Analiza testu diagnostycznego z przedmiotu. Matematyka. Działdowo, wrzesień 2017

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza testu diagnostycznego z przedmiotu. Matematyka. Działdowo, wrzesień 2017"

Transkrypt

1 Analiza testu diagnostycznego z przedmiotu Matematyka Działdowo, wrzesień 2017

2 1. Dane ogólne Klasa Stan klasy /szkoły Pisało test % piszących Zaliczyło poziom P % Zaliczyło poziom PP % Średnia ocena wg statutu Ilość ocen cel bdb db dst dop ndst 1a % 76% 92% dst b % 73% 93% dps c % 65% 85% dps d % 19% 67% ndst e % 42% 62% ndst I LO % 55% 80% 2, H % 35% 42% dps J % 59% 73% dps T % 46% 56% 1,

3 2. ANALIZA POZIOMU OPANOWANIA ZADAŃ Nr Treść Podstawa programowa Poziom opanowania I LO 1a 1b 1c 1d 1e 1 Wykonując działania otrzymasz: 1.1 0,54 0,68 0,80 0,65 0,24 0,31 2 Iloraz liczby 0,45 przez 0,009 jest równy: 1.2 0,60 0,64 0,85 0,65 0,41 0,67 3 Wartość wyrażenia wynosi: 1.3 0,28 0,48 0,17 0,19 0,26 0,19 4 Usuń niewymierność z mianownika ułamka ,51 0,70 0,57 0,71 0,37 0,44 5 Oblicz: a. b. c. d. e. f ,56 0,71 0,65 0,71 0,48 0,44 6 Zegarek kosztuje 32zł. O ile złotych mniej zapłacisz za zegarek, jeśli będzie on przeceniony o 25%? 1.9 0,82 0,86 0,80 0,88 0,81 0,77 7 Pan Marcin zapłacił 600zł podatku, czyli 20% wynagrodzenia. Ile wynosi wynagrodzenie pana Marcina? 1.9 0,82 0,92 0,86 0,92 0,67 0,77

4 Zapisz w najprostszej postaci obwód figury: 8 3 0,65 0,70 0,83 0,79 0,52 0,62 9 Rozwiązanie nierówności spełnia warunek: 3.3 0,12 0,23 0,17 0,13 0,04 0,05 10 Mama i jej córka Marysia mają razem 50lat. Pięć lat temu mama była dziewięć razy starsza od Marysi. O ile lat mama jest starsza od córki? Poniższy diagram przedstawia powierzchnię oceanów w mln km ,19 0,42 0,16 0,20 0,15 0, ,36 0,57 0,52 0,24 0,28 0,28 Średnia arytmetyczna powierzchni tych oceanów jest równa 12 Przedstawiona na rysunku figura: 8.7 0,70 0,72 0,80 0,77 0,48 0,73

5 13 a. nie ma osi symetrii b. ma 1 oś symetrii c. ma 2 osie symetrii d. ma nieskończenie wiele osi symetrii Obwód kwadratowego ogródka jest równy 100m. Na przekątnej tego ogródka posadzono kwiaty. Na odcinku jakiej długości posadzono kwiaty? Oblicz pole zamalowanej figury ,49 0,58 0,83 0,58 0,15 0, ,49 0,75 0,66 0,63 0,31 0,24 Wymiary narysowanego graniastosłupa są wyrażone w centymetrach ,52 0,78 0,69 0,63 0,26 0,41

6 a) Ile papieru zużyjemy na oklejenie całego graniastosłupa? b) Ile piasku można wsypać do tego graniastosłupa, tak aby cały wypełnić? 3. Wskaźniki łatwości zadań (dla LO) Wskaźnik 0-0,19 0,20-0,49 0,50-0,69 0,70-0,89 0,90-1,00 łatwości Interpretacja bardzo trudne umiarkowanie łatwe bardzo łatwe trudne trudne Numer 9, 10 3, 11, 13, 14 1, 2, 4, 5, 8, 15 6, 7, 12 - Liczba zadań Liczba punktów

7 4. ANALIZA POZIOMU OPANOWANIA ZADAŃ Nr Treść Podstawa programowa Poziom opanowania T 1H 1J 1 Wykonując działania otrzymasz: 1.1 0,53 0,59 0,48 2 Iloraz liczby 0,45 przez 0,009 jest równy: 1.2 0,45 0,45 0,44 3 Wartość wyrażenia wynosi: 1.3 0,35 0,32 0,38 4 Usuń niewymierność z mianownika ułamka ,40 0,48 0,33 5 Oblicz: b. b. c. d. e. f ,47 0,58 0,38 6 Zegarek kosztuje 32zł. O ile złotych mniej zapłacisz za zegarek, jeśli będzie on przeceniony o 25%? 1.9 0,81 0,86 0,77 7 Pan Marcin zapłacił 600zł podatku, czyli 20% wynagrodzenia. Ile wynosi wynagrodzenie pana Marcina? 1.9 0,79 0,89 0,71

8 Zapisz w najprostszej postaci obwód figury: 8 3 0,53 0,52 0,54 9 Rozwiązanie nierówności spełnia warunek: 3.3 0,10 0,08 0,12 10 Mama i jej córka Marysia mają razem 50lat. Pięć lat temu mama była dziewięć razy starsza od Marysi. O ile lat mama jest starsza od córki? Poniższy diagram przedstawia powierzchnię oceanów w mln km ,17 0,28 0, ,31 0,39 0,23 Średnia arytmetyczna powierzchni tych oceanów jest równa 12 Przedstawiona na rysunku figura: 8.7 0,69 0,68 0,69

9 13 a. nie ma osi symetrii b. ma 1 oś symetrii c. ma 2 osie symetrii d. ma nieskończenie wiele osi symetrii Obwód kwadratowego ogródka jest równy 100m. Na przekątnej tego ogródka posadzono kwiaty. Na odcinku jakiej długości posadzono kwiaty? Oblicz pole zamalowanej figury ,44 0,52 0, ,42 0,41 0,44 Wymiary narysowanego graniastosłupa są wyrażone w centymetrach ,43 0,52 0,36

10 c) Ile papieru zużyjemy na oklejenie całego graniastosłupa? d) Ile piasku można wsypać do tego graniastosłupa, tak aby cały wypełnić? 5. Wskaźniki łatwości zadań (dla T) Wskaźnik 0-0,19 0,20-0,49 0,50-0,69 0,70-0,89 0,90-1,00 łatwości Interpretacja bardzo trudne trudne umiarkowanie trudne łatwe bardzo łatwe Numer 2, 3, 4, 5, 11, 13, 9, 10 14, 15 1, 8, 12 6, 7 - Liczba zadań Liczba punktów

11 6. Analiza opisowa wyników testu diagnostycznego z przedmiotu Matematyka A. Program doskonaląco-naprawczy (harmonogram działań oraz sposób kontroli efektów wdrożonych zadań): a) LO W dalszej pracy należy szczególną uwagę zwrócić na umiejętności: Tworzenia układów równań Rozwiązywania nierówności Stosowania praw działań na pierwiastkach Odczytywania danych z diagramów Rozwiązywania zadań z treścią Rozwiązywania zadań z planimetrii; Zagadnienia te będą doskonalone na lekcjach matematyki oraz na zajęciach dydaktyczno wyrównawczych b) TE W dalszej pracy należy szczególną uwagę zwrócić na umiejętności: Tworzenia układów równań Rozwiązywania nierówności

12 Wykonywania działań na ułamkach Usuwania niewymierności z mianowników ułamków Wykonywania działań na potęgach Stosowania praw działań na pierwiastkach Odczytywania danych z diagramów Rozwiązywania zadań z treścią Rozwiązywania zadań z planimetrii Rozwiązywania zadań z stereometrii; Zagadnienia te będą doskonalone na lekcjach matematyki oraz na zajęciach dydaktyczno wyrównawczych.

Analiza testu diagnostycznego z przedmiotu MATEMATYKA. Działdowo, wrzesień 2018

Analiza testu diagnostycznego z przedmiotu MATEMATYKA. Działdowo, wrzesień 2018 Analiza testu diagnostycznego z przedmiotu MATEMATYKA Działdowo, wrzesień 2018 1. Dane ogólne KLasa Stan klasy /szkoły Pisało test % piszących Zaliczyło poziom P % Zaliczyło poziom PP % Średnia ocena wg

Bardziej szczegółowo

Analiza testu diagnostycznego z przedmiotu

Analiza testu diagnostycznego z przedmiotu Analiza testu diagnostycznego z przedmiotu Matematyka Działdowo, wrzesień 2016 1. Dane ogólne KLasa Stan klasy /szkoły Pisało test % piszących Zaliczyło poziom P % Zaliczyło poziom PP % Średnia ocena wg

Bardziej szczegółowo

Analiza testu diagnostycznego z przedmiotu JĘZYK ANGIELSKI. Działdowo, wrzesień 2015

Analiza testu diagnostycznego z przedmiotu JĘZYK ANGIELSKI. Działdowo, wrzesień 2015 Analiza testu diagnostycznego z przedmiotu JĘZYK ANGIELSKI Działdowo, wrzesień 2015 1. Dane ogólne KLasa Stan klasy /szkoły Pisało test % piszących Zaliczyło poziom P % Zaliczyło poziom PP % Średnia ocena

Bardziej szczegółowo

Analiza testu diagnostycznego z przedmiotu język angielski (LO i Technikum) /wpisać nazwę przedmiotu/ Działdowo, wrzesień 2018

Analiza testu diagnostycznego z przedmiotu język angielski (LO i Technikum) /wpisać nazwę przedmiotu/ Działdowo, wrzesień 2018 Analiza testu diagnostycznego z przedmiotu język angielski (LO i Technikum).. /wpisać nazwę przedmiotu/ Działdowo, wrzesień 2018 1. Dane ogólne KLasa Stan klasy /szkoły Pisało test % piszących Zaliczyło

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ Wymagania na poszczególne oceny konieczne (ocena dopuszczająca) 1.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY ŚRÓDROCZNE I ROCZNE Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY ŚRÓDROCZNE I ROCZNE Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY ŚRÓDROCZNE I ROCZNE Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ Wymagania na poszczególne oceny ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo

Bardziej szczegółowo

rozszerzające (ocena dobra)

rozszerzające (ocena dobra) WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 8 ROK SZKOLNY 2018/2019 OPARTE NA PROGRAMIE NAUCZANIA MATEMATYKI W SZKOLE PODSTAWOWEJ MATEMATYKA Z PLUSEM Wymagania na poszczególne oceny konieczne (ocena dopuszczająca)

Bardziej szczegółowo

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h) Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby

Bardziej szczegółowo

Lista działów i tematów

Lista działów i tematów Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie

Bardziej szczegółowo

podstawowe (ocena dostateczna) rozszerzające (ocena dobra) wyrażenia tekstowe dotyczące kwadratowych

podstawowe (ocena dostateczna) rozszerzające (ocena dobra) wyrażenia tekstowe dotyczące kwadratowych Wymagania na poszczególne oceny szkolne Klasa 8 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne Klasa 8

Wymagania na poszczególne oceny szkolne Klasa 8 1 Wymagania na poszczególne oceny szkolne Klasa 8 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne MATEMATYKA Wymagania na poszczególne oceny szkolne Klasa 8 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności

Bardziej szczegółowo

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) wykraczające (ocena celująca) DZIAŁ 1. PIERWIASTKI

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) wykraczające (ocena celująca) DZIAŁ 1. PIERWIASTKI 1 Wymagania na poszczególne oceny szkolne Klasa 8 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeliumiejętności te przypisane

Bardziej szczegółowo

Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum

Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum I LICZBY I WYRAŻENIA ALGEBRAICZNE podawanie przykładów liczb naturalnych, całkowitych, wymiernych i niewymiernych; porównywanie

Bardziej szczegółowo

wymagania programowe z matematyki kl. III gimnazjum

wymagania programowe z matematyki kl. III gimnazjum wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h) Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby

Bardziej szczegółowo

ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH

ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH Opracowała: nauczyciel matematyki mgr Małgorzata Drejka Legionowo 007 SPIS TREŚCI ALGEBRA potęgi i pierwiastki

Bardziej szczegółowo

Skrypt 23. Przygotowanie do egzaminu Pierwiastki

Skrypt 23. Przygotowanie do egzaminu Pierwiastki Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Przygotowanie do egzaminu Pierwiastki 1.

Bardziej szczegółowo

RAPORT WYNIKÓW MATURALNYCH PRZEDMIOTY OBOWIĄZKOWE. szkoła województwo okręg kraj 59,46% 46,27% 45,33% 48% Średni wynik procentowy

RAPORT WYNIKÓW MATURALNYCH PRZEDMIOTY OBOWIĄZKOWE. szkoła województwo okręg kraj 59,46% 46,27% 45,33% 48% Średni wynik procentowy RAPORT WYNIKÓW MATURALNYCH PRZEDMIOTY OBOWIĄZKOWE 1. matematyka- 2014 2. 178 os. 3. Wyniki szkoły na tle: Wynik procentowy Wynik staninowy szkoła województwo okręg kraj 59,46% 46,27% 45,33% 48% 5 5/6?

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny)

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) Stopień Rozdział 1. Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn

Bardziej szczegółowo

ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI

ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI A-1 ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 15 stron. W zadaniach 1. do 5. są podane 4 odpowiedzi: A, B, C, D, z

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie II gimnazjum str. 1 Wymagania edukacyjne niezbędne

Bardziej szczegółowo

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki

Bardziej szczegółowo

TEST POZIOMU KOMPETENCJI UCZNIÓW KLAS PIERWSZYCH TECHNIKUM PO GIMNAZJUM Z MATEMATYKI (rok szkolny 2007/2008)

TEST POZIOMU KOMPETENCJI UCZNIÓW KLAS PIERWSZYCH TECHNIKUM PO GIMNAZJUM Z MATEMATYKI (rok szkolny 2007/2008) TEST POZIOMU KOMPETENCJI UCZNIÓW KLAS PIERWSZYCH TECHNIKUM PO GIMNAZJUM Z MATEMATYKI (rok szkolny 007/008) Test i analizę opracował: mgr Wojciech Janeczek Test przeprowadziły: mgr Barbara Zalewska, mgr

Bardziej szczegółowo

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym 2013-2014 Ocenę celującą otrzymuje uczeń, który: wykorzystuje na lekcjach matematyki wiadomości z innych

Bardziej szczegółowo

Matematyka wykaz umiejętności wymaganych na poszczególne oceny

Matematyka wykaz umiejętności wymaganych na poszczególne oceny Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA I 1.Liczby rzeczywiste 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz

Bardziej szczegółowo

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka I. Potęgi i pierwiastki. Klasa II 1. Zapisuje w postaci potęgi iloczyn tych samych czynników i odwrotnie. 2. Oblicza

Bardziej szczegółowo

klasa I Dział Główne wymagania edukacyjne Forma kontroli

klasa I Dział Główne wymagania edukacyjne Forma kontroli semestr I 2007 / 2008r. klasa I Liczby wymierne Dział Główne wymagania edukacyjne Forma Obliczenia procentowe Umiejętność rozpoznawania podzbiorów zbioru liczb wymiernych. Umiejętność przybliżania i zaokrąglania

Bardziej szczegółowo

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW 4014 180/99 Liczę z Pitagorasem Lp. Dział programu Tematyka jednostki metodycznej Uwagi 1 2 3 4 Lekcja organizacyjna I Działania

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia

WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia KLASA I 1. Liczby rzeczywiste i wyrażenia algebraiczne 1) Liczby naturalne, cechy podzielności stosuje cechy podzielności liczby przez 2, 3,

Bardziej szczegółowo

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI. MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 6 h Liczby. Rozwinięcia

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE W KLASIE DRUGIEJ Z MATEMATYKI GIMNAZJUM NR 19 W KRAKOWIE

WYMAGANIA EDUKACYJNE W KLASIE DRUGIEJ Z MATEMATYKI GIMNAZJUM NR 19 W KRAKOWIE WYMAGANIA EDUKACYJNE W KLASIE DRUGIEJ Z MATEMATYKI GIMNAZJUM NR 19 W KRAKOWIE I. Szkolne zasady oceniania i sposoby sprawdzania osiągnięć edukacyjnych 1. Ocenianie ma charakter systematyczny i wieloaspektowy.

Bardziej szczegółowo

UŁAMKI ZWYKŁE. KLASA IV a. Opracował: Zdzisław Dziura

UŁAMKI ZWYKŁE. KLASA IV a. Opracował: Zdzisław Dziura Urszulin, maj 00 r. TEST OSIĄGNIĘĆ UCZNIÓW Z MATEMATYKI UŁAMKI ZWYKŁE KLASA IV a Opracował: Zdzisław Dziura KARTOTEKA TESTU SPRAWDZAJĄCEGO: Klasa IV a- Szkoła Podstawowa w Urszulinie; Urszulin, maj 00

Bardziej szczegółowo

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie

Bardziej szczegółowo

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ I. Funkcja kwadratowa i wymierna 1. Funkcja kwadratowa i jej postacie. 2. Wykres funkcji kwadratowej. 3. Równania

Bardziej szczegółowo

MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia

MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia KLASA I (3 h w tygodniu x 32 tyg. = 96 h; reszta godzin do dyspozycji nauczyciela) 1. Liczby rzeczywiste Zbiory Liczby naturalne Liczby wymierne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

Matematyka klasa 7 Wymagania edukacyjne na ocenę śródroczną.

Matematyka klasa 7 Wymagania edukacyjne na ocenę śródroczną. Matematyka klasa 7 Wymagania edukacyjne na ocenę śródroczną. Każda wyższa ocena zawiera wymagania dotyczące ocen niższych. Wymagania na ocenę dopuszczającą obejmują wiadomości i umiejętności umożliwiające

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA

PRZEDMIOTOWY SYSTEM OCENIANIA Marzena Bardzik PRZEDMIOTOWY SYSTEM OCENIANIA z matematyki w klasie IV i VI został opracowany w oparciu o: rozporządzenie MEN (z dnia 30 kwietnia 2007 roku sprawie warunków i sposobu oceniania, klasyfikowania

Bardziej szczegółowo

KLASA I LO Poziom podstawowy (wrzesień)

KLASA I LO Poziom podstawowy (wrzesień) (wrzesień) 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2) oblicza

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych.

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. TEMAT Z PODRĘCZNIKA 1. Rachunki pamięciowe, dodawanie i odejmowanie 2. O ile więcej,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE z MATEMATYKI ucznia kl. VI

WYMAGANIA EDUKACYJNE z MATEMATYKI ucznia kl. VI WYMAGANIA EDUKACYJNE z MATEMATYKI ucznia kl. VI Wymagania na ocenę DOPUSZCZAJĄCĄ Zna pojęcie potęgi Uzupełnia brakujący licznik w równości ułamków Odczytuje ułamki na osi liczbowej Oblicza upływ czasu

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne

Katalog wymagań programowych na poszczególne stopnie szkolne rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa

Bardziej szczegółowo

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Egzamin Gimnazjalny z WSiP STYCZEŃ Analiza wyników próbnego egzaminu gimnazjalnego. Część matematyczno-przyrodnicza MATEMATYKA

Egzamin Gimnazjalny z WSiP STYCZEŃ Analiza wyników próbnego egzaminu gimnazjalnego. Część matematyczno-przyrodnicza MATEMATYKA Egzamin Gimnazjalny z WSiP STYCZEŃ 2017 Analiza wyników próbnego egzaminu gimnazjalnego Część matematyczno-przyrodnicza MATEMATYKA Arkusz egzaminu próbnego składał się z 20 zadań zamkniętych różnego typu

Bardziej szczegółowo

Próbny egzamin ósmoklasisty z WSiP

Próbny egzamin ósmoklasisty z WSiP Próbny egzamin ósmoklasisty z WSiP Przygotowanie do egzaminu zewnętrznego z matematyki dla klasy 8 Listopad 208 Analiza wyników Próbny egzamin ósmoklasisty. Matematyka / Opis badania Opis badania 22 liczba

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne KLASA VI

Wymagania na poszczególne oceny szkolne KLASA VI Matematyka Matematyka z pomysłem Klasa Szkoła podstawowa Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych.

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne

Katalog wymagań programowych na poszczególne stopnie szkolne rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości; WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP Liczby. TEMAT Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. Mnożenie i dzielenie

Bardziej szczegółowo

SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VIII Matematyka z kluczem

SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VIII Matematyka z kluczem SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI Wymagania na poszczególne oceny klasa VIII Matematyka z kluczem I. Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który nie spełnia poniższych wymagań edukacyjnych

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA

Bardziej szczegółowo

Opis wymagań do programu Matematyka klasa V

Opis wymagań do programu Matematyka klasa V Opis wymagań do programu Matematyka 2001- klasa V Cele ogólne wytyczają kierunki pracy z uczniami, zaś cele szczegółowe są opisem osiągnięć uczniów w wyniku kształcenia na danym przedmiocie i etapie edukacji.

Bardziej szczegółowo

Nazwisko i imię.. PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

Nazwisko i imię.. PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Klasa Nazwisko i imię.. PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut MARZEC ROK 2019 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 22 strony (zadania

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6. Rok szkolny 2012/2013. Tamara Kostencka

PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6. Rok szkolny 2012/2013. Tamara Kostencka PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6 Rok szkolny 2012/2013 Tamara Kostencka 1 LICZBY NA CO DZIEŃ LICZBY NATURALNE I UŁAMKI Wymagania programowe dla klasy VI szkoły podstawowej DZIAŁ WYMAGANIA

Bardziej szczegółowo

MATEMATYKA DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ

MATEMATYKA DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ MATEMATYKA DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT 1. LICZBY I DZIAŁANIA Liczby. Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie

Bardziej szczegółowo

rozwiązuje - często przy pomocy nauczyciela - zadania typowe, o niewielkim stopniu trudności

rozwiązuje - często przy pomocy nauczyciela - zadania typowe, o niewielkim stopniu trudności KRYTERIA OCENIANIA Z MATEMATYKI Klasa I Gimnazjum Kryteria ocen i wymagań: Ocenę dopuszczającą otrzymuje uczeń, który: w ograniczonym zakresie opanował podstawowe wiadomości i umiejętności, a braki nie

Bardziej szczegółowo

Wymagania poszczególne oceny z matematyki w klasie IV a w roku szkolnym 2018/19. Ocena celująca. Dział I liczby naturalne część 1

Wymagania poszczególne oceny z matematyki w klasie IV a w roku szkolnym 2018/19. Ocena celująca. Dział I liczby naturalne część 1 Wymagania poszczególne oceny z matematyki w klasie IV a w roku szkolnym 2018/19 Ocena celująca 1. Uczeń może uzyskać ocenę śródroczną lub roczną celującą wówczas, gdy spełnia wymagania na ocenę bardzo

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: POTĘGI I PIERWIASTKI

PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: POTĘGI I PIERWIASTKI Ewa Koralewska LP..... 5... OGÓLNA PODSTA- WA PROGRA- MOWA PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna. Potęga

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

Wewnątrzszkolne kryteria ocen z matematyki Klasa VIII

Wewnątrzszkolne kryteria ocen z matematyki Klasa VIII Wewnątrzszkolne kryteria ocen z matematyki Klasa VIII na ocenę dopuszczającą Liczby i działania zapisywanie i odczytywania liczb w systemie rzymskim do 3000; własności liczb naturalnych, w tym znajomość

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie VIII

Wymagania edukacyjne z matematyki w klasie VIII Wymagania edukacyjne z matematyki w klasie VIII DZIAŁ 1. PIERWIASTKI 1.1. Pierwiastek kwadratowy 1.2. Pierwiastek sześcienny pierwiastek drugiego stopnia z kwadratu liczby nieujemnej - podnosi do potęgi

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne stopnie szkolne klasa III

Wymagania edukacyjne na poszczególne stopnie szkolne klasa III Wymagania edukacyjne na poszczególne stopnie szkolne klasa III Rozdział 1. Bryły - wie, czym jest graniastosłup, graniastosłup prosty, graniastosłup prawidłowy - wie, czym jest ostrosłup, ostrosłup prosty,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" LICZBY I DZIAŁANIA POZIOM KONIECZNY - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

PLAN WYNIKOWY NAUCZANIA MATEMATYKI W LICEUM PLASTYCZNYM ZAKRES PODSTAWOWY 2017/2018

PLAN WYNIKOWY NAUCZANIA MATEMATYKI W LICEUM PLASTYCZNYM ZAKRES PODSTAWOWY 2017/2018 PLAN WYNIKOWY NAUCZANIA MATEMATYKI W LICEUM PLASTYCZNYM ZAKRES PODSTAWOWY 2017/2018 Wstęp Plan wynikowy kształcenia matematycznego jest opracowany na podstawie programu nauczania matematyki w liceach i

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI

PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI Czas pracy 120 minut Za rozwiązanie wszystkich zadań można otrzymać łącznie 40 punktów Informacja do zadań 1-3. Diagram przedstawia wyniki sprawdzianu z matematyki

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

Kryteria oceniania z matematyki dla klas V- VI w Szkole Podstawowej nr 3 w Jastrzębiu Zdroju.

Kryteria oceniania z matematyki dla klas V- VI w Szkole Podstawowej nr 3 w Jastrzębiu Zdroju. Kryteria oceniania z matematyki dla klas V- VI w Szkole Podstawowej nr 3 w Jastrzębiu Zdroju. Wiadomości i umiejętności przez Was opanowane będą sprawdzane w formie: odpowiedzi i wypowiedzi ustnych, prac

Bardziej szczegółowo

Opis wymagań do programu Matematyka 2001

Opis wymagań do programu Matematyka 2001 Opis wymagań do programu Matematyka 2001 ażdy nauczyciel określa cele, jakie pragnie osiągnąć w wyniku nauczania swojego przedmiotu w danej klasie. ele ogólne wytyczają kierunki pracy z uczniami, zaś cele

Bardziej szczegółowo

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas I ae i I be w roku szkolnym 2018/2019 w CKZiU NR 3 Ekonomik w Zielonej Górze

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas I ae i I be w roku szkolnym 2018/2019 w CKZiU NR 3 Ekonomik w Zielonej Górze Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas I ae i I be w roku szkolnym 018/019 w CKZiU NR Ekonomik w Zielonej Górze I. Pierwiastki (w tym usuwanie niewymierności), potęgi,

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych

Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczająca (2) P podstawowy ocena dostateczna (3) R rozszerzający ocena dobra

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność

Bardziej szczegółowo

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych

Bardziej szczegółowo

GRUPA A UŁAMKI ZWYKŁE KLASA V

GRUPA A UŁAMKI ZWYKŁE KLASA V GRUPA A UŁAMKI ZWYKŁE KLASA V zas pracy: min. Drogi uczniu! Masz przed sobą sprawdzian z zakresu ułamków zwykłych. Składa się on z 7 zadań o różnym stopniu trudności. Do pierwszych zadań podano odpowiedzi.

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania

Bardziej szczegółowo

ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 14 h

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS /02

Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS /02 Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Temat lekcji Zakres treści Osiągnięcia ucznia 1. Liczby naturalne definicja dzielnika

Bardziej szczegółowo

Matematyka. Repetytorium szóstoklasisty

Matematyka. Repetytorium szóstoklasisty Matematyka Repetytorium szóstoklasisty 7 do sprawdzianu Najpierw... Potem... 4 1 2 + 8 Powodzenia!!! 7 Szóstoklasisto, już wkrótce ukończysz naukę w szkole podstawowej. Zanim to jednak nastąpi, w kwietniu

Bardziej szczegółowo

PRÓBNA MATURA z WSIP dla klas 3 LO i 4 TECHNIKUM

PRÓBNA MATURA z WSIP dla klas 3 LO i 4 TECHNIKUM PRÓBNA MATURA z WSIP dla klas 3 LO i 4 TECHNIKUM MARZEC 2018 Analiza wyników próbnego egzaminu maturalnego Poziom podstawowy MATEMATYKA Arkusz próbnego egzaminu maturalnego składał się z 34 zadań. Zadania

Bardziej szczegółowo

Test dla uczniów gimnazjum sprawdzający wiadomości z matematyki. Zadania zamknię te. A. całkowitą B. ujemną C. niewymierną D.

Test dla uczniów gimnazjum sprawdzający wiadomości z matematyki. Zadania zamknię te. A. całkowitą B. ujemną C. niewymierną D. Elżbieta Friedrich mailto:elaf@interia.pl nauczyciel matematyki i informatyki Gimnazjum nr 5 w Tychach Test dla uczniów gimnazjum sprawdzający wiadomości z matematyki Zadania zamknię te Zadanie. a) b)

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy LUELSK PRÓ PRZED MTURĄ 08 poziom podstawowy Schemat oceniania Zadania zamknięte (Podajemy kartotekę zadań, która ułatwi Państwu przeprowadzenie jakościowej analizy wyników). Zadanie. (0 ). Liczby rzeczywiste.

Bardziej szczegółowo

Matematyka z plusem Klasa IV

Matematyka z plusem Klasa IV Matematyka z plusem Klasa IV KLASA IV SZCZEGÓŁOWE CELE EDUKACYJNE KSZTAŁCENIE Rozwijanie sprawności rachunkowej Wykonywanie jednodziałaniowych obliczeń pamięciowych na liczbach naturalnych. Stosowanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE I GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ Ocenę niedostateczną otrzymuje uczeń, jeśli nie opanował wiadomości i umiejętności na ocenę dopuszczającą, nie wykazuje chęci poprawy

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z

Bardziej szczegółowo

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć

Bardziej szczegółowo

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach

Bardziej szczegółowo

WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT

WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA System rzymski. Powtórzenie i utrwalenie umiejętności z zakresu podstawy

Bardziej szczegółowo