Turbulent Instability of Anti-de Sitter Space
|
|
- Ludwika Domagała
- 6 lat temu
- Przeglądów:
Transkrypt
1 Turbulent Instability of Anti-de Sitter Space Andrzej Rostworowski Uniwersytet Jagielloński joint work with Piotr Bizoń Phys.Rev.Lett (2011) (arxiv: ) now a part of joint project with Joanna Ja lmużna, Patryk Mach and Maciej Maliborski Leiden, 11th October 2012 Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October / 22
2 Maximally symmetric solutions of vacuum Einstein s equations and their stability R αβ 1 2 R g αβ + Λ g αβ = 0. Λ = 0: Minkowski (trivial, yet most important) asymptotically stable (Christodoulou&Klainerman 1993), Λ > 0: de Sitter (important in cosmology - Nobel Prize 2011) asymptotically stable (Friedrich 1986), Λ < 0: anti- de Sitter (most popular on arxiv due to AdS/CFT) Stability of AdS seems unexplored Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October / 22
3 Anti-de Sitter spacetime in d + 1 dimensions Geometrically, AdS d+1 is wrapped around hiperboloid ( X 0) 2 d ( + X k ) 2 ( X d+1 ) 2 = l 2 k=1 embedded in flat, SO(d, 2) invaraiant space Parametrization X 0 = l ds 2 = ( dx 0) 2 d ( + dx k ) 2 ( dx d+1 ) 2 k=1 1 + (tan x) 2 cos(t), X d+1 = l 1 + (tan x) 2 sin(t) induces X k = l tan x n k, ds 2 = 0 x < π/2, d ( n k ) 2 = 1, k=1 l 2 [ ] (cos x) 2 dt 2 + dx 2 + (sin x) 2 dω 2 S d 1 Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October / 22
4 Anti-de Sitter spacetime in d + 1 dimensions Induced metric ds 2 = l 2 [ ] (cos x) 2 dt 2 + dx 2 + (sin x) 2 dω 2 S, d 1 < t < +, 0 x < π/2. is the maximally symmetric solution of the vacuum Einstein equations R αβ 1 2 g αβr + Λg αβ = 0 with negative cosmological constant Λ < 0: Λ = d(d 1)/(2l 2 ) Conformal infinity x = π/2 is the timelike hypersurface I = R S d 1 with the boundary metric ds 2 I = dt2 + dω 2 S d 1 Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October / 22
5 Is AdS stable? A solution (of a dynamical system) is said to be stable if small perturbations of it at t = 0 remain small for all later times Minkowski (Λ = 0) and de Sitter spacetimes (Λ > 0) are known to be stable (actually asymptotically stable) (Christodoulou&Klainerman 1993 and Friedrich 1986). The key difference between these solutions and AdS: the main mechanism of stability - dissipation of energy (dispersion in Minkowski, expansion in de Sitter) - is absent in AdS because AdS is effectively bounded (for no flux boundary conditions at I it acts as a perfect cavity) Note that by positive energy theorems both Minkowski and AdS are the unique ground states among asymptotically flat/ads spacetimes Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October / 22
6 Model To deal with the problem of the stability of AdS we start with spherical symmetry (effectually dimensional problem) Spherically symmetric vacuum solutions are static (Birkhoff s theorem) we need matter to generate dynamics Simple matter model: massless scalar field φ in d+1 dimensions ( G αβ + Λ g αβ = 8πG α φ β φ 1 ) 2 g αβ µ φ µ φ, Λ = d(d 1)/(2l 2 ), g αβ α β φ = 0 In the corresponding asymptotically flat (Λ = 0) model Christodoulou proved dispersion for small data and collapse to a black hole for large data and Choptuik discovered critical phenomena at the threshold for black hole formation Remark: For even d 4 there is a way to bypass Birkhoff s theorem (cohomogeneity-two Bianchi IX ansatz, Bizoń, Chmaj, Schmidt 2005) Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October / 22
7 Convenient parametrization of asymptotically AdS spacetimes ds 2 = l 2 [ ] (cos x) 2 Ae 2δ dt 2 + A 1 dx 2 + (sin x) 2 dω 2 S, d 1 where A and δ are functions of (t, x). Auxiliary variables Φ = φ and Π = A 1 e δ φ ( = x, = t ) Field equations (using units where 8πG = d 1) A d (sin x)2 = (1 A) (cos x) (sin x) A ( Φ 2 + Π 2), (cos x) (sin x) δ = (cos x) (sin x) ( Φ 2 + Π 2), ( Φ = Ae Π) δ 1 [, Π = (tan x) d 1 (tan x) d 1 Ae Φ] δ. AdS space: φ 0, A 1, δ 0; now we want to perturb AdS solving the initial-boundary value problem for this system starting with some small, smooth initial data (φ, φ) t=0 Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October / 22
8 Boundary conditions We assume that initial data (φ, φ) t=0 are smooth Smoothness at the center implies that near x = 0 (Λ irrelevant) φ(t, x) = f 0 (t) + O(x 2 ), δ(t, x) = O(x 2 ), A(t, x) = 1 + O(x 2 ) Smoothness at spatial infinity and conservation of the total mass M imply that near x = π/2 (using z = π/2 x) ( φ(t, x) = f (t) z d + O z d+2) (, δ(t, x) = δ (t) + O z 2d), A(t, x) = 1 (M/l d 2 )z d + O (z d+2) Remark: There is no freedom in prescribing boundary data Local well-posedness (Friedrich 1995, Holzegel&Smulevici 2011) mass function and asymptotic mass: m(t, x) = (1 A(t, ρ)) (l tan x) d 2 ( 1 + tan 2 x ) π/2 ( AΦ 2 + AΠ 2) (tan x) d 1 dx M = lim m(t, x) = ld 2 x π/2 Andrzej Rostworowski (UJ) Turbulent Instability of0anti-de Sitter Space Leiden, 11th October / 22
