Algorytmy Sztucznej Inteligencji wykład nr 1 wnioskowanie i SE. Agnieszka Nowak - Brzezińska

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algorytmy Sztucznej Inteligencji wykład nr 1 wnioskowanie i SE. Agnieszka Nowak - Brzezińska"

Transkrypt

1 Algorytmy Sztucznej Inteligencji wykład nr 1 wnioskowanie i SE Agnieszka Nowak - Brzezińska

2 Słowem wstępu Większość programów komputerowych nie zachowuje sie szczególnie inteligentnie. Wszędzie tam, gdzie znamy dokładny algorytm rozwiązania zadania, inteligencja nie jest konieczna. Wszędzie tam, gdzie rozwiązanie nie daje się ująć w ścisłe reguły lub wymaga tak wielkiej liczby obliczeń, że jest niewykonalne, wymaga się pewnej dozy inteligencji z naszej strony, a jeśli ma wykazywać ją program komputerowy, mówimy o inteligencji sztucznej.

3 Sztuczna Inteligencja (Artificial Intelligence, AI) to dziedzina nauki zajmująca się rozwiązywaniem zagadnień efektywnie niealgorytmizowalnych w oparciu o modelowanie wiedzy.

4 Soft Computing Optymalizacja badania operacyjne Logika rozmyta Sieci neuronowe Algorytmy ewolucyjne Wizualizacja Data mining CI - numeryczne Dane + Wiedza AI - symboliczne Metody statystyczne Rachunek prawdop. Systemy ekspertowe Uczenie maszynowe Rozpoznawanie Wzorców

5 Rys historyczny Sztuczna inteligencja to termin zaproponowany przez John a McCarthy ego w 1956 roku, na konferencji w Dartmouth College poświęconej inteligentnym maszynom.

6 Rys historyczny Okres ciemności: , w którym niewiele się działo, powoli opadał entuzjazm i pojawiły się głosy bardzo krytyczne. Renesans: , gdy zaczęto budować pierwsze systemy doradcze, użyteczne w praktyce. Okres partnerstwa: , gdy do badań nad AI wprowadzono metody kognitywistyki. Okres komercjalizacji: , gdy programy AI, a szczególnie systemy doradcze zaczęto sprzedawać komercyjnie

7 Co to inteligencja? Inteligencja jest umiejętnością przystosowywania się do nowych zadań i warunków życia albo sposobem, w jaki człowiek przetwarza informacje i rozwiązuje problemy. Inteligencja to także umiejętność kojarzenia oraz rozumienia. Wpływ na nią mają zarówno cechy dziedziczne jak i wychowawcze.

8 Definicje AI w literaturze: Jest nauką o maszynach realizujących zadania, które wymagają inteligencji, gdy są wykonywane przez człowieka (M.Minsky) AI stanowi dziedzinę informatyki dotyczącą metod i technik wnioskowania symbolicznego przez komputer oraz symbolicznej reprezentacji wiedzy stosowanej podczas takiego wnioskowania (E. Feigenbaum) AI obejmuje rozwiązywanie problemów sposobami wzorowanymi na naturalnych działaniach i procesach poznawczych człowieka za pomocą symulujących je programów komputerowych (R.J. schalkoff).

9 Sztuczna inteligencja to automatyzacja zdolności przypisanych ludzkiemu myśleniu, zdolności taki jak podejmowanie decyzji,,rozwiązywanie problemów,, uczenie się... [Bellman, 1978] Sztuczna inteligencja to badania prowadzone w kierunku stworzenia komputerów, które myślą... maszyn posiadających umysł.. [Haugelland,, 1985] Sztuczna inteligencja to sztuka tworzenia maszyn zdolnych do wykonywania działań,, wymagających od człowieka zaangażowania inteligencji.. [Kurzweil,, 1990] Sztuczna inteligencja to badania mające na celu stworzenie komputerów posiadających umiejętności,, w których człowiek jest obecnie lepszy.. [Rich i Knight,, 1991]

