mentalne Reprezentacje poznawcze Reprezentacja poznawcza umysłowy odpowiednik obiektów (realnie istniejących, fikcyjnych,
Podstawy metodologiczne symulacji
Sławomir Kulesza kulesza@matman.uwm.edu.pl Symulacje komputerowe (05) Podstawy metodologiczne symulacji Wykład dla studentów Informatyki Ostatnia zmiana: 26 marca 2015 (ver. 4.1) Spirala symulacji optymistycznie
Prof. Stanisław Jankowski
Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny
Pamięć. Wstęp. Daria Woźniak Kognitywistyka III rok
Pamięć Wstęp Daria Woźniak Kognitywistyka III rok Pamięć polega na utrwalaniu (zapamiętywaniu), przechowywaniu, rozpoznawaniu i odtwarzaniu (przypominaniu) treści doznawanych uprzednio spostrzeżeń, myśli,
Dariusz Brzeziński Instytut Informatyki, Politechnika Poznańska
Dariusz Brzeziński Instytut Informatyki, Politechnika Poznańska Podstawowe architektury sieci neuronowych Generowanie sztucznych danych Jak się nie przemęczyć Korzystanie z istniejących wag Zamrażanie
16. Taksonomia Flynn'a.
16. Taksonomia Flynn'a. Taksonomia systemów komputerowych według Flynna jest klasyfikacją architektur komputerowych, zaproponowaną w latach sześćdziesiątych XX wieku przez Michaela Flynna, opierająca się
ZARZĄDZANIE PROJEKTAMI I PROCESAMI. Mapowanie procesów AUTOR: ADAM KOLIŃSKI ZARZĄDZANIE PROJEKTAMI I PROCESAMI. Mapowanie procesów
1 ZARZĄDZANIE PROJEKTAMI I PROCESAMI MAPOWANIE PROCESÓW 2 Tworzenie szczegółowego schematu przebiegu procesu, obejmujące wejścia, wyjścia oraz działania i zadania w kolejności ich występowania. Wymaga
Kognitywistyka, poznanie, język. Uwagi wprowadzające.
Wykład I: Elementy kognitywistyki: język naturalny Kognitywistyka, poznanie, język. Uwagi wprowadzające. Po raz pierwszy w historii można coś napisać o instynkcie uczenia się, mówienia i rozumienia języka.
Literatura. Sztuczne sieci neuronowe. Przepływ informacji w systemie nerwowym. Budowa i działanie mózgu
Literatura Wykład : Wprowadzenie do sztucznych sieci neuronowych Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Tadeusiewicz R: Sieci neuronowe, Akademicka Oficyna Wydawnicza RM, Warszawa
synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna.
Sieci neuronowe model konekcjonistyczny Plan wykładu Mózg ludzki a komputer Modele konekcjonistycze Perceptron Sieć neuronowa Uczenie sieci Sieci Hopfielda Mózg ludzki a komputer Twój mózg to 00 000 000
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,
Elementy kognitywistyki:
Wykład I: Elementy kognitywistyki: język naturalny Kognitywistyka, poznanie, język. Uwagi wprowadzające. Po raz pierwszy w historii można coś napisać o instynkcie uczenia się, mówienia i rozumienia języka.