9 Reminder: asymptotically flat (Λ = 0) self-gravitating scalar field Christodoulou ( ): dispersion for small data and collapse to a black hole for large data (proof of the weak cosmic censorship) Consider a family of initial data Φ(p) which interpolates between dispersion and collapse (Choptuik 1993) There exists a critical value of the parameter p such that p < p dispersion p > p black hole Universal behavior in the near-critical region p p 1 m BH (p p) γ with universal exponent γ discretely self-similar attractor with universal period Critical solution (p = p ) is a non-generic naked singularity Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October / 22
10 Movie from now d = 3 qualitatively the same behaviour in any d 3 d = 2 case is very special (Pretorius&Choptuik 2000) Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October / 22
11 Critical behavior [ Initial data: Φ(0, x) = 0, Π(0, x) = ε exp ( tan x ) ] 2 σ We fix σ = 1/16 and vary ε. There is a decreasing sequence of critical amplitudes ε n for which the evolution, after 0.02 making n reflections from the AdS boundary, locally asymptotes Choptuik s 0.01 solution. In each small right neighborhood of ε n x H ε m BH (ε) (ε ε n ) γ with γ It seems that BH size vs. amplitude lim n ε n = 0 Remark: The generic endstate of evolution is the Schwarzschild-AdS BH of mass M (in accord with Holzegel&Smulevici 2011) Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October / 22
12 Key evidence for instability (a) ε = 6/π * 2 3/2 ε = 6/π * 2 ε = 6/π * 2 1/2 ε = 6/π Π 2 (t,0) Ricci scalar R = 2 ( Φ 2 Π 2) /l 2 12/l 2 t Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October / 22
13 Key evidence for instability ε -2 Π 2 (ε 2 t,0) (b) ε = 6/π * 2 3/2 ε = 6/π * 2 ε = 6/π * 2 1/2 ε = 6/π ε 2 t Onset of instability at time t = O(ε 2 ) Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October / 22
14 Weakly nonlinear perturbations We seek an approximate solution starting from small initial data (φ, φ) t=0 = (εf (x), εg(x)) Perturbation series φ = εφ 1 + ε 3 φ δ = ε 2 δ 2 + ε 4 δ A = ε 2 A 2 + ε 4 A where (φ 1, φ 1 ) t=0 = (f (x), g(x)) and (φ j, φ j ) t=0 = (0, 0) for j > 1. Inserting this expansion into the field equations and collecting terms of the same order in ε, we obtain a hierarchy of linear equations which can be solved order-by-order. Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October / 22
15 First order Linearized equation (Ishibashi&Wald 2004) φ 1 + Lφ 1 = 0, L = 1 tan 2 x ( x tan 2 ) x x The operator L is essentially self-adjoint on L 2 ([0, π/2), tan 2 x dx). Eigenvalues and eigenvectors of L are (j = 0, 1,... ) ( ) ωj 2 = (3 + 2j) 2, e j (x) = N j (cos x) 3 j, 3 + j F 3/2 (sin x)2 AdS is linearly stable Linearized solution φ 1 (t, x) = a j cos(ω j t + β j ) e j (x) j=0 where amplitudes a j and phases β j are determined by the initial data. Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October / 22
16 Second order (back-reaction on the metric) so It follows that M = ε2 2 A sin2 x ( sin x cos x A 2 = sin x cos x φ φ 2) 1 ( δ 2 = sin x cos x φ φ 2) 1 A 2 (t, x) = cos3 x sin x x δ 2 (t, x) = 0 x 0 quadratic in φ 1! π/2 0 ( φ1 (t, y) 2 + φ 1(t, y) 2) tan 2 y dy ( φ 1 (t, y) 2 + φ 1(t, y) 2) sin y cos y dy ( φ 1 (t, y) 2 + φ 1(t, y) 2) tan 2 y dy + O(ε 4 ) Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October / 22 (1)
17 Third order φ 3 + Lφ 3 = S(φ 1, A 2, δ 2 ), where S := 2(A 2 + δ 2 ) φ 1 + (Ȧ 2 + δ 2 ) φ 1 + (A 2 + δ 2 )φ 1. ( ) Let φ 3 (t, x) = j c j(t) e j (x). Projecting Eq.( ) on the basis {e j } we obtain an infinite set of decoupled forced harmonic oscillators for the generalized Fourier coefficients c j (t) := (e j, φ 3 ) c j + ω 2 j c j = S j := (e j, S) and (c j, ċ j ) t=0 = 0 If S j has a part oscilating with a resonant frequency ω j it will give rise to a secular term in c j, that is c j t sin ω j t or c j t cos ω j t. S cubic in φ 1 contains all frequencies ± ω 1 ± ω 2 ± ω 3, where ω k Ω 1 and φ 1 (t, x) = k [ω k Ω 1 ] a k cos(ω k t + β k ) e k (x), ω k - odd integers all frequencies in S potentially resonant! Not all resonances survive the projection (e j, S). Some of those, which do survive can be compensated with frequency shifts in φ 1 and are harmless for stability, but the others put stability in question! Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October / 22
