Plan wykładu. Sztuczne sieci neuronowe. Konstruowanie klastrów za pomoc dendrogramów. Algorytm probabilistyczny doboru parametrów funkcji radialnych
|
|
- Bogna Weronika Krawczyk
- 6 lat temu
- Przeglądów:
Transkrypt
1 Plan yładu Wyład 7: S RB. Probablstyzn s nurono. Potórzn odstaoyh adomo o sah RB Uzn s RB - d. Zalty ady s RB S PNN. Małgorzata Krtosa Katdra Orogramoana -mal: mma@.b.balysto.l Konstruoan lastró za omo dndrogramó Na oztu ady z toró trnngoyh torzy odrbny lastr W ros traynym nastu łzn nablszyh, sns ododn mary odlgło, ssadó Produra st otarzana do momntu: uzysana zadoala lzby lastró lub namnsza odlgło tra oa s zbyt dua, aby mona było doona ołzna Algorytm robablstyzny doboru aramtró fun radalnyh lmnt luzoy ao s: stny dobór lzby fun bazoyh Wymagana o do lzby nuronó mona złagodz rzz roadzn s tyu HRB ralzu odzoroan z norm ago uldsa Wsółzynn marzy Q s dodatoym aramtram odlgaym doboro ułata arosyma danyh uzyh rzz s radaln Ta sam doładno mona uzysa s HRB rzy mnsz lzb fun bazoyh 3 4
2 5 S HRB Wyrs błdu lasyfa fun lzby nuronó urytyh dla s RB HRB 6 Algorytm robablstyzny Załona: rónomrny rozład danyh uzyh zborz uzym ogranzn s do dagonaln marzy salu Q Pros adata aramtró: - sółzynn uzna mal mar zrostu : 0 / ] ϕ ϕ ] ] T ϕ ] ] ] T f ϕ ϕ Q 7 Algorytm robablstyzny Chy haratrystyzn: na adym ta algorytmu nastu rónozn adataa ntró marzy ago aramtry szysth fun radalnyh s odlga adata algorytm -rdnh tylo dno ntrum odlgało adata 8 ta II - uzn z nadzorm Bazu, odobn a sah sgmodalnyh, na mnmalza fun lu osta: Mona doonya rónolgl atualza ag, ntró dysrs dooln mtody gradnto H d f d ϕ
3 Uzn s RB Dobór lzby fun bazoyh st luzoym roblmm rzy łaym rozzanu roblmu arosyma. Dobór ła lzby nuronó zaly od lu zynnó: ymaroo roblmu, lzby danyh uzyh, fun arosymoan. Zala s stosoan tz. onstrutyn mtody doboru strutury s, tór stonoo zsza s lzb fun bazoyh tstu błd s. 9 S RB, zalty ady łaty ros nau s RB t. dobór ag s orónanu z algorytmam uzna rtronu loarstogo s RB funa osztu orlona ao błd rdnoadratoy osada dno mnmum globaln łatszy dobór strutury s z zgldu na ystoan tylo dn arsty uryt Łatsza ntrrtaa dzałana s t. orln udzału oszzgólnyh fun bazoyh torznu globaln fun rztarzana s dla rozzana nyh zada oblznoyh uzysu s mnsz lzb ag s RB n ag s MLP dla ntóryh odrotn s RB, rzy nradłoo dobranyh aramtrah fun bazoyh, mo łato utra zdolno uogólnana atualny ozosta roblm doboru lzby fun bazoyh 0 PNN Probablstyzna s nuronoa PNN st rzd szystm lasyfatorm Probablstyzn s nurono PNN rrzntu mtod statystyzn tz. dysrymna dro, rzstaon osta ztrh arst: Warsta oa Warsta zoró Warsta sumoana Warsta yoa