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska
Sztuczne sieci neuronowe i sztuczna immunologia jako klasyfikatory danych. Dariusz Badura Letnia Szkoła Instytutu Matematyki 2010
Sztuczne sieci neuronowe i sztuczna immunologia jako klasyfikatory danych Dariusz Badura Letnia Szkoła Instytutu Matematyki 2010 Sieci neuronowe jednokierunkowa wielowarstwowa sieć neuronowa sieci Kohonena
PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH**
Górnictwo i Geoinżynieria Rok 31 Zeszyt 3 2007 Dorota Pawluś* PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH** 1. Wstęp Eksploatacja górnicza złóż ma niekorzystny wpływ na powierzchnię
Elementy kognitywistyki II: Sztuczna inteligencja
Elementy kognitywistyki II: Sztuczna inteligencja Piotr Konderak Zakład Logiki i Filozofii Nauki p.203b, Collegium Humanicum konsultacje: wtorki, 16:00-17:00 kondorp@bacon.umcs.lublin.pl http://konderak.eu
Diagramy czynności. sekwencyjnych i współbieŝnych. pomiędzy uporządkowanymi ciągami czynności, akcji i obiektów
Diagramy czynności Graficzne przedstawienie sekwencyjnych i współbieŝnych przepływów sterowania oraz danych pomiędzy uporządkowanymi ciągami czynności, akcji i obiektów Zastosowanie w modelowaniu scenariuszy
Podstawy Informatyki Systemy sterowane przepływem argumentów
Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Komputer i jego architektura Taksonomia Flynna 2 Komputer i jego architektura Taksonomia Flynna Komputer Komputer
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2014/15 Znajdowanie maksimum w zbiorze
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność
Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego
IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,
Metody Sztucznej Inteligencji II
17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału
Wprowadzenie do teorii systemów ekspertowych
Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z
I EKSPLORACJA DANYCH
I EKSPLORACJA DANYCH Zadania eksploracji danych: przewidywanie Przewidywanie jest podobne do klasyfikacji i szacowania, z wyjątkiem faktu, że w przewidywaniu wynik dotyczy przyszłości. Typowe zadania przewidywania
dr hab. Maciej Witek, prof. US MODELE UMYSŁU rok akademicki 2016/2017, semestr letni
dr hab. Maciej Witek, prof. US http://kognitywistyka.usz.edu.pl/mwitek MODELE UMYSŁU rok akademicki 2016/2017, semestr letni Temat 3 Klasyczny model modularny I: procesy modularne a procesy centralne Fodor,
Temat: Sztuczne Sieci Neuronowe. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Sztuczne Sieci Neuronowe Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sztuczne sieci neuronowe
Sztuczne sieci neuronowe (SNN)
Sztuczne sieci neuronowe (SNN) Pozyskanie informacji (danych) Wstępne przetwarzanie danych przygotowanie ich do dalszej analizy Selekcja informacji Ostateczny model decyzyjny SSN - podstawy Sieci neuronowe
Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych
Gdańsk, Warsztaty pt. Układy Złożone (8 10 maja 2014) Agata Fronczak Zakład Fizyki Układów Złożonych Wydział Fizyki Politechniki Warszawskiej Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań
1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda
Sieci neuropodobne 1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN Agenda Trochę neurobiologii System nerwowy w organizmach żywych tworzą trzy
Percepcja, język, myślenie
Psychologia procesów poznawczych Plan wykładu Percepcja, język, myślenie Wprowadzenie w problematykę zajęć. Podstawowe pojęcia. Historia psychologii poznawczej. W 1 Wstęp Informacje ogólne dotyczące kursu
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ SZTUCZNA INTELIGENCJA dwa podstawowe znaczenia Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące się), pewną dyscyplinę badawczą (dział
Sieci neuronowe w Statistica
http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej
Algorytmy i Struktury Danych
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 12: Wstęp
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
Rozdział 1 Sztuczne sieci neuronowe. Materiały do zajęć dydaktycznych - na podstawie dokumentacji programu Matlab opracował Dariusz Grzesiak
2 Rozdział 1 Sztuczne sieci neuronowe. 3 Sztuczna sieć neuronowa jest zbiorem prostych elementów pracujących równolegle, których zasada działania inspirowana jest biologicznym systemem nerwowym. Sztuczną
Wstęp do sztucznych sieci neuronowych
Wstęp do sztucznych sieci neuronowych Michał Garbowski Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Informatyki 15 grudnia 2011 Plan wykładu I 1 Wprowadzenie Inspiracja biologiczna
Algorytm poprawny jednoznaczny szczegółowy uniwersalny skończoność efektywność (sprawność) zmiennych liniowy warunkowy iteracyjny
Algorytm to przepis; zestawienie kolejnych kroków prowadzących do wykonania określonego zadania; to uporządkowany sposób postępowania przy rozwiązywaniu zadania, problemu, z uwzględnieniem opisu danych
Inteligentne systemy przeciw atakom sieciowym
Inteligentne systemy przeciw atakom sieciowym wykład Sztuczne sieci neuronowe (SSN) Joanna Kołodziejczyk 2016 Joanna Kołodziejczyk Inteligentne systemy przeciw atakom sieciowym 2016 1 / 36 Biologiczne
Reprezentacje poznawcze
Reprezentacje poznawcze Reprezentacja poznawcza umysłowy odpowiednik obiektów (realnie istniejących, fikcyjnych, hipotetycznych). Zastępuje swój obiekt w procesach przetwarzania informacji. Reprezentacje
Komputerowe systemy neurodydaktyczne
Bolesław Jaskuła bjaskula@wsiz.rzeszow.pl Katedra Systemów Rozproszonych Wyższa Szkoła Informatyki i Zarządzania Rzeszów Komputerowe systemy neurodydaktyczne Wstęp Projektowanie dydaktycznych systemów
Temat: Sieci neuronowe oraz technologia CUDA
Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w
HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM
ZASTOSOWANIE SIECI NEURONOWYCH W SYSTEMACH AKTYWNEJ REDUKCJI HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM WPROWADZENIE Zwalczanie hałasu przy pomocy metod aktywnych redukcji hałasu polega
Deep Learning na przykładzie Deep Belief Networks
Deep Learning na przykładzie Deep Belief Networks Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział Matematyki i Nauk Informacyjnych PW 20 V 2014 Jan Karwowski (MiNI) Deep Learning
Z punktu widzenia kognitywisty: język naturalny
Z punktu widzenia kognitywisty: język naturalny Wykład VIII: Neuronalne podstawy języka Fonologia Dwa paradygmaty:strukturalizm(fonemy i cechy dystynktywne jako podstawa wyjaśnień) oraz fonologia nieliniowa
Od uczestników szkolenia wymagana jest umiejętność programowania w języku C oraz podstawowa znajomość obsługi systemu Linux.