18 Example 1: single-mode data φ(0, x) = ε e 0 (x) First order φ 1 (t, x) = cos(ω 0 t)e 0 (x), ω 0 = 3 (ω j = 3 + 2j) Third order φ 3 (t, x) = j=0 c j(t)e j (x), (c j, ċ j ) t=0 = 0 and c j + ω 2 j c j = b j,0 cos(ω 0 t) + b j,3 cos(ω 3 t). But b 3,3 = 0 (!) and only j = 0 is resonant. log[π 2 (t,0)] ε=0.25 ε= ε= t The j = 0 resonance can be easily removed by the two-scale method (slow-time phase modulation) which gives φ 1 = cos((ω π ε2 ) t) e 0 (x). This suggests that there are non-generic initial data which may stay close to AdS solution Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October / 22
19 Example 2: two-mode data φ(0, x) = ε (e 0 (x) + e 1 (x)) First order φ 1 (t, x) = cos(ω 0 t)e 0 (x) + cos(ω 1 t)e 1 (x), ω 0 = 3, ω 1 = 5 Third order φ 3 (t, x) = j=0 c j(t)e j (x), (c j, ċ j ) t=0 = 0 and c j +ω 2 j c j = k [ω k Ω 3 ]b j,k cos(ω k t), where Ω 3 = { ±ω 0,1 ±ω 0,1 ±ω 0,1 Π 2 (t,0) Here Ω 3 = {1, 3, 5, 7, 9, 11, 13, 15}, but the resonance (b j,j 0) only if ω j {3, 5, 7}. ω 0 ω 0 + (87/π)ɛ 2, ε = 1/8 ω 1 ω 1 + (413/π)ɛ 2 shifts ε = 2 1/2 /16 ε = 1/16 remove the resonances ω j = 3, 5, but the resonance ω j = 7 cannot be removed. Thus we get the secular term c 2 (t) t sin(7t). We expect this term to be a progenitor of the onset of exponential instability t Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October / 22
20 Conjectures Our numerical and formal perturbative computations lead us to: Conjecture 1 Anti-de Sitter space is unstable against the formation of a black hole under arbitrarily small generic perturbations Proof (and a precise formulation) is left as a challenge. Note that we do not claim that all perturbed solutions end up as black holes. Conjecture 2 There are non-generic initial data which may stay close to AdS solution; Einstein-scalar-AdS equations may admit time-quasiperiodic solutions Proof: KAM theory for PDEs? Analogous conjecture for vacuum Einstein s equations by Dias, Horowitz and Santos (2011) (existence of geons) Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October / 22
21 Turbulence: transfer of energy from low to high frequencies Let Π j := ( A Π, e j ) and Φ j := ( A Φ, e j ). Then M = l π/2 0 ( AΦ 2 + AΠ 2) (tan x) 2 dx = E j (t), where E j := Π 2 j + ω 2 j Φ 2 j can be interpreted as the j-mode energy. j= ε = 3 t=0 t=232*π/2 t=464*π/2 t=696*π/2 t=920*π/2 fit E j = C / j ε = 3 t=0 t=232*π/2 t=464*π/2 t=696*π/2 t=920*π/2 fit E j = C / j E j 10-7 E j j j Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October / 22
22 Power-law scaling E j ingoing t=0 ingoing t=t H /2 ingoing t=t H centered t=0 centered t=t H /2 centered t=t H fit E j = C / j E j ingoing t=0 ingoing t=t H /2 ingoing t=t H centered t=0 centered t=t H /2 centered t=t H fit E j = C / j j j E j ingoing t=0 ingoing t=t H /2 ingoing t=t H centered t=0 centered t=t H /2 centered t=t H fit E j = C / j E j BCS 4+1 ingoing t=0 ingoing t=t H /2 ingoing t=t H centered t=0 centered t=t H /2 centered t=t H fit E j = C / j Andrzej Rostworowski (UJ) j Turbulent Instability of Anti-de Sitter Space Leiden, 11th October j / 22
23 Final remarks Weakly turbulent behavior seems to be common for (non-integrable) nonlinear wave equations on bounded domains (e.g. NLS on torus, Colliander,Keel, Staffilani,Takaoka,Tao 2008, Carles,Faou 2010) and our work shows that Einstein s equations are not an exception. For Einstein s equations the transfer of energy to high frequencies cannot proceed forever because concentration of energy on smaller and smaller scales inevitably leads to the formation of a black hole. The role of negative cosmological constant is purely kinematical, that is the only role of Λ is to confine the evolution in an effectively bounded domain. Similar turbulent dynamics has been observed for small perturbations of Minkowski in a box (Maliborski 2012) Generalizations: different matter models (Buchel,Lehner&Liebling 2012), relaxing symmetry (Dias,Horowitz&Santos 2011), multi-scale analysis, (in)stability of AdS black holes (Holzegel&Smulevici 2011, Horowitz 2012), instability of AdS 2+1 (work in progress by Ja lmużna) Andrzej Rostworowski (UJ) Turbulent Instability of Anti-de Sitter Space Leiden, 11th October / 22
A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations
A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations G. Seregin & W. Zajaczkowski A sufficient condition of regularity for axially symmetric solutions to
Helena Boguta, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na
Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych
Relaxation of the Cosmological Constant