4 Przyład rostgo lasyfatora Mamy trzy lasy oula lmntó: X, O, Y? st nznanym rzyadm onn by slasyfoany do dn z oyszyh las Mtoda nablszgo ssada -NN slasyfoałaby rzyad? do lasy X ona lmnt lasy X st nablszy. Ogóln: Mtoda -NN lasyfu nznany rzyad do t lasy, z tór ohodz rzyad ołoony nabl. Mtoda -NN slasyfoałaby nznany rzyad? do lasy X ona, ród nablszyh lmntó naszy ront stano lmnty z oula X. Przyład rostgo lasyfatora Bardz sutzna mtoda brałaby od uag rón ozostał lmnty zboru uzgo. Przy zym h ły na dyz onn by róny: rzyłady l blso? onny m duy ły na dyz zsza radoodobsto zalasyfoana do oula, tór rrzntu rzyłady l dalo od? onny m mały ły na dyz zmnsza radoodobsto zalasyfoana do oula, tór rrzntu torzn strf łyó To o bardz ftyny lasyfator onn rob to: dla ad oula yznaza rdn udzałó noszonyh rzz rzyłady z zboru uzgo nal do t oula Nznany rzyad onn by nastn rzysany do t oula, dla tór arto rdna udzałó st nasza 3 4 Tora lasyfa stymaa fun gsto Jl funa gsto ad oula st znana f st fun gsto lasy, ózas nznany rzyad X naly do lasy, l: f X >f X, dla szysth Paramtry, tór mog by dodatoo łzon: 0. /K /K Pradoodobsto a ror h radoodobsto, nznany rzyad został ylosoany z dan oula Koszt błdn lasyfa - oszt nła lasyfa nznango rzyadu Rguła dyzyna rzybra osta rguła Baysosa: h f X > h f X, dla szysth stymaa fun gsto oaru o zbór uzy rzyłady z oszzgólnyh oula una gsto dla odynzgo rzyadu: W - nznany rzyad una gsto dla dn oula W - -ty rzyład z zboru uzgo W- funa - dysrsa stymaa fun gsto st tym lsza m szy st zbór uzy 5 6
5 una W Dan o n-ymaro Rrzntu strf łyó du arto rzyadu małyh odlgło mdzy torm nznanym a rzyładam uzym mal do zra mar zrostu odlgło una gsto dla dngo rzyładu n π n / Czsto uyana st funa Gaussosa: g π una gsto dla oula g X n n / π Rguła dyzyna lmnaa sólnyh zynnó g X >g X, dla szysth g X 7 8 Uzn Wady zalty Zbór uzy onn by rrzntatyny dla analzoanyh oula Dodaan usuan rzyładó uzyh oodu dyn dodaan usuan nuronó arst drug Zalty: Szyb ros uzna garantu zbno do otymalngo lasyfatora raz z zrostm lzby lmntó zborz uzym Dodaan usuan noyh rzyadó bz duyh zman uznu Uzn bazu głon na doborz arto sółzynnó dysrs na baz dzy o analzoanym roblm uya thn hurystyznyh n. lav-on-out Wady Mnsz zdolno uogólna orónanu z sam loarstoym Du ymagana o do am Woln dzałan s Du ymagana dotyz ao danyh uzyh 9 0
Plan wykładu. Sztuczne sieci neuronowe. Uczenie nienadzorowane (bez nauczyciela) Uczenie nienadzorowane - przykłady
Plan yładu Wyład 10: Sec samoorganzuce s na zasadze spółzaodncta Sec samoorganzuace s na zasadze spółzaodncta: uczene nenadzoroane uczene onurencyne reguła WTA reguła WTM antoane etoroe mapa cech Kohonena
System M/M/c/L. H 0 µ 1 λ 0 H 1 µ 2 λ 1 µ c λ c-1 H c µ c+1 λ c µ c+l λ c+l-1 H c+l = 2 = 3. Jeli załoymy, e λ λ = λ = Lλ. =1, za.