Kod szkolenia: Tytuł szkolenia: PS/LINUX Programowanie systemowe w Linux Dni: 5 Opis: Adresaci szkolenia Szkolenie adresowane jest do programistów tworzących aplikacje w systemie Linux, którzy chcą poznać
Załącznik Nr 4. odniesienie do obszarowych efektów kształcenia w KRK. kierunkowe efekty kształceniaopis WIEDZA
Załącznik Nr 4. Odniesienie kierunkowych efektów kształcenia do obszarowych efektów kształcenia dla obszaru lub obszarów kształcenia przyporządkowanych temu kierunkowi Kognitywistyka z racji tradycji badawczych
Elementy kognitywistyki III: Modele i architektury poznawcze
Elementy kognitywistyki III: Modele i architektury poznawcze Wykład VIII: Architektury poznawcze (symboliczne) I: ACT Zintegrowana teoria umysłu ACT-R (adaptive control of thought rational) hipoteza dotycząca
koniec punkt zatrzymania przepływów sterowania na diagramie czynności
Diagramy czynności opisują dynamikę systemu, graficzne przedstawienie uszeregowania działań obrazuje strumień wykonywanych czynności z ich pomocą modeluje się: - scenariusze przypadków użycia, - procesy
Elementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2
Elementy Sztucznej Inteligencji Sztuczne sieci neuronowe cz. 2 1 Plan wykładu Uczenie bez nauczyciela (nienadzorowane). Sieci Kohonena (konkurencyjna) Sieć ze sprzężeniem zwrotnym Hopfielda. 2 Cechy uczenia
Systemy hybrydowe reaktywno-racjonalne
WYKŁAD 5 Systemy hybrydowe reaktywno-racjonalne Sterowanie REAKTYWNE Zalety: bardzo szybko reaguje na zmiany otoczenia, ograniczone wymagania na moc obliczeniową oraz pamięć, system reaktywny rozbudowany
OBLICZENIA ZA POMOCĄ PROTEIN
OBLICZENIA ZA POMOCĄ PROTEIN KODOWANIE I PRZETWARZANIE INFORMACJI W ORGANIZMACH Informacja genetyczna jest przechowywana w DNA i RNA w postaci liniowych sekwencji nukleotydów W genach jest przemieniana
Obliczenia równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz
Obliczenia równoległe i rozproszone Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz 15 czerwca 2001 Spis treści Przedmowa............................................
Systemy Wbudowane. Założenia i cele przedmiotu: Określenie przedmiotów wprowadzających wraz z wymaganiami wstępnymi: Opis form zajęć
Systemy Wbudowane Kod przedmiotu: SW Rodzaj przedmiotu: kierunkowy ; obowiązkowy Wydział: Informatyki Kierunek: Informatyka Specjalność (specjalizacja): - Poziom studiów: pierwszego stopnia Profil studiów:
Metrologia: organizacja eksperymentu pomiarowego
Metrologia: organizacja eksperymentu pomiarowego (na podstawie: Żółtowski B. Podstawy diagnostyki maszyn, 1996) dr inż. Paweł Zalewski Akademia Morska w Szczecinie Teoria eksperymentu: Teoria eksperymentu
Sieć Hopfielda. Sieci rekurencyjne. Ewa Adamus. ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych.
Sieci rekurencyjne Ewa Adamus ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych 7 maja 2012 Jednowarstwowa sieć Hopfielda, z n neuronami Bipolarna funkcja przejścia W wariancie