Relaxation of the Cosmological Constant with Peter Graham and David E. Kaplan The Born Again Universe + Work in preparation + Work in progress aaab7nicdvbns8nafhypx7v+vt16wsycp5kioseifw8ekthwaepzbf7apztn2n0ipfrhepggifd/jzf/jzs2brudwbhm5rhvtzakro3rfjqlpewv1bxyemvjc2t7p7q719zjphi2wcisdr9qjyjlbblubn6ncmkccoweo6vc7zyg0jyrd2acoh/tgeqrz9ryqdo7sdgq9qs1t37m5ibu3v2qqvekpqyfmv3qry9mwbajnexqrbuemxp/qpxhtoc00ss0ppsn6ac7lkoao/yns3wn5mgqiykszz80zkz+n5jqwotxhnhktm1q//zy8s+vm5nowp9wmwygjzt/fgwcmitkt5oqk2rgjc2hthg7k2fdqigztqgklwfxkfmfte/qnuw3p7xgzvfhgq7gei7bg3nowdu0oqumrvaiz/dipm6t8+q8zamlp5jzhx9w3r8agjmpzw==
Aerodynamics I Compressible flow past an airfoil
Aerodynamics I Compressible flow past an airfoil transonic flow past the RAE-8 airfoil (M = 0.73, Re = 6.5 10 6, α = 3.19 ) Potential equation in compressible flows Full potential theory Let us introduce
Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis
Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The
Hard-Margin Support Vector Machines
Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application Gayane Vardoyan *, C. V. Hollot, Don Towsley* * College of Information and Computer Sciences, Department of Electrical
Model standardowy i stabilność próżni
Model standardowy i stabilność próżni Marek Lewicki Instytut Fizyki teoretycznej, Wydzia l Fizyki, Uniwersytet Warszawski Sympozjum Doktoranckie Warszawa-Fizyka-Kraków, 4 Marca 2016, Kraków Na podstawie:
General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level www.xtremepapers.com *6378719168* ADDITIONAL MATHEMATICS 4037/12 Paper 1 May/June 2013 2 hours Candidates
Stability of Tikhonov Regularization Class 07, March 2003 Alex Rakhlin
Stability of Tikhonov Regularization 9.520 Class 07, March 2003 Alex Rakhlin Plan Review of Stability Bounds Stability of Tikhonov Regularization Algorithms Uniform Stability Review notation: S = {z 1,...,
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 aaaklnictzzjb9tgfmcnadpg7oy0lxa9edva9kkapdarhyk2k7gourinlwsweyzikuyiigvyleiv/cv767fpf/5crc1xt9va5mx7w3m/ecuqw1kuztpx/rl3/70h73/w4cog9dhhn3z62d6jzy+yzj766txpoir9nzszisjynetqr+rvlfvyoozu5xbybpsxb1wahul8phczdt2v4zgchb7uecwphlyigrgkjcyiflfyci0kxnmr4z6kw0jsokvot8isntpa3gbknlcufiv/h+hh+eur4fomd417rvtfjoit5pfju6yxiab2fmwk0y/feuybobqk+axnke8xzjjhfyd8kkpl9zdoddkazd5j6bzpemjb64smjb6vb4xmehysu08lsrszopxftlzee130jcb0zjxy7r5wa2f1s2off2+dyatrughnrtpkuprlcpu55zlxpss/yqe2eamjkcf0jye8w8yas0paf6t0t2i9stmcua+inbi2rt01tz22tubbqwidypvgz6piynkpobirkxgu54ibzoti4pkw2i5ow9lnuaoabhuxfxqhvnrj6w15tb3furnbm+scyxobjhr5pmj5j/w5ix9wsa2tlwx9alpshlunzjgnrwvqbpwzjl9wes+ptyn+ypy/jgskavtl8j0hz1djdhzwtpjbbvpr1zj7jpg6ve7zxfngj75zee0vmp9qm2uvgu/9zdofq6r+g8l4xctvo+v+xdrfr8oxiwutycu0qgyf8icuyvp/sixfi9zxe11vp6mrjjovpmxm6acrtbia+wjr9bevlgjwlz5xd3rfna9g06qytaoofk8olxbxc7xby2evqjmmk6pjvvzxmpbnct6+036xp5vdbrnbdqph8brlfn/n/khnfumhf6z1v7h/80yieukkd5j0un82t9mynxzmk0s/bzn4tacdziszdhwrl8x5ako8qp1n1zn0k6w2em0km9zj1i4yt1pt3xiprw85jmc2m1ut2geum6y6es2fwx6c+wlrpykblopbuj5nnr2byygfy5opllv4+jmm7s6u+tvhywbnb0kv2lt5th4xipmiij+y1toiyo7bo0d+vzvovjkp6aoejsubhj3qrp3fjd/m23pay8h218ibvx3nicofvd1xi86+kh6nb/b+hgsjp5+qwpurzlir15np66vmdehh6tyazdm1k/5ejtuvurgcqux6yc+qw/sbsaj7lkt4x9qmtp7euk6zbdedyuzu6ptsu2eeu3rxcz06uf6g8wyuveznhkbzynajbb7r7cbmla+jbtrst0ow2v6ntkwv8svnwqnu5pa3oxfeexf93739p93chq/fv+jr8r0d9brhpcxr2w88bvqbr41j6wvrb+u5dzjpvx+veoaxwptzp/8cen+xbg==
RESONANCE OF TORSIONAL VIBRATION OF SHAFTS COUPLED BY MECHANISMS
SCIENTIFIC BULLETIN OF LOZ TECHNICAL UNIVERSITY Nr 78, TEXTILES 55, 997 ZESZYTY NAUKOWE POLITECHNIKI ŁÓZKIEJ Nr 78, WŁÓKIENNICTWO z. 55, 997 Pages: 8- http://bhp-k4.p.loz.pl/ JERZY ZAJACZKOWSKI Loz Technical
Convolution semigroups with linear Jacobi parameters
Convolution semigroups with linear Jacobi parameters Michael Anshelevich; Wojciech Młotkowski Texas A&M University; University of Wrocław February 14, 2011 Jacobi parameters. µ = measure with finite moments,
Revenue Maximization. Sept. 25, 2018
Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time
The Lorenz System and Chaos in Nonlinear DEs
The Lorenz System and Chaos in Nonlinear DEs April 30, 2019 Math 333 p. 71 in Chaos: Making a New Science by James Gleick Adding a dimension adds new possible layers of complexity in the phase space of
Steeple #3: Gödel s Silver Blaze Theorem. Selmer Bringsjord Are Humans Rational? Dec RPI Troy NY USA
Steeple #3: Gödel s Silver Blaze Theorem Selmer Bringsjord Are Humans Rational? Dec 6 2018 RPI Troy NY USA Gödels Great Theorems (OUP) by Selmer Bringsjord Introduction ( The Wager ) Brief Preliminaries
Modern methods of statistical physics
Modern methods of statistical physics František Slanina Institute of Physics, Academy of Sciences of the Czech Republic, Prague slanina@fzu.cz www.fzu.cz/ slanina Ising model Renormalisation group Modern
Primal Formulation. Find u h V h such that. A h (u h, v h )= fv h dx v h V h, where. u h v h dx. A h (u h, v h ) = DGFEM Primal Formulation.
aaaftxicbvtnbtnaehzdsov5aqthlimaokskuviowkfs+vekehjfkbapg6znehmvwa9d7zqksvwipa1xeaeuvagnhni1nshou5ll8tcz33w7o+thyjlunc7vtcq16vr1jc0b9s1bt+9sbe/cpzfbhbhajwepok9dlclngvyvu5x+ciok/sgnp8pjs+m/ndjiskb8vbchhfh4lniieaw05oxu6j0mxkjfjgeicthxvbrimhigpkzsws1+7ngn7w1nha8jbyzioeiddyoymhzxhrmg8/myu4bgqyq5zx05wctq2f89glebdsku09n1gzoggftogizzcvkp9bivtytcghv4ydfkaokbqdmwvf2iabcyov4hgec5x8+wjyhgdr3u8qq+hjtqfz9mkn5ceqd7mjutwp0pt3jqttw1gxsfagjrhccytefbhiolawya5kogufle59x8ky6pwvsyq8nkrepyaf7omhnlclq5bbtr3es84varia+kt2l8swbyhpgymznwpc/sfbysspy2s73baxeybzenbmhswsu61po1hdyaxd4vinas5vm3e6pbgipfckepjwjjq0wmeezptcmwpvlbkk10cg814oiej/0ibrm6njfgx8olf6gjfaw8ueoz4fw+s1inng4sjsjyuuhyqqoygwraxa9wwusj4hfawcriwisqd0eykh2jsluei3skhawdjomihx4jszkkaxqlwhkor4nccss2wqjdqsjgjrkljt0rulqfxlj0pnlrsvtoyjoq0hxuwaw3olnxuk5mksialft5mant/usi6uv9aqs5xzwhctrestftsvvw/0xe6yiidnisbwd91gjifmhuj1b3dwaug/399rn29/3+7uglypy2rfvwa6thda0n1qh12jq2+hapfkt8r/yo/kz+qv6p/q3+y0mra0xopau01jf+ayoux6w=
Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering
Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each
Rachunek lambda, zima
Rachunek lambda, zima 2015-16 Wykład 2 12 października 2015 Tydzień temu: Własność Churcha-Rossera (CR) Jeśli a b i a c, to istnieje takie d, że b d i c d. Tydzień temu: Własność Churcha-Rossera (CR) Jeśli
Vacuum decay rate in the standard model and beyond
KEK-PH 2018 Winter, Dec 4-7 2018 Vacuum decay rate in the standard model and beyond Yutaro Shoji (KMI, Nagoya U.) Phys. Lett. B771(2017)281; M. Endo, T. Moroi, M. M. Nojiri, YS JHEP11(2017)074; M. Endo,
Gradient Coding using the Stochastic Block Model
Gradient Coding using the Stochastic Block Model Zachary Charles (UW-Madison) Joint work with Dimitris Papailiopoulos (UW-Madison) aaacaxicbvdlssnafj3uv62vqbvbzwarxjsqikaboelgzux7gcaeywtsdp1mwsxeaepd+ctuxcji1r9w5984bbpq1gmxdufcy733bcmjutn2t1fawl5zxsuvvzy2t7z3zn29lkwyguktjywrnqbjwigntuuvi51uebqhjlsdwfxebz8qiwnc79uwjv6mepxgfcoljd88uiox0m1hvlnzwzgowymjn7tjyzertmvpareju5aqkndwzs83thawe64wq1j2httvxo6eopirccxnjekrhqae6wrkuuykl08/gmnjryqwsoqurubu/t2ro1jkyrzozhipvpz3juj/xjdt0ywxu55mina8wxrldkoetukairuekzbubgfb9a0q95fawonqkjoez/7lrdi6trzbcm7pqvwrio4yoarh4aq44bzuwq1ogcba4be8g1fwzjwzl8a78tfrlrnfzd74a+pzb2h+lzm=
OpenPoland.net API Documentation
OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1 I SSW1.1, HFW Fry #65, Zeno #67 Benchmark: Qtr.1 like SSW1.2, HFW Fry #47, Zeno #59 Benchmark: Qtr.1 do SSW1.2, HFW Fry #5, Zeno #4 Benchmark: Qtr.1 to SSW1.2,
Counting quadrant walks via Tutte s invariant method
Counting quadrant walks via Tutte s invariant method Olivier Bernardi - Brandeis University Mireille Bousquet-Mélou - CNRS, Université de Bordeaux Kilian Raschel - CNRS, Université de Tours Vancouver,
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) J Krupski Click here if your download doesn"t start automatically Karpacz, plan miasta 1:10 000: Panorama
Lecture 20. Fraunhofer Diffraction - Transforms
Lecture 20 Fraunhofer Diffraction - Transforms Fraunhofer Diffraction U P ' &iku 0 2 zz ) e ik PS m A exp ' &iku 0 2 zz ) e ik PS exp ik 2z a [x 2 m % y 2 m ]. m A exp ik 2z a & x m ) 2 % (y 0 & y m )
Unitary representations of SL(2, R)
Unitary representations of SL(, R) Katarzyna Budzik 8 czerwca 018 1/6 Plan 1 Schroedinger operators with inverse square potential Universal cover of SL(, R) x + (m 1 4) 1 x 3 Integrating sl(, R) representations
Tychy, plan miasta: Skala 1: (Polish Edition)
Tychy, plan miasta: Skala 1:20 000 (Polish Edition) Poland) Przedsiebiorstwo Geodezyjno-Kartograficzne (Katowice Click here if your download doesn"t start automatically Tychy, plan miasta: Skala 1:20 000
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
deep learning for NLP (5 lectures)
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 6: Finish Transformers; Sequence- to- Sequence Modeling and AJenKon 1 Roadmap intro (1 lecture) deep learning for NLP (5
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction
Inverse problems - Introduction - Probabilistic approach
Inverse problems - Introduction - Probabilistic approach Wojciech Dȩbski Instytut Geofizyki PAN debski@igf.edu.pl Wydział Fizyki UW, 13.10.2004 Wydział Fizyki UW Warszawa, 13.10.2004 (1) Plan of the talk
Symmetry and Geometry of Generalized Higgs Sectors
Symmetry and Geometry of Generalized Higgs Sectors Ryo Nagai Tohoku University in collaboration with M. Tanabashi (Nagoya U.), Y. Uchida (Nagoya U.), and K. Tsumura (Kyoto U.) PPP2018 @ YITP, Aug. 6-10,
New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center
New Roads to Cryptopia Amit Sahai An NSF Frontier Center OPACity Panel, May 19, 2019 New Roads to Cryptopia What about all this space? Cryptography = Hardness* PKE RSA MPC DDH ZK Signatures Factoring IBE
Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science
Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4
Eksperymenty reaktorowe drugiej generacji wyznaczenie ϑ 13
Eksperymenty reaktorowe drugiej generacji wyznaczenie ϑ 13 v Przypomnienie wyniku eksperymentu KamLAND - weryfikującego oscylacje neutrin słonecznych v Formuły na prawdopodobieństwo disappearance antyneutrin
Knovel Math: Jakość produktu
Knovel Math: Jakość produktu Knovel jest agregatorem materiałów pełnotekstowych dostępnych w formacie PDF i interaktywnym. Narzędzia interaktywne Knovel nie są stworzone wokół specjalnych algorytmów wymagających
Few-fermion thermometry
Few-fermion thermometry Phys. Rev. A 97, 063619 (2018) Tomasz Sowiński Institute of Physics of the Polish Academy of Sciences Co-authors: Marcin Płodzień Rafał Demkowicz-Dobrzański FEW-BODY PROBLEMS FewBody.ifpan.edu.pl
y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.
The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Eplain your answer, write in complete sentences. 1. Find the derivative of the functions y 7 (b) (a) ( ) y t 1 + t 1 (c)
DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
ELEKTRYKA 0 Zeszyt (9) Rok LX Andrzej KUKIEŁKA Politechnika Śląska w Gliwicach DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Strings on Celestial Sphere. Stephan Stieberger, MPP München
Strings on Celestial Sphere Stephan Stieberger, MPP München String Theory from a Worldsheet Perspective Galileo Galilei Institute, Firenze April 15-19, 2019 based on: St.St., T.R. Taylor: Strings on Celestial
DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion
DM-ML, DM-FL Descritpion DM-ML and DM-FL actuators are designed for driving round dampers and square multi-blade dampers. Example identification Product code: DM-FL-5-2 voltage Dimensions DM-ML-6 DM-ML-8
Patients price acceptance SELECTED FINDINGS
Patients price acceptance SELECTED FINDINGS October 2015 Summary With growing economy and Poles benefiting from this growth, perception of prices changes - this is also true for pharmaceuticals It may
Camspot 4.4 Camspot 4.5
User manual (addition) Dodatek do instrukcji obsługi Camspot 4.4 Camspot 4.5 1. WiFi configuration 2. Configuration of sending pictures to e-mail/ftp after motion detection 1. Konfiguracja WiFi 2. Konfiguracja
DOI: / /32/37
. 2015. 4 (32) 1:18 DOI: 10.17223/1998863 /32/37 -,,. - -. :,,,,., -, -.,.-.,.,.,. -., -,.,,., -, 70 80. (.,.,. ),, -,.,, -,, (1886 1980).,.,, (.,.,..), -, -,,,, ; -, - 346, -,.. :, -, -,,,,,.,,, -,,,
Einstein s Theory of Gravity. Kostas Kokkotas December 11, 2018
Einstein s Theory of Gravity Kostas Kokkotas December 11, 2018 1 Newtonian Gravity Poisson equation 2 U( x) = 4πGρ( x) U( x) = G For a spherically symmetric mass distribution of radius R U(r) = 1 r U(r)
harmonic functions and the chromatic polynomial
harmonic functions and the chromatic polynomial R. Kenyon (Brown) based on joint work with A. Abrams, W. Lam The chromatic polynomial with n colors. G(n) of a graph G is the number of proper colorings
Lecture 18 Review for Exam 1
Spring, 2019 ME 323 Mechanics of Materials Lecture 18 Review for Exam 1 Reading assignment: HW1-HW5 News: Ready for the exam? Instructor: Prof. Marcial Gonzalez Announcements Exam 1 - Wednesday February
New method for the conformal bootstrap with OPE truncations
New method for the conformal bootstrap with OPE truncations Wenliang LI Kyung Hee University, Seoul, South Korea Symposium: "Bootstrap Approach to Conformal Field Theories and Applications, OIST, March19-23,
Linear Classification and Logistic Regression. Pascal Fua IC-CVLab
Linear Classification and Logistic Regression Pascal Fua IC-CVLab 1 aaagcxicbdtdbtmwfafwdgxlhk8orha31ibqycvkdgpshdqxtwotng2pxtvqujmok1qlky5xllzrnobbediegwcap4votk2kqkf+/y/tnphdschtadu/giv3vtea99cfma8fpx7ytlxx7ckns4sylo3doom7jguhj1hxchmy/irhrlgh67lxb5x3blis8jjqynmedqujiu5zsqqagrx+yjcfpcrydusshmzeluzsg7tttiew5khhcuzm5rv0gn1unw6zl3gbzlpr3liwncyr6aaqinx4wnc/rpg6ix5szd86agoftuu0g/krjxdarph62enthdey3zn/+mi5zknou2ap+tclvhob9sxhwvhaqketnde7geqjp21zvjsfrcnkfhtejoz23vq97elxjlpbtmxpl6qxtl1sgfv1ptpy/yq9mgacrzkgje0hjj2rq7vtywnishnnkzsqekucnlblrarlh8x8szxolrrxkb8n6o4kmo/e7siisnozcfvsedlol60a/j8nmul/gby8mmssrfr2it8lkyxr9dirxxngzthtbaejv
ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL
Read Online and Download Ebook ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL DOWNLOAD EBOOK : ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA Click link bellow and free register
SzeregFouriera-Legendre a
SzeregFouriera-Legendre a Szereg Fouriera-Legendre a : n=0 P n (t) f n Współczynniki f n = Pn (t) f (t) dt - Pn (t) 2 dt - = 2 n + Pn 2 - (t) f (t) dt Pn - (t) 2 dt = 2 2 n + Zadanie Policz kwadrat normy
tum.de/fall2018/ in2357
https://piazza.com/ tum.de/fall2018/ in2357 Prof. Daniel Cremers From to Classification Categories of Learning (Rep.) Learning Unsupervised Learning clustering, density estimation Supervised Learning learning
HOW MASSIVE ARE PROTOPLANETARY/ PLANET HOSTING/PLANET FORMING DISCS?
GREAT BARRIERS IN PLANET FORMATION, PALM COVE 26/07/2019 HOW MASSIVE ARE PROTOPLANETARY/ PLANET HOSTING/PLANET FORMING DISCS? CAN ALL THESE STRUCTURES TELL US SOMETHING ABOUT THE (GAS) DISC MASS? BENEDETTA
Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)
Wybrzeze Baltyku, mapa turystyczna 1:50 000 (Polish Edition) Click here if your download doesn"t start automatically Wybrzeze Baltyku, mapa turystyczna 1:50 000 (Polish Edition) Wybrzeze Baltyku, mapa
Previously on CSCI 4622
More Naïve Bayes aaace3icbvfba9rafj7ew423vr998obg2gpzkojyh4rcx3ys4lafzbjmjifdototmhoilml+hf/mn3+kl+jkdwtr64gbj+8yl2/ywklhsfircg/dvnp33s796mhdr4+fdj4+o3fvywvorkuqe5zzh0oanjakhwe1ra5zhaf5xvgvn35f62rlvtcyxpnm50awundy1hzwi46jbmgprbtrrvidrg4jre4g07kak+picee6xfgiwvfaltorirucni64eeigkqhpegbwaxglabftpyq4gjbls/hw2ci7tr2xj5ddfmfzwtazj6ubmyddgchbzpf88dmrktfonct6vazputos5zakunhfweow5ukcn+puq8m1ulm7kq+d154pokysx4zgxw4nwq6dw+rcozwnhbuu9et/tgld5cgslazuci1yh1q2ynca/u9ais0kukspulds3xxegvtyfycu8iwk1598e0z2xx/g6ef94ehbpo0d9ok9yiowsvfskh1ix2zcbpsdvaxgww7wj4zdn+he2hogm8xz9s+e7/4cuf/ata==
Zwyczajne równania różniczkowe (ZRR) Metody Runge go-ku/y
Zwyczajne równania różniczkowe (ZRR) Metody Runge go-ku/y Metoda Runge go-ku/y (4) Embedded Runge-Kutta methods. Są to jawne metody z dwoma zbiorami współczynników, pozwalające oszacować błąd obliczeń.
aforementioned device she also has to estimate the time when the patients need the infusion to be replaced and/or disconnected. Meanwhile, however, she must cope with many other tasks. If the department
HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07
HAPPY ANIMALS L0 HAPPY ANIMALS L0 HAPPY ANIMALS L0 HAPPY ANIMALS L07 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K ZW W8 W7 Ø x 6 szt. / pcs Ø7 x 70 Narzędzia / Tools DO MONTAŻU POTRZEBNE
HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08
HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K O G ZW W8 W4 20 szt. / pcs 4 szt. / pcs 4 szt. / pcs 4 szt. / pcs
EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH
Anna BŁACH Centre of Geometry and Engineering Graphics Silesian University of Technology in Gliwice EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Introduction Computer techniques
Has the heat wave frequency or intensity changed in Poland since 1950?
Has the heat wave frequency or intensity changed in Poland since 1950? Joanna Wibig Department of Meteorology and Climatology, University of Lodz, Poland OUTLINE: Motivation Data Heat wave frequency measures
THE RATE OF GW CAPTURE OF STELLAR-MASS BHS IN NUCLEAR STAR CLUSTERS. Alexander Rasskazov & Bence Kocsis Eotvos University
THE RATE OF GW CAPTURE OF STELLAR-MASS BHS IN NUCLEAR STAR CLUSTERS Alexander Rasskazov & Bence Kocsis Eotvos University Merger rate density of events with e>0.1 in the LIGO band (>10 Hz), Gpc -3 yr -1
Nespojitá Galerkinova metoda pro řešení
Nespojitá Galerkinova metoda pro řešení stlačitelného proudění Václav Kučera vaclav.kucera@email.cz Univerzita Karlova v Praze Matematicko-fyzikální Fakulta Katedra numerické matematiky Vytvoření a rozvoj
Sargent Opens Sonairte Farmers' Market
Sargent Opens Sonairte Farmers' Market 31 March, 2008 1V8VIZSV7EVKIRX8(1MRMWXIVSJ7XEXIEXXLI(ITEVXQIRXSJ%KVMGYPXYVI *MWLIVMIWERH*SSHTIVJSVQIHXLISJJMGMEPSTIRMRKSJXLI7SREMVXI*EVQIVW 1EVOIXMR0E]XS[R'S1IEXL
DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!
1 HAPPY ANIMALS B09 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K1 M M1 ZM1 Z T G1 17 szt. / pcs 13 szt. / pcs B1 13 szt. / pcs W4 13 szt. / pcs W6 14 szt. / pcs U1 1 szt. / pcs U N1
Zmiany techniczne wprowadzone w wersji Comarch ERP Altum
Zmiany techniczne wprowadzone w wersji 2018.2 Copyright 2016 COMARCH SA Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci
NONLINEAR BOUNDARY CONDITION FOR ELECTROMAGNETIC FIELD PROBLEMS NIELINIOWE ELEKTROMAGNETYCZNE ZAGADNIENIE I SFORMUŁOWANIE JEGO WARUNKÓW BRZEGOWYCH
ELEKTRYKA 2009 Zeszyt 2 (210) Rok LV Marcin SOWA, Dariusz SPAŁEK Instytut Elektrotechniki i Informatyki, Politechnika Śląska w Gliwicach NONLINEAR BOUNDARY CONDITION FOR ELECTROMAGNETIC FIELD PROBLEMS
Electromagnetism Q =) E I =) B E B. ! Q! I B t =) E E t =) B. 05/06/2018 Physics 0
lectromagnetism lectromagnetic interaction is one of four fundamental interactions in Nature. lectromagnetism is the theory of electromagnetic interactions or of electromagnetic forces. lectric charge
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)
R E P R E S E N T A T I O N S
Z E S Z Y T Y N A U K O W E A K A D E M I I M A R Y N A R K I W O J E N N E J S C I E N T I F I C J O U R N A L O F P O L I S H N A V A L A C A D E M Y 2017 (LVIII) 4 (211) DOI: 10.5604/01.3001.0010.6752
Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)
Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,
MaPlan Sp. z O.O. Click here if your download doesn"t start automatically
Mierzeja Wislana, mapa turystyczna 1:50 000: Mikoszewo, Jantar, Stegna, Sztutowo, Katy Rybackie, Przebrno, Krynica Morska, Piaski, Frombork =... = Carte touristique (Polish Edition) MaPlan Sp. z O.O Click
Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout
Machine Learning for Data Science (CS4786) Lecture 24 Differential Privacy and Re-useable Holdout Defining Privacy Defining Privacy Dataset + Defining Privacy Dataset + Learning Algorithm Distribution
Prices and Volumes on the Stock Market
Prices and Volumes on the Stock Market Krzysztof Karpio Piotr Łukasiewicz Arkadiusz Orłowski Warszawa, 25-27 listopada 2010 1 Data selection Warsaw Stock Exchange WIG index assets most important for investors
Dupin cyclides osculating surfaces
Paweł Walczak, Uniwersytet Łódzki, Dijon, 25 stycznia 2012 Colaborators: Remi Langevin (UdeB), Adam Bartoszek, Szymon Walczak (UŁ) What is extrinsic conformal geometry? Conformal transformations = transformations
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS. Strona 1 1. Please give one answer. I am: Students involved in project 69% 18 Student not involved in
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Algorytm FIREFLY. Michał Romanowicz Piotr Wasilewski
Algorytm FIREFLY Michał Romanowicz Piotr Wasilewski Struktura prezentacji 1. Twórca algorytmu 2. Inspiracja w przyrodzie 3. Algorytm 4. Zastosowania algorytmu 5. Krytyka algorytmu 6. Porównanie z PSO Twórca
Wyk lad z Algebry Liniowej dla studentów WNE UW. Rok akademicki 2017/2018. Przyk lady zadań na ćwiczenia. 1. Które z cia
Wyk lad z Algebry Liniowej dla studentów WNE UW. Rok akademicki 2017/2018. Przyk lady zadań na ćwiczenia. 1. Które z cia gów: ( 1, 1, 1, 1), (2, 3, 1, 4), (4, 3, 2, 1), (4, 0, 3, 1) sa rozwia 2 zaniami
Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy
Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy DZIAŁANIE 3.2 EDUKACJA OGÓLNA PODDZIAŁANIE 3.2.1 JAKOŚĆ EDUKACJI OGÓLNEJ Projekt współfinansowany przez Unię Europejską w
Matematyka 3. Suma szeregu. Promień zbieżności szeregu. Przykład 1: Przykład 2: GenerateConditions
Matematyka 3 Suma szeregu? Sum i max Sum[f, {i, i max }] evaluates the sum f. Sum[f, {i, i min, i max }] starts with i = i min. Sum[f, {i, i min, i max, di}] uses steps di. Sum[f, {i, {i 1, i 2, }}] uses
Arrays -II. Arrays. Outline ECE Cal Poly Pomona Electrical & Computer Engineering. Introduction
ECE 114-9 Arrays -II Dr. Z. Aliyazicioglu Electrical & Computer Engineering Electrical & Computer Engineering 1 Outline Introduction Arrays Declaring and Allocation Arrays Examples Using Arrays Passing
OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.
OBWIESZCZENIE MINISTRA INFRASTRUKTURY z dnia 18 kwietnia 2005 r. w sprawie wejścia w życie umowy wielostronnej M 163 zawartej na podstawie Umowy europejskiej dotyczącej międzynarodowego przewozu drogowego
Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)
Katowice, plan miasta: Skala 1:20 000 = City map = Stadtplan (Polish Edition) Polskie Przedsiebiorstwo Wydawnictw Kartograficznych im. Eugeniusza Romera Click here if your download doesn"t start automatically
Bergman Kernel and Kobayashi Pseudodistance in Convex Domains
Bergman Kernel and Kobayashi Pseudodistance in Convex Domains Zbigniew B locki Uniwersytet Jagielloński, Kraków, Poland http://gamma.im.uj.edu.pl/ blocki (Joint work with W lodzimierz Zwonek) NORDAN Reykjavík,
SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS
Piotr Mikulski 2006 Subversion is a free/open-source version control system. That is, Subversion manages files and directories over time. A tree of files is placed into a central repository. The repository
ITIL 4 Certification
4 Certification ITIL 3 Certification ITIL Master scheme ITIL Expert 5 Managing across the lifecycle 5 3 SS 3 SD 3 ST 3 SO 3 CS1 4 OSA 4 PPO 4 RCV 4 SOA Ścieżka lifecycle Ścieżka Capability 3 ITIL Practitioner
Dominika Janik-Hornik (Uniwersytet Ekonomiczny w Katowicach) Kornelia Kamińska (ESN Akademia Górniczo-Hutnicza) Dorota Rytwińska (FRSE)
Czy mobilność pracowników uczelni jest gwarancją poprawnej realizacji mobilności studentów? Jak polskie uczelnie wykorzystują mobilność pracowników w programie Erasmus+ do poprawiania stopnia umiędzynarodowienia
Stargard Szczecinski i okolice (Polish Edition)
Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz Click here if your download doesn"t start automatically Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz
Installation of EuroCert software for qualified electronic signature
Installation of EuroCert software for qualified electronic signature for Microsoft Windows systems Warsaw 28.08.2019 Content 1. Downloading and running the software for the e-signature... 3 a) Installer
2017 R. Robert Gajewski: Mathcad Prime 4. Solution of examples Rozwiązania przykładów
07 R. Robert Gajewski: Mathcad Prime 4 0. Calculate numerically and present results in different formats and precision. 0. Oblicz numerycznie i przedstaw wyniki w różnych formatach i z różną precyzją.
Algorytm k-średnich. Źródło: LaroseD.T., Okrywanie wiedzy w danych.wprowadzenie do eksploracji danych, PWN, Warszawa 2005.
Algorytm k-średnich Źródło: LaroseD.T., Okrywanie wiedzy w danych.wprowadzenie do eksploracji danych, PWN, Warszawa 005. Dane a b c d e f g h (,3) (3,3) (4,3) (5,3) (,) (4,) (,) (,) Algorytm k-średnich
Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)
Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition) Piotr Maluskiewicz Click here if your download doesn"t start automatically Miedzy
Dynamics of the Warsaw Stock Exchange index as analysed by the Mittag-Leffler function
Dynamics of the Warsaw Stock Exchange index as analysed by the Mittag-Leffler function Marzena Kozłowska and Ryszard Kutner Department of Physics, Warsaw University Physics of Socio-Economic Systems AKSOE
4. P : P SO P Spin, π : P M: 6. F = P Spin Spin(n) S, F ± = P Spin Spin(n) S ± 7. ω: Levi-Civita, R:, K:
/, Dirac,, Bismut[B]., [B], [B],, [K], [T], [W].,,,,, /.,.,,,..,.. M, g): n = l,. P SO : T M, M SOn) 3. P Spin : M Spinn), P SO 4. P : P SO P Spin, π : P M: 5. S = S + S : Spinn) l S +, S l ) 6. F = P
Jak zasada Pareto może pomóc Ci w nauce języków obcych?
Jak zasada Pareto może pomóc Ci w nauce języków obcych? Artykuł pobrano ze strony eioba.pl Pokazuje, jak zastosowanie zasady Pareto może usprawnić Twoją naukę angielskiego. Słynna zasada Pareto mówi o