System M/M// System osada dentyznyh, nezalene raujyh anałów obsług ozealn o ojemno, gdze <
Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych
Automatya i Rootya Aaliza Wyład dr Adam Ćmil cmil@agh.du.pl SZEREGI POTĘGOWE ( c ciąg licz zspoloych c ( z z - szrg potęgowy, gdzi ( c - ciąg współczyiów szrgu, z C - środ, ctrum (ustalo, z C - zmia. Dla
Ł Ą ż ż Ę ż Ó Ł ź ż ż Ś ż Ę Ę Ś Ą ć ż Ź Ś Ę Ś ĄÓ Ę Ź ż Ń ć ć ć ć ż ć ć Ę Ś ż ż ć ć ć Ę ć ż Ć Ś ć ć Ś ć ć ż ż ż Ź Ś ż ć ć ć ć ć ć Ś ć Ę ż Ę ć Ó ć ć ć ć Ę ć ć ć Ę Ś ż ć Ę Ź ć Ę Ć Ź ż ż Ś Ę ź ć Ź ż ć Ą ć
Ą Ń Ę Ę Ą Ę Ć ź Ż Ż Ą ń Ź Ż Ż ń ń Ź Ą Ń Ą Ą Ę ń ź Ę Ę Ż Ć Ą ź Ą Ę ń ź Ę ń ń Ą Ż Ę ń Ą ń ń Ę Ę Ę Ź ń Ę ń ń ń ń Ź Ę Ś ź Ą Ń ń Ż Ź Ę Ź ń ń ń Ę Ę ń Ż Ą ń ńń Ś ń ń Ż Ż Ę Ż Ń Ę Ą Ń Ł ń ń ń ń ń ń ń ń Ś Ź Ę Ś
Ł ŚĆ ń Ś Ł Ź Ć Ł Ą ńń ć Ż Ą Ł Ś ń Ł ć Ś ń ć ć ć Ó Ż ć ć Ą Ś ć Ś ć Ń Ś ć Ś ć Ś Ć Ś Ż Ś Ś Ż Ś Ó ń ć ć Ź Ł ć ć ć ń ń ć ć Ą ć ć ć Ź ć ć ć ć ć ć Ó Ź Ó Ł Ł Ń ć ć Ź Ą ć ć ń ć Ą ć ć ć Ł Ź Ź Ź Ż Ł Ż Ł Ż ć ń ć Ą
ŚĆ ŁĄ Ś Ć Ć Ś ŁĄ Ł Ż Ł Ś Ż Ł Ę Ł Ż Ł Ł Ś Ś Ś Ł Ś Ł Ś Ś Ć Ś Ś ć Ś Ś Ś Ś ć Ś Ż ć Ć Ć Ś Ś Ż Ś Ż Ś Ś ć Ś Ś Ć Ś Ć Ż Ś ż Ś ż Ż Ś Ż Ś Ż Ł Ś Ś Ł Ś Ą Ę Ą Ż ż ć ć ć Ą ż ć Ś Ś Ś Ś Ż ż ć ć ć Ę Ś ż ć Ś ć Ś Ś ć Ś Ś
Ę Ę Ś ć Ł ć ż ż ż ż ż Ł Ł Ą Ń ż ć ź ż ć ć ż Ł Ę Ś ż ż ż Ł Ś ż ż ż Ś ż ż ż Ł Ł ż ż ż ć Ś Ę Ę Ś Ś Ę ć Ś Ł Ł ć ć ć ć ć ć ć Ł ć Ł Ę ć Ę ć Ę Ś Ł Ł ć ć ć ż ć ć ź ż Ł Ą Ą Ą Ę Ą Ś Ę Ś Ł Ś ć ŁĄ Ź Ę Ł Ś Ń Ę ć
ń Ż ń ź ć ć ń ć ć ć ć ź ć ń ń ć ń ć ć ć ć ź ć ń Ż ć Ż ć ć ć ć ń ć ń ć ń ć ń ć ć ń ń ć ń ć ń ć ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ż Ż Ż ć ć ć ć ń ć ć ć ć ć ć ć Ż ć ć ć ź ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć
ź ŁĄ ó ś ó ś ó ó ó ś ó ó ó ó ó ś ó ó ó ó ó ó ó ó ó ó ś ó ó ó ó Ż Ż ó ó ó ó ó ó ó ó ó ó ó ń ó ó ó ć ó ó ó ś ó ó ó ó ó ó ó ó ó ś ó ś Ł ś ó ó ó ó ó Ż Ż ć ó ó ś ó ó ó ó ó ó ś ó ó ó ó Ę Ż ó ś ó ó ó ó ó ś ś
ź ź ź Ę Ę ź ź ź ź Ź ć ć ć ć ć ć Ź Ł ć ć Ż ć Ż ć Ę Ł Ż Ń ć ć ć Ż ć ć ć ć ć ć Ę ć Ę Ł ć ć ć ć ć ć ć ć ć Ż ć ć ć ć ć Ż Ń ź ć Ł ć ć ć ć ć ź ź ć ć ć Ł ć ć ć Ż ć ć Ż ź ć ć ć Ż ć ć ć ć Ń ć Ę ć Ż Ł ć Ń ć ć ć Ź
ó Ż ó Ę ń ó ó ń ń ę ć Ś ż Ż Ż Ż ą ą ę ń Ś ń ą ń ń ż ń ó ó ó Ś ń ć ż ń ń ń Ś Ż ż ń ó ń ą ę ń ż ą ć Ś Łą ę ą ż ą Ż ó ó Ó Ą ó ń ń Ż ę Ś ć ę ż ę ń ż ą Ż ą ą ń Ż ź ń ń ń ń ń ż ó ó ż ń Łą ę ą ż ą ó ó ó ó
Ą Ą ż ż ś ż ż ż ć ś ż ść ś ś ż ć ść ż ż ć ś ś ż ż ć ś ś ś ż ś ć ć Ę ś Ł ś ś Ń Ń ż ż Ń ść ż ść ż Ą ź ż ść Ń ś ż ś Ł ść ż ść ś ż ś ż Ó Ś ż ż ż ż ć ść ś ż ż ć ść ś ś ż ść ż ż ść ś ż ż ź ś ść ż ś ś ś ć Ł Ą
Ń ź ź Ń Ó ŁĄ Ó Ę Ł Ł Ó Ł Ę Ę Ł Ę ź Ó ź Ę Ę Ę Ę Ę Ą Ą Ł Ź Ę Ę Ę Ę Ę Ę ź Ł Ś Ś Ę Ł Ę Ę Ę ŚĆ Ą Ś Ś Ó Ę Ń Ę Ę Ł Ę Ł Ć Ż Ę Ć ź Ó Ę Ę Ę Ę Ó Ę Ś Ń Ą Ę Ą Ę Ł Ę Ó Ń Ą Ł Ć Ę Ę Ł Ę Ó Ą Ó Ę Ó Ę Ę Ę Ę Ą Ó Ź ź Ć Ó ź