10 Sztuczna inteligencja to badanie zdolności umysłowych za pomocą modeli obliczeniowych.. [Charniak i McDermott, 1985] Sztuczna inteligencja to studia nad modelami obliczeniowymi, które umożliwiają percepcjję, wnioskowanie i działanie.. [Winstton, 1992] Sztuczna inteligencja to badania mające na celu opis i symulację inteligentnego zachowania w kategoriach procesów obliczeniowych..[schallkoff, 1990] Sztuczna inteligencja jest gałęzią informatyki, zajmującą się automatyzacją inteligentnego zachowania..[luger i Stublefield, 1993]

11 Inne definicje AI: AI to nauka mająca za zadanie nauczyć maszyny zachowań podobnych do ludzkich. AI to nauka o tym, jak nauczyć maszyny robić rzeczy które obecnie ludzie robią lepiej. AI to nauka o komputerowych modelach wiedzy umożliwiających rozumienie, wnioskowanie i działanie.

12 Definicja Nie ma efektywnego algorytmu? Drobna zmiana może wymagać całkiem innego programu! Nie można przewidzieć wszystkich zmian. Rozwiązanie wymaga inteligencji. Sztuczna Inteligencja (Artificial Intelligence, AI) to dziedzina nauki zajmująca się rozwiązywaniem zagadnień efektywnie niealgorytmizowalnych w oparciu o modelowanie wiedzy. Inne definicje: * AI to nauka mająca za zadanie nauczyć maszyny zachowań podobnych do ludzkich. * AI to nauka o tym, jak nauczyć maszyny robić rzeczy które obecnie ludzie robią lepiej. * AI to nauka o komputerowych modelach wiedzy umożliwiających rozumienie, wnioskowanie i działanie.

13 Najważniejsze procesy i funkcje składające się na ludzką inteligencję: Uczenie się i wykorzystywanie wiedzy, zdolność uogólniania, percepcja i zdolności poznawcze, np. zdolność rozpoznawania danego obiektu w dowolnym kontekście. Zapamiętywanie, stawianie i realizacja celów, umiejętność współpracy, formułowanie wniosków, zdolność analizy, tworzenie oraz myślenie koncepcyjne i abstrakcyjne.

14 Uczenie się Zdolność do uczenia się jest powszechnie uważana za jeden z najważniejszych przejawów inteligencji. Przez uczenie się rozumiemy, w najprostszym ujęciu, zdobywanie wiedzy lub umiejętności (a także doskonalenie dotychczas posiadanej wiedzy lub umiejętności), na podstawie wspomagających informacji, takich jak doświadczenia czy przykłady. Rozważając sztuczne systemy uczące się będziemy przez uczenie się rozumieć proces zmiany zachodzącej w systemie na podstawie doświadczeń, która prowadzi do poprawy jego jakości działania rozumianej jako sprawność rozwiązywania stojących przed systemem zadań.

15 Systemy Ekspertowe System ekspertowy to inteligentny program komputerowy stosujący wiedzę i procedury rozumowania (wnioskowania) w celu rozwiązywania problemów, które wymagają doświadczenia ludzkiego (eksperta), nabytego przez wieloletnią działalność w danej dziedzinie. Ogólna idea SE polega na przeniesieniu wiedzy eksperta z danej dziedziny do bazy wiedzy, zaprojektowaniu maszyny wnioskującej na podstawie posiadanych informacji oraz dodaniu interfejsu użytkownika, służącego do komunikacji.

16 Kiedy nasz program lub maszyna jest inteligentna? Na to pytanie w 1950roku próbował odpowiedzieć Alan Turing. Idea Testu Turinga polegała na tym, że człowiek za pomocą klawiatury i monitora zadaje te same pytania komputerowi i innej osobie. Jeśli zadający pytania nie potrafi rozróżnić odpowiedzi komputera i człowieka, tzn. że program (maszyna) jest inteligentny.

17 Spory o to, czy test Turinga we właściwy sposób definiuje inteligencję maszynową (lub "myślenie maszynowe"), dotyczyły głównie trzech punktów: Maszyna, która przejdzie test Turinga, może być w stanie symulować ludzkie zachowanie konwersacyjne, lecz może to być znacznie mniej niż prawdziwa inteligencja. Maszyna może zwyczajnie używać sprytnie wymyślonych reguł. Częstą ripostą w społeczności zajmującej się badaniami nad sztuczną inteligencją jest zadanie pytania "A skąd wiemy, czy ludzie sami po prostu nie posługują się jakimiś sprytnie wymyślonymi regułami?". Maszyna może być inteligentna nie posiadając ludzkiej umiejętności prowadzenia rozmowy. Wielu ludzi mogłoby nie być w stanie zaliczyć takiego testu. Z drugiej strony, inteligencję innych ludzi oceniamy zazwyczaj wyłącznie na podstawie tego co i jak mówią.

18 Test Turinga Test ten został zaproponowany w 1950 roku przez Alana Turinga. Turing zaproponował ten test w celu zamiany pełnego emocji i w jego pojęciu bezsensownego pytania "Czy maszyny myślą?" na pytanie lepiej zdefiniowane, w ramach badań nad stworzeniem sztucznej inteligencji. Test wygląda następująco: sędzia - człowiek - prowadzi rozmowę w języku naturalnym z pozostałymi stronami. Jeśli sędzia nie jest w stanie wiarygodnie określić, czy któraś ze stron jest maszyną czy człowiekiem, wtedy mówi się, że maszyna przeszła test. Zakłada się, że zarówno człowiek jak i maszyna próbują przejść test zachowując się w sposób możliwie zbliżony do ludzkiego

19 Zastosowania Systemów Ekspertowych Obszary zastosowań systemów ekspertowych obejmują w głównej mierze następujące dziedziny: Interpretacja -- formowanie wniosków następuje na podstawie danych Prognozowanie -- przewidywanie możliwych konsekwencji wystąpienia określonych sytuacji Diagnostyka -- wykrywanie przyczyn niesprawności w oparciu o zaobserwowane symptomy Projektowanie -- określenie konfiguracji składowych systemu, spełniającej określone kryteria działania przy określonych ograniczeniach Planowanie -- określanie sekwencji działań prowadzących do celu przy zadanych warunkach startowych Monitoring -- porównywanie zaobserwowanego funkcjonowania z oczekiwanymi działaniami Serwis -- wykrywanie i usuwanie usterek Szkolenie i instruktaż -- wykrywanie i korygowanie błędów w rozumieniu przedmiotu danej dziedziny Sterowanie automatyczne -- nadzór nad funkcjonowaniem złożonych systemów

20 Zalety i ograniczenia Tak szeroki wachlarz zastosowań wynika niewątpliwie z pewnych cech, które jednocześnie są zaletami systemów ekspertowych. Należą do nich: - większa dostępność ekspertyzy - mniejszy koszt ekspertyzy - mniejsze ryzyko w warunkach szkodliwych dla zdrowia ciągłość pracy - wyjaśnianie decyzji - szybkość uzyskania ekspertyzy stała, niewrażliwa na emocje i pełna ekspertyza - uczenie metodą prób i błędów - inteligentny interfejs człowiek-komputer

21 Architektura SE

22 Etapy tworzenia systemu ekspertowego: analiza problemu, pod kątem, czy kwalifikuje się on do budowy systemu ekspertowego, opracowanie specyfikacji systemu, zdefiniowanie jego zadań i oczekiwanych wyników; przejęcie wiedzy od ekspertów i jej opracowanie; wybór metody reprezentacji wiedzy oraz narzędzi do budowy systemu; organizacja i kodowanie wiedzy (prototyp, pełna wersja); weryfikacja i testowanie systemu.

23 Właściwości systemów ekspertowych: Są narzędziem kodyfikacji wiedzy; Mają zdolność rozwiązywania problemów specjalistycznych, w których dużą rolę odgrywa doświadczenie a wiedza ekspercka jest dobrem rzadkim i kosztownym; Zwiększają dostępność ekspertyzy; Zapewniają możliwość prowadzenia jednolitej polityki przez centralę firm mających wiele oddziałów; Poziom ekspertyzy jest stabilny jej jakość nie zależy od warunków zewnętrznych i czasu pracy systemu; Jawna reprezentacja wiedzy w postaci zrozumiałej dla użytkownika końcowego; Zdolność do objaśniania znalezionych przez system rozwiązań; Możliwość przyrostowej budowy i pielęgnacji bazy wiedzy.

24 System ekspertowy służy do rozwiązywania problemów, które charakteryzują się jedną lub wieloma z następujących cech: problem nie da się sformalizować w postaci liczbowej; cele nie dadzą się opisać za pomocą matematycznych funkcji celu; nie istnieją formalne algorytmy rozwiązywania problemu; dane i wiedza systemu są obarczone nieznanym błędem lub są one niepełne, niepewne.

25 Przyczyny tworzenia systemu ekspertowego (uogólnione): tylko jeden (lub bardzo niewielu) specjalista posiada niezbędną wiedzę, co grozi jej utratą; ekspertyza jest wymagana często lub jest niezbędna w wielu miejscach; ekspertyza jest niezbędna w miejscach niedostępnych dla człowieka lub szkodliwych dla zdrowia.

26 Wnioskowanie

27 Typy wnioskowania Wnioskowanie w przód (data driven) Wnioskowanie wstecz (goal driven) Wnioskowanie mieszane

28 Sterowanie wnioskowaniem

29

30 Mechanizm wnioskowanie w przód

31 Mechanizm wnioskowanie w przód

32 Idea wnioskowania wstecz

33 Algorytm wnioskowania wstecz

34 Mechanizm wnioskowania wstecz dla hipotezy v

35

36

37 Idea wnioskowania mieszanego

38 Metody realizacji systemów ekspertowych w środowisku systemu PC-Shell Właściwości: są narzędziem kodyfikacji wiedzy eksperckiej, mają zdolność rozwiązywania problemów specjalistycznych, w których duża rolę odgrywa doświadczenie a wiedza ekspercka jest dobrem rzadkim i kosztownym. zwiększają dostępność ekspertyzy, zapewniają możliwość prowadzenia jednolitej polityki przez centralę firm mających wiele oddziałów, poziom ekspertyzy jest stabilny - jej jakość nie zależy od warunków zewnętrznych i czasu pracy systemu, jawna reprezentacja wiedzy w postaci zrozumiałej dla użytkownika końcowego, zdolność do objaśniania znalezionych przez system rozwiązań, możliwość przyrostowej budowy i pielęgnacji bazy wiedzy.

39 Zastosowania analiza ryzyka, ocena wniosków kredytowych, uczestników przetargów, monitorowanie, diagnostyka, predykcja, wspomaganie procesów diagnostycznych, analiza i interpretacja danych, instruktaż, dydaktyka, szkolenia.

40 Tworzenie systemu ekspertowego

41 Ogólna charakterystyka szkieletowego systemu ekspertowego PC-Shell PC Shell jest podstawowym elementem pakietu sztucznej inteligencji Sphinx PC Shell jest dziedzinowo niezależnym narzędziem do budowy systemów ekspertowych, posiada właściwości hybrydowe, wykorzystuje elementy architektury tablicowej; wykorzystuje różne metody reprezentacji wiedzy: 1. deklaratywna w postaci reguł i faktów, 2. wiedza rozproszona w sieci neuronowej, 3. imperatywna w formie programu algorytmicznego, 4. faktograficzna w formie tekstów, grafiki, dźwięku, sekwencji wideo; system zapewnia wyjaśnienia: 1. jak (ang. how), 2. dlaczego (ang. why), 3. co to jest (ang. what is), 4. metafory (ang. metaphor), 5. opisu faktów; wykorzystywane jest wnioskowanie wstecz (z nawrotami), bazy wiedzy mogą być parametryzowane, system ma możliwość bezpośredniego pozyskiwania informacji z baz danych (ODBC), wykorzystuje mechanizm DDE, system PC Shell współpracuje z innymi elementami pakietu systemem Neuronix przeznaczonym do tworzenia sieci neuronowych, systemem CAKE przeznaczonym do wspomagania pracy inżyniera wiedzy oraz realizującym funkcje systemu dbmaker, zarządzającego bazami wyjaśnień.

42 Architektura SE

43 Wykłady z PC-Shella

44

45

46

47 Z menu wybieram Wnioskowanie do przodu

48

49

50

51

52

53

54

55

56

57

58

59

60

61 Struktura BW

62 Blok deklaracji źródeł wiedzy

63 Zawartość folderu Sphinx 4.0

64 Prezentacja algorytmy RETE

65 Przykład dla regułowej bazy wiedzy z 9 regułami: Fakty: a1, b1, d4 R1: a1 & b1 -> c1 R2: a1 & b2 -> c2 R3: a1 & b3 -> c1 R4: b3 & d3 -> e1 R5: b3 & d2 -> e1 R6: b3 -> e2 R7: d4 -> f1 R8: d4 & g1 -> f1 R9: a1 -> d4

66 Przykład dla regułowej bazy wiedzy z 9 regułami: Fakty: a1, b1, d4 R1: a1 & b1 -> c1 R2: a1 & b2 -> c2 R3: a1 & b3 -> c1 R4: b3 & d3 -> e1 R5: b3 & d2 -> e1 R6: b3 -> e2 R7: d4 -> f1 R8: d4 & g1 -> f1 R9: a1 -> d4 Czyli teoretycznie dla takich faktów jak a1, b1 i d4 można uaktywnić reguły: r1,r7 i r9. Fakty: a1, b1, d4 R1: a1 & b1 -> c1 R2: a1 & b2 -> c2 R3: a1 & b3 -> c1 R4: b3 & d3 -> e1 R5: b3 & d2 -> e1 R6: b3 -> e2 R7: d4 -> f1 R8: d4 & g1 -> f1 R9: a1 -> d4

67 Algorytm RETE (1974 r.) 1. Graf budujemy tak, że od korzenia (root) prowadzimy tyle węzłów ile mamy atrybutów w częściach warunkowych reguł: a, b, d, g 2. Następnie od każdego węzła atrybut prowadzimy węzły z wartościami atrybutów z przesłanek reguł np. od a prowadzimy węzeł 1 (czy a1 ) ale od b już prowadzimy 1, 2 i 3 bo w regułach mamy przesłanki typu b1,b2,b3 3. Gdy jakaś reguła ma więcej niż jedną przesłankę prowadzimy węzeł łączący wartości atrybutów tworzące przesłanki np. a1 & b1 4. Węzły końcowe (terminalne) stanowi numer porządkowy (ID) reguły.

68 root b 1 a 1 2 d g a1 and b1 a1 and b r1 r2 3 b3 and d3 r7 d4 and g1 r9 a1 and b3 r4 2 r8 r3 r6 b3 and d2 r5

69 Końcowy Graf RETE root b 1 a 1 2 d g a1 and b1 a1 and b r1 r2 3 b3 and d3 r7 d4 and g1 r9 a1 and b3 r4 2 r8 korzeń atrybut Wartość atrybutu (przesłanka reguły, jedna lub więcej. To tzw. Węzły typu alfa, beta) Węzeł terminalny ID reguły r3 r6 b3 and d2 r5

70 Pojawia się fakt: a1 więc zapalamy węzły z a1 root b 1 a 1 2 d g a1 and b1 a1 and b r1 r2 3 b3 and d3 r7 d4 and g1 r9 a1 and b3 r4 2 r8 Conflict set r9 r3 r6 b3 and d2 r5 Reguła r9 zostaje dodana do conflict set i bierzemy kolejne fakty

71 Pojawia się fakt: b1 więc zapalamy węzły z b1 root b 1 a 1 2 d g a1 and b1 a1 and b r1 r2 3 b3 and d3 r7 d4 and g1 r9 a1 and b3 r4 2 r8 Conflict set r1 r9 r3 r6 b3 and d2 r5 Reguła r1 zostaje dodana do conflict set i bierzemy kolejne fakty

72 Pojawia się fakt: d4 więc zapalamy węzły z d4 root b 1 a 1 2 d g a1 and b1 a1 and b r1 r2 3 b3 and d3 r7 d4 and g1 Conflict set r9 a1 and b3 r4 2 r8 r7 r1 r9 r3 r6 b3 and d2 r5 Reguła r7 zostaje dodana do conflict set i kończymy bo nie ma więcej faktów Inne reguły nie były niepotrzebnie analizowane

73 Algorytm RETE krok po kroku 1. Tworzymy graf skierowany (acykliczny) gdzie węzłami są elementy tworzące części przesłankowe reguł a liśćmi są numery porządkowe reguł. 2. Następnie dopasowujemy fakty do węzłów w grafie i te reguły, które mogą być uaktywnione zapisujemy w tzw. CONFLICT SET w formie stosu. 3. W zależności od wybranej strategii LIFO/FIFO uaktywniamy reguły.

74 Wnioskowanie dla strategii LIFO r7 r1 r9 r7 r1 r9 NOWE FAKTY f1 c1 d4 Kierunek generowania faktów a1 b1 d4 f1 c1 d4

75 Wnioskowanie dla strategii FIFO r7 r1 r9 r9 r1 r7 NOWE FAKTY d4 c1 f1 Kierunek generowania faktów a1 b1 d4 d4 c1 f1

76 Wnioskowanie dla strategii FIFO r7 r1 Wnioskowanie dla strategii LIFO r7 r1 r9 r9 r1 r7 r9 r7 r1 r9 NOWE FAKTY d4 c1 f1 NOWE FAKTY f1 c1 d4 Kierunek generowania faktów Kierunek generowania faktów

77 Pseudokod algorytmu RETE Procedure RETE() { Graph := CreateGraphRETE(R); ConflictSet:= MatchingRules(K,Graph); newfacts:=activeagenda(conflictset,strategy); return newfacts; } R- reguły K- fakty CreateGraphRETE generuje graf z warunkowych części reguł. MatchingRules(K,Graph) dopasuje fakty do węzłów w grafie i zapisuje do ConflictSet te reguły które można uaktywnić! ActiveAgenda zgodnie z wybraną strategią Lifo albo Fifo uaktywnia reguły z ConflictSet i wyprowadza nowe fakty.

78 Drools

79 Przykłady SE Kategoria Zastosowanie Przykład Interpretacja Predykcja Diagnostyka Projektowanie Planowanie Monitorowanie Debugging Instrukcja Kontrola Wnioskowanie opisów zdarzeń/sytuacji z czujników Wnioskowanie prawdopodobnych konsekwencji danej sytuacji Wnioskowanie na temat awarii w systemie na bazie obserwacji Konfigurowanie/Projektowanie przy określonych ograniczeniach Projektowanie Zdarzeń Porównywanie obserwacji by wykluczać luki systemowe Zapewnienie przyrostowych rozwiązań złożonych problemów Diagnostyka, ocena i poprawa zachować studentów Interpretacja, przewidywanie, naprawa i monitorowanie zachowań systemowych Hearsay (Speech Recognition), PROSPECTOR Pretirm Birth Risk Assessment CADUCEUS, MYCIN, PUFF, Mistral Dendral, Mortgage Loan Advisor, R1 (Dec Vax Configuration) Mission Planning for Autonomous Underwater Vehicle REACTOR SAINT, MATHLAB, MACSYMA SMH.PAL, Intelligent Clinical Training,STEAMER Real Time Process Control, Space Shuttle Mission Control

80

81

82

83

84

85

86

87 Jess

88

89 Wnioskowanie w Jess/Drools

90

91 Wnioskowanie c.d.

92 Tworzenie BW

93 Przykładowa BW

94 BW w Jess

95 WinJess przykładowe narzędzie JESS

96 BW w PC-Shell

97 PC-Shell

98 Podsumowanie

99

Systemy eksperowe. Agnieszka Nowak Brzezińska Wykład I

Systemy eksperowe. Agnieszka Nowak Brzezińska Wykład I Systemy eksperowe Agnieszka Nowak Brzezińska Wykład I Zakres materiału: Metody wnioskowania w regułowych bazach wiedzy PC-Shell jako narzędzie do budowy szkieletowych systemów ekspertowych (Sprawozdanie

Bardziej szczegółowo

Algorytmy Sztucznej Inteligencji wykład nr 2 wnioskowanie i SE. Agnieszka Nowak - Brzezińska

Algorytmy Sztucznej Inteligencji wykład nr 2 wnioskowanie i SE. Agnieszka Nowak - Brzezińska Algorytmy Sztucznej Inteligencji wykład nr 2 wnioskowanie i SE Agnieszka Nowak - Brzezińska Słowem wstępu Większość programów komputerowych nie zachowuje sie szczególnie inteligentnie. Wszędzie tam, gdzie

Bardziej szczegółowo

Systemy ekspertowe i sztuczna inteligencja. dr Agnieszka Nowak Brzezioska

Systemy ekspertowe i sztuczna inteligencja. dr Agnieszka Nowak Brzezioska Systemy ekspertowe i sztuczna inteligencja dr Agnieszka Nowak Brzezioska Email: agnieszka.nowak@us.edu.pl Architektura SE Pojęcia z dziedziny systemów ekspertowych Inżynieria wiedzy - dziedzina sztucznej

Bardziej szczegółowo

Systemy eksperowe. Agnieszka Nowak Brzezińska Wykład I

Systemy eksperowe. Agnieszka Nowak Brzezińska Wykład I Systemy eksperowe Agnieszka Nowak Brzezińska Wykład I Zakres materiału: Wprowadzenie do sztucznej inteligencji i systemów ekspertowych PC-Shell jako narzędzie do budowy szkieletowych systemów ekspertowych

Bardziej szczegółowo

Systemy eksperckie. Plan wykładu Wprowadzenie do sztucznej inteligencji. Wnioski z prób automatycznego wnioskowania w rachunku predykatów

Systemy eksperckie. Plan wykładu Wprowadzenie do sztucznej inteligencji. Wnioski z prób automatycznego wnioskowania w rachunku predykatów Plan wykładu Systemy eksperckie Dr hab. inż. Joanna Józefowska, prof. pp 1/1 Wnioski z badań nad systemami mi w rachunku predykatów Reguły produkcji jako system reprezentacji Algorytm rozpoznaj-wykonaj

Bardziej szczegółowo

Wprowadzenie do teorii systemów ekspertowych

Wprowadzenie do teorii systemów ekspertowych Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Systemy ekspertowe w zarządzaniu firmą Expert systems in enterprise management Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: Rodzaj zajęć: Wyk. Ćwicz. Lab. Sem. Proj.

Bardziej szczegółowo

Systemy ekspertowe. Krzysztof Patan

Systemy ekspertowe. Krzysztof Patan Systemy ekspertowe Krzysztof Patan Wprowadzenie System ekspertowy Program komputerowy, który wykonuje złożone zadania o dużych wymaganiach intelektualnych i robi to tak dobrze jak człowiek będący ekspertem

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Systemy ekspertowe Expert systems Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: Rodzaj zajęć: Wyk. Ćwicz. Lab. Sem. Proj. Poziom studiów: studia I stopnia forma studiów:

Bardziej szczegółowo

Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY.

Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY. Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY. 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przykładowym systemem ekspertowym napisanym w JESS. Studenci poznają strukturę systemu ekspertowego,

Bardziej szczegółowo

SYSTEMY EKSPERTOWE. Anna Matysek IBiIN UŚ 2008

SYSTEMY EKSPERTOWE. Anna Matysek IBiIN UŚ 2008 SYSTEMY EKSPERTOWE Anna Matysek IBiIN UŚ 2008 DEFINICJE SE System ekspertowy to program komputerowy, który wykonuje złożone zadania o dużych wymaganiach intelektualnych i robi to tak dobrze jak człowiek

Bardziej szczegółowo

Sztuczna inteligencja

Sztuczna inteligencja Sztuczna inteligencja Przykładowe zastosowania Piotr Fulmański Wydział Matematyki i Informatyki, Uniwersytet Łódzki, Polska 12 czerwca 2008 Plan 1 Czym jest (naturalna) inteligencja? 2 Czym jest (sztuczna)

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ SZTUCZNA INTELIGENCJA dwa podstawowe znaczenia Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące się), pewną dyscyplinę badawczą (dział

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK

Bardziej szczegółowo

Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne. Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych

Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne. Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych Plan wystąpienia Co to jest sztuczna inteligencja? Pojęcie słabej

Bardziej szczegółowo

Systemy ekspertowe : program PCShell

Systemy ekspertowe : program PCShell Instytut Informatyki Uniwersytetu Śląskiego lab 1 Opis sytemu ekspertowego Metody wnioskowania System PcShell Projekt System ekspertowy - system ekspertowy to system komputerowy zawierający w sobie wyspecjalizowaną

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA Stefan Sokołowski SZTUCZNA INTELIGENCJA Inst Informatyki UG, Gdańsk, 2009/2010 Wykład1,17II2010,str1 SZTUCZNA INTELIGENCJA reguły gry Zasadnicze informacje: http://infugedupl/ stefan/dydaktyka/sztintel/

Bardziej szczegółowo

Stefan Sokołowski SZTUCZNAINTELIGENCJA. Inst. Informatyki UG, Gdańsk, 2009/2010

Stefan Sokołowski SZTUCZNAINTELIGENCJA. Inst. Informatyki UG, Gdańsk, 2009/2010 Stefan Sokołowski SZTUCZNAINTELIGENCJA Inst. Informatyki UG, Gdańsk, 2009/2010 Wykład1,17II2010,str.1 SZTUCZNA INTELIGENCJA reguły gry Zasadnicze informacje: http://inf.ug.edu.pl/ stefan/dydaktyka/sztintel/

Bardziej szczegółowo

Narzędzia AI. Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312. http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE)

Narzędzia AI. Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312. http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE) Narzędzia AI Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312 http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE) Nauka o maszynach realizujących zadania, które wymagają inteligencji

Bardziej szczegółowo

Wniosek 2: należy ograniczyć ilość wiedzy, np. ograniczając działanie systemu do pewnej dziedziny wiedzy!

Wniosek 2: należy ograniczyć ilość wiedzy, np. ograniczając działanie systemu do pewnej dziedziny wiedzy! Plan wykładu Systemy eksperckie Wnioski z badań nad systemami mi w rachunku predykatów Reguły produkcji jako system reprezentacji Algorytm rozpoznaj-wykonaj Sterowanie wnioskowaniem w systemach regułowych

Bardziej szczegółowo

Elementy kognitywistyki II: Sztuczna inteligencja

Elementy kognitywistyki II: Sztuczna inteligencja Elementy kognitywistyki II: Sztuczna inteligencja Piotr Konderak Zakład Logiki i Filozofii Nauki p.203b, Collegium Humanicum konsultacje: wtorki, 16:00-17:00 kondorp@bacon.umcs.lublin.pl http://konderak.eu

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

Festiwal Myśli Abstrakcyjnej, Warszawa, Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII?

Festiwal Myśli Abstrakcyjnej, Warszawa, Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII? Festiwal Myśli Abstrakcyjnej, Warszawa, 22.10.2017 Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII? Dwa kluczowe terminy Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE DIAGNOSTYKĘ MEDYCZNĄ Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, projekt

Bardziej szczegółowo

Praca dyplomowa magisterska

Praca dyplomowa magisterska KATEDRA WYTRZYMAŁOŚCI MATERIAŁÓW I METOD KOMPUTEROWYCH MECHANIKI Wydział Mechaniczny Technologiczny POLITECHNIKA ŚLĄSKA W GLIWICACH Praca dyplomowa magisterska Temat: Komputerowy system wspomagania wiedzy:

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Metody drążenia danych D1.3

KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Metody drążenia danych D1.3 KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:

Bardziej szczegółowo

[1] [2] [3] [4] [5] [6] Wiedza

[1] [2] [3] [4] [5] [6] Wiedza 3) Efekty dla studiów drugiego stopnia - profil ogólnoakademicki na kierunku Informatyka w języku angielskim (Computer Science) na specjalności Sztuczna inteligencja (Artificial Intelligence) na Wydziale

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: INTELIGENTNE SYSTEMY OBLICZENIOWE Systems Based on Computational Intelligence Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj

Bardziej szczegółowo

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do

Bardziej szczegółowo

T2A_W01 T2A_W01 T2A_W02 3 SI_W03 Posiada szeroką wiedzę w zakresie teorii grafów T2A_W01

T2A_W01 T2A_W01 T2A_W02 3 SI_W03 Posiada szeroką wiedzę w zakresie teorii grafów T2A_W01 Efekty dla studiów drugiego stopnia profil ogólnoakademicki, na kierunku Informatyka w języku polskim, na specjalnościach Metody sztucznej inteligencji oraz Projektowanie systemów CAD/CAM, na Wydziale

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo

Efekt kształcenia. Wiedza

Efekt kształcenia. Wiedza Efekty dla studiów drugiego stopnia profil ogólnoakademicki na kierunku Informatyka na specjalności Przetwarzanie i analiza danych, na Wydziale Matematyki i Nauk Informacyjnych, gdzie: * Odniesienie oznacza

Bardziej szczegółowo