ą Ą Ę Ś Ł ź ź ą ń ń ą ć ą Ę ą ą ą ą ć ą ć ą ą Ź ć Ż Ł Łą ń ń ą ą ą ą Ę ą ą ń Ź Ń ą ą ć ąć ć ć ą ą ń ą ź ą ą ą ą ą ą ą ć ą ą ą ą ć Ź ą ń ą ą Ź ą ą ą ą ą ą ć ą ą ą ą ć ą ą ą ą ć ą ć ć ą ą ń ą ń ń ń ć ą ą
Ą ć ć ć ŁĄ ć Ę Ł ć ć ć ć ź ć ć Ą ć ć Ą ć ć ć ć Ę ć ć Ę ć ć ć ć ć ź ć ć ć ć ć ć ć ć ć Ł Ś ć ć ź ć ć ć ć ć ć ź ć ź ć ź ć ź ć ć Ą ć ć Ę ź Ą ć ć ć ć ć ć ć ć ź Ę ć ć Ą ć ć ć Ł ć ć Ą ć ć ć ć ć Ę ź ć ć ć ć ć
Załącznik Nr 1 do Uchwały Zarządu Nr 16 /13 z dnia 27 marca 2013 roku
Załącznik Nr 1 do Uchwały Zarządu Nr 16 /13 OPROCENTOWANIE ŚRODKÓW PIENIĘŻNYCH W ZŁOTYCH PODMIOTÓW INSTYTUCJONALNYCH W BANKU SPÓŁDZIELCZYM W WĄCHOCKU OD DNIA 15 KWIETNIA 2013 ROKU WG ZMIENNEJ STOPY PROCENTOWEJ
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 5 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r z e g l» d ó w k o n s e r w a c y j n o -
Teoria Sygnałów. II Inżynieria Obliczeniowa. Wykład 13
Toria Sygałów II Iżyiria Oblicziowa Wyład 3 Filtr adaptacyjy dostraja się do zmiych waruów pracy. Filtr tai posiadają dwa sygały wjściow. Pirwszym jst sygał poddaway filtracji x(). Drugim ta zway sygał
1. Podstawowe pojęcia:
Matriały dydatyczn d ćwicznia T Caratrytyi wytrzymałściw rzrjów ntrucyjnyc. Wydru ltrniczny 8. lajdów na 9. trnac rzznaczny dla tudntów II ru tudiów tacjnarnyc na Wydz. Inżynirii Mcanicznj i Rtyi, irun
Zasady wyznaczania minimalnej wartości środków pobieranych przez uczestników od osób zlecających zawarcie transakcji na rynku terminowym
Załązn nr 3 Do zzegółowyh Zasad rowadzena Rozlzeń Transa rzez KDW_CC Zasady wyznazana mnmalne wartoś środów oberanyh rzez uzestnów od osób zleaąyh zaware transa na rynu termnowym 1. Metodologa wyznazana
Rozkład Maxwell a prędkości cząsteczek gazu Prędkości poszczególnych cząsteczek mogą być w danej chwili dowolne
Rozkład Maxwll a rędkośi ząstzk gazu 9-9. Rozkład Maxwll a rędkośi ząstzk gazu Prędkośi oszzgólnyh ząstzk ogą być w danj hwili dowoln 3 a tylko rędkość śrdnia kwadratowa wynosi sk. Można się jdnak sodziwać,
O F E R T A H o t e l Z A M E K R Y N * * * * T a m, g d z i e b łł k i t j e z i o r p r z e p l a t a s ił z s o c z y s t z i e l e n i t r a w, a r a d o s n e t r e l e p t a z m i a r o w y m s z
o d ro z m ia r u /p o w y ż e j 1 0 c m d ł c m śr e d n ic y 5 a ) o ś r e d n ic y 2,5 5 c m 5 b ) o śr e d n ic y 5 c m 1 0 c m 8
T A B E L A O C E N Y P R O C E N T O W E J T R W A Ł E G O U S Z C Z E R B K U N A Z D R O W IU R o d z a j u s z k o d z e ń c ia ła P r o c e n t t r w a łe g o u s z c z e r b k u n a z d r o w iu
IV. WPROWADZENIE DO MES
Kondra P. Moda mnów Sończonych ora zasosowana 7 IV. WPROWADZNI DO MS Poszuwan rozwązań rzybżonych bazuących na modach rsduanych waracynych naoya na rudnośc w doborz func bazowych orśonych na całym obszarz.
ć Ó ć Ź ć ć ć ć ć ć Ś Ą ć ź Ź ć Ź Ź ć ć ć Ą Ź ĄĄ ć ź ć ć ć ć ć ć Ą ź Ó ć ć ć ć ć ć ć Ą ć ź ć ć ć Ś Ą ź ć Ó ć ć ć Ł ć ć Ą ć ć Ą Ó ć ć ć ć ź ć ć ć ć ć ć Ść ć ć Ó ć Ę ć ć ÓĄ Ś ć ć ć Ą ć ć Ź ź Ś ć Ź ć ć ć
T A B E L A OPROCENTOWANIA
Załącznik do uchwały Zarządu Banku Nr 29/2011 z dnia 30 maja 2011 r. BANK SPÓŁDZIELCZY W SZCZEKOCINACH T A B E L A OPROCENTOWANIA PRODUKTÓW BANKOWYCH SZCZEKOCINY, MAJ 2011 I. KLIENCI INDYWIDUALNI TABELA
L.Kowalski Systemy obsługi SMO
SMO Systy asow obsługi zastosowai procsu urodzń i śirci - przyłady: - ctrala tlfoicza, - staca bzyowa, - asa biltowa, - syst iforatyczy. Założia: - liczba staowis obsługi, - liczba isc w poczali. - struiń
k m b m Drgania tłumionet β ω0 k m Drgania mechaniczne tłumione i wymuszone Przypadki szczególne
Wyład II Drgana chanczn łuon wyuzon równana ruchu w obcnośc łuna wyuzna oraz ch rozwązana logaryczny drn łuna rzonan chanczny jgo przyłady wzro apludy drgań wyuzonych wahadła przężon aarofy Drgana łuon
8 7 / m S t a n d a r d w y m a g a ń e g z a m i n m i s t r z o w s k i dla zawodu M O N T E R I N S T A L A C J I G A Z O W Y C H K o d z k l a s y f i k a c j i z a w o d ó w i s p e c j a l n o ś
Zarządzenia i informacje 1.1. Zarządzenia
C h o r ą g i e w D o l n o l ą s k a Z H P W r o c ł a w, 3 1 p a U d z i e r n i k a 2 0 1 5 r. Z w i ą z e k H a r c e r s t w a P o l s k i e g o K o m e n d a n t C h o r ą g w i D o l n o 6 l ą s
Zawód: stolarz meblowy I. Etap teoretyczny (część pisemna i ustna) egzaminu obejmuje: Z ak res wi ad omoś c i i u mi ej ę tn oś c i wł aś c i wyc h d
4 6 / m S t a n d a r d w y m a g a ń - e g z a m i n m i s t r z o w s k i dla zawodu S T O L A R Z M E B L O W Y Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji
Wykład 8: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala, Poissona. Przybliżenie Poissona rozkładu dwumianowego.
Rachue rawdoodobieństwa MAP064 Wydział Eletroii, ro aad. 008/09, sem. leti Wyładowca: dr hab. A. Jurlewicz Wyład 8: Zmiee losowe dysrete. Rozłady Beroulliego (dwumiaowy), Pascala, Poissoa. Przybliżeie
Plan wykładu. Sztuczne sieci neuronowe. Podstawowe pojcia logiki rozmytej. Logika ostra a logika rozmyta. Wykład 13: Sieci neuronowe o logice rozmytej
Pan wyładu Sztuzne se neuronowe yład 3: Se neuronowe o oge rozmytej ałgorzata Krtowsa Katedra Orogramowana e-ma: mma@.b.baysto. Podstawy og rozmytej zbory rozmyte oeraje og rozmytej shemat systemu rozmytego
Ł ć óż ć ó ż ć ż ó ć ó ó ó ć ć ć ć ć ć ń Ę ń ż ó ć ó ć Ą Ć Ć ż ó ż ć ó ć Ł ż Ń óż Ę ć ć ó ń ń ó ć ć ć Ł ć ó ć ż ć ć ż Ę ć ż ć ż ż ó ó ó óż ó ż ż ż Ę ó ć Ę Ę ó Ę ć Ę ó Łć Ę Ę ó Ę Ę Ę ó ó Ę ó Ą Ę ż ó ż ż
, , , , 0
S T E R O W N I K G R E E N M I L L A Q U A S Y S T E M 2 4 V 4 S E K C J I G B 6 9 6 4 C, 8 S E K C J I G B 6 9 6 8 C I n s t r u k c j a i n s t a l a c j i i o b s ł u g i P r z e d r o z p o c z ę
ń ż Ą Ł ż ć ż ć ż ć Ś Ż ć ć ż ć ż ż ż Ą ż ż Ź ń Ą ź ń ź ń Ą ż Ń ż ń Ą ń ż ń Ź ć ń ż Ń Ą ż ż ż ć ń ń Ł ż ż ż ń Ź ź Ą ż Ł ż ż ć ń Ś ć Ó ż ć Ś ż ż Ą ń ż ń Ł ż Ż ń Ą Ł ć ż ń ż ń Ż ń ń Ą ż ż Ł ż ż ż ż ć ż Ń
Podstawy rachunku prawdopodobieństwa (przypomnienie)
. Zdarzenia odstawy rachunu prawdopodobieństwa (przypomnienie). rawdopodobieństwo 3. Zmienne losowe 4. rzyład rozładu zmiennej losowej. Zdarzenia (events( events) Zdarzenia elementarne Ω - zbiór zdarzeń
Układanie paneli z PCV
Układanie paneli z PCV Wybór paneli 1. Panele z PVC są produktem gotowym do użytku. Można kłaść je we wszystkich rodzajach pomieszczeń. Szczególnie dobrze sprawdzają się w pomieszczeniach wilgotnych (łazienki,
Montaż okna połaciowego
Montaż okna połaciowego L Okna do pod da szy do star czają na pod da sze pra wie 40% świa tła wię cej niż okna o tej sa mej po wierzch ni za mon to wa ne pio no wo. Wy bór okna za le ży od: po wierzch
Optymalizacja harmonogramów budowlanych - problem szeregowania zadań
Mieczysław OŁOŃSI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów
Ś Ś Ś Ś Ś Ś Ę Ą Ę ŚĘ Ę Ś ń Ę Ę Ą Ł Ż Ń Ł ć Ą ć Ł Ę Ó ć Ź ć ź ń Ń ń Ś Ą Ę Ł Ę Ą Ę ń ć ń Ź ć ń ć ń Ś ń ŚĆ ć ź Ł Ę Ę Ś Ę Ę Ę ń ŚĘ Ń Ę Ę ń ŚĘ Ę Ę Ś Ś ć ń Ę ń Ś Ę ć ć Ę Ę ć ź ć ń Ę Ń ń ć Ł Ę Ę Ę Ę ć Ę ć ć ź
CONNECT, STARTUP, PROMOTE YOUR IDEA
Dz ę u ę z r - T A ry. K z w ź ó ży u w USA www.. łą z sz s ł z ś F u T A ry! C yr t 2018 y Sy w Gór Wy rwsz S Fr s, 2018 Wszyst r w z strz ż. N ut ryz w r z wsz ł ś u r tu sz - w w st st z r. K w ą w
Reprezentacje grup symetrii. g s
erezentace ru ymetr Teora rerezentac dea: oeracom ymetr rzyać oeratory dzałaące w rzetrzen func zwązać z nm funce, tóre oeratory te rzerowadzaą w ebe odobne a zb. untów odcza oerac ymetr rozważmy rzeztałcene
Nazwa jednostki organizacyjnej, w skład której wchodzi szkoła. Zespół Szkolno- Przedszkolny nr 3
P d 19 ś 2018 Z p UCHAŁA NR NR RAY EE ROCŁAA p ul plu śl g bdó publh ó pdh b N pd 18 u 2 p 15 u d 8 1990 ą g ( U 2018 p 994, 1000, 1349 1432), 12 p 11 92 u 1 u d 5 1998 ą p ( U 2018 p 995, 1000, 1349 1432)
Pozostałe procesy przeróbki plastycznej. Dr inż. Paweł Rokicki Politechnika Rzeszowska Katedra Materiałoznawstwa, Bud. C, pok. 204 Tel: (17) 865-1124
Pozostałe procesy przeróbki plastycznej Dr inż. Paweł Rokicki Politechnika Rzeszowska Katedra Materiałoznawstwa, Bud. C, pok. 204 Tel: (17) 865-1124 Tłoczenie Grupy operacji dzielimy na: dzielenie (cięcie)
Ę ć Ń Ń ŁĄ ć ć ć Ę ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć ć ć ć ć ć ź Ł Ś ć ć ć ć Ę ć ć ć ź ć Ę Ńć ć ć ź Ę Ę ć Ę ć Ę ć Ę ć ć ć ć ć Ę ć ć Ę ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ż ć ć ć ć ć ć ć ć ć ć ź ć ć ć ź ć ź ć
ż ż ż ż ż ż Ś Ł Ę ż ż ż ż ż ż Ź ż Ę ż ż ć ż Ś Ś ć Ź Ę ż ż Ł Ś Ś ć Ś Ś ć ć Ś Ść ż Ś Ś ć Ś Ść Ś Ść ć Ł Ź Ś Ś ć Ś ż Ść Ś Ś Ś Ś ć Ś Ś Ź ć Ę Ś ć Ę Ć Ś Ę Ń ć ż ź ź Ę ż ż Ść ć Ę ć ż ź ż ż ż Ść ż Ś ć ć ć Ł ć ż
Ł ń ż Ó Ę ń ż Ą Ż Ż Ż ń ż ż ń ć ż Ł ć ć ć ż Ż ż Ó ż Ż ń ż ć ż ć Ż ż Ż ć ż ć ć Ż ń ż Ó ż ć Ż ć Ó ż ć ż Ó ń ż ź ń Ź ć ż ć ż Ż Ź ż Ł ż ż Ł ń Ą ż Ó ćż ż Ż ń ż ć ż ć Ż ż ć Ż ć Ż ć ż Ó Ó ż ć ć Ń ć ż ć ć ż ń
Mazurskie Centrum Kongresowo-Wypoczynkowe "Zamek - Ryn" Sp. z o.o. / ul. Plac Wolności 2,, Ryn; Tel , fax ,
R E G U L A M I N X I I I O G Ó L N O P O L S K I K O N K U R S M Ł O D Y C H T A L E N T Ó W S Z T U K I K U L I N A R N E J l A r t d e l a c u i s i n e M a r t e l l 2 0 1 5 K o n k u r s j e s t n
2 3 / m S t a n d a r d w y m a g a ń e g z a m i n m i s t r z o w s k i dla zawodu L A K I E R N I K S A M O C H O D O W Y Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r ze b r yn ku p r acy
Prognozowanie- wiadomoci wstpne
Progozowa- wadomoc wtp Progozowa to racjoal woowa o zdarzach zach a podtaw zdarz zach. Clm progoz jt dotarcz otwch formacj potrzch do podjmowaa dczj. Progoz a mulacj. Progoza co dz w momc t Smulacja co
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Rozłady soowe Rozład jednopuntowy Oreślamy: P(X c) 1 gdzie c ustalona liczba. 1 EX c, D 2 X 0 (tylo ten rozład ma zerową wariancję!!!)
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 2 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k a u r a w i s a m o j e z d n
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 03 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e t e l e b i m ó w i n a g ł o n i e n i
Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa
W Z Ó R U M O W Y z a w a r t a w G d y n i w d n i u 2 0 1 4 r po m i d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j i j e d n o s t k a b u d e t o w a ( 8 1-5 3 8 G d y n i a ), l
1 / m S t a n d a r d w y m a g a ń - e g z a m i n m i s t r z o w s k i dla zawodu B L A C H A R Z Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji zawodów
ń Ł Ó Ś ś ś ŁĄ Ś Ł Ś Ś ń Ś ś Ę Ę ń Ł Ó ń ś ń ś ś ś ś ś ś ś ś ś ś ś ś ś ź Ś ń ś ś Ź ś Ó ś ś ś ś ń ś ń Ó Ż ś ś ś ś ś ś ś ś ś ś ń ś ś ś ś ś ś ś Ż ś ś ś ś ś Ż Ź ś Ż ń ń ś ś Ź ś ś Ł Ś ś Ę Ż ś ś Ż ś ś ś ś ś
Ś Ń Ż Ś ż Ś ć Ść Ó Ó Ó Ż Ż ć Ż Ó Ż Ż Ż Ś ć Ż Ś Ó Ó ć ć Ż Ż Ś Ś Ą Ś Ż Ó Ź Ż ć Ó Ź Ó Ś ć ć ć ć ż ć Ć Ż Ć ć ć Ż Ś Ó Ó ć ć Ć Ś Ó Ż Ó Ó ż Ż Ż ŚÓ Ż Ż Ą Ó Ż Ż ć Ść Ś Ż Ż Ź Ż Ż ć Ó Ó Ś Ś Ó Ż Ż Ż Ś Ż Ż ć Ż ć Ż
Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 7 ( ) Plan wykładu nr 7. Politechnika Białostocka. - Wydział Elektryczny
Podstawy inormatyi Wyład nr 7 /9 Podstawy inormatyi Plan wyładu nr 7 Mtody oszuiwania mijsc zrowych irwiastów uncji niliniowj: mtoda biscji ołowinia mtoda rgula alsi mtoda sicznych mtoda stycznych Nwtona
Ł Ó ż ą ł ą ż ą ł łą ł ł ł ł ą łą ż ą ł ą ć ń ą ą ą ł ł ż ł ą ź ż ć ł ł Ą ń ń ą ł łą ć ą ł ć ą Ą ł ć ł ł ą ł ą ń ż ą ń ą ł ą ń ń łą ż ą ł ą ć ą łą ł ł ą ą ł ł ł ą ł ł ą ą ł ć łą Ą ł ć łą ą ł ż Ą ą ą ż
T = Z t T t T t T t T t T : Z N (s i ) n i=1 n n S S = {(s i ) n i=1 N n : s j + j s k + k ( n), n N}. 1 j k n (s 1, s 2,..., s n ) s 1 s 2... s n m = s 1 s 2... s n m s i m i = 1,..., n S m S m = {(s
Ł Ć Ć Ę ŁĄ Ł ż ż ż ż ż ć ż Ż ż Ć ż ż ż ż Ą Ć Ć Ą Ć Ż ć ż Ć Ź Ć Ą ż Ł ŁĄ Ę ż ż Ż Ą ż ż Ł ż Ż ż Ć Ć Ć Ć Ą Ą Ą ż ż Ą Ź ż ż ż Ź Ą ż ć Ż ż ż Ć ż ż ż Ę Ź Ć Ą Ń ż Ć Ć Ź ć ż Ż ż ć Ą ż ć Ź ż ż Ź ż ż ż ż Ź ż Ć ż
Docieplanie domu we³n¹ mineraln¹ i uk³adanie sidingu winylowego
Docieplanie domu we³n¹ mineraln¹ i uk³adanie sidingu winylowego We³ na mi ne ral na jest to ma te ria³ ter mo izo la cyj ny w for mie p³yt, mat lub gra nu la tu. Zna ko mi cie na da je siê do do cie pla
Shimmy szuja. Jerzy Wasowski arr voc. Andrzej Borzym. O! Szu-ja! # œ œnœnœ. Da ba da, da ba da, da ba da ba da ba da, da ba da, da ba dam
Shimmy szuj Jeremi Przybor Jerzy Wsoski rr voc Andrzej Borzym Soprno Soprno Alto Tenor h = 75 O! Szu-j! N-o-m- mił, n-truł C # b # nn C D b, b, b b b, b, b m C # b b n b # D b, b, b, b m # Bss C m m m
1 0 2 / c S t a n d a r d w y m a g a ń e g z a m i n c z e l a d n i c z y dla zawodu R A D I E S T E T A Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji
Tabela oprocentowania produktów bankowych Banku Spółdzielczego w Starachowicach
Załącznik nr 1 do Uchwały nr 21/2014 Zarządu Banku Spółdzielczego w Starachowicach z dnia 25 kwiecień 2014 r. Tabela oprocentowania produktów bankowych Banku Spółdzielczego w Starachowicach obowiązuje
TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH W BS W WOLBROMIU
Załącznik nr 1 do Uchwały nr 15/10/2016 Zarządu Banku Spółdzielczego w Wolbromiu z dnia 24.02.2016r. ( obowiązuje od 01.03.2016 r.) TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH W BS W WOLBROMIU I. Wkłady
Wrocław, dnia 27 marca 2015 r. Poz UCHWAŁA NR VIII/113/15 RADY MIEJSKIEJ WROCŁAWIA. z dnia 19 marca 2015 r.
ZE URZĘY JEÓZTA LŚLĄE, 27 2015 P 1376 UCHAŁA R V/113/15 RAY EJEJ RCŁAA 19 2015 b ó ó ą 4,5% ( ą ), 18 2 15 8 1990 ą g ( U 2013 594, óź 1) ) ą 12 1 26 ź 1982 źś ( U 2012 1356, óź 2) ) R, ę: 1 1 U ś bę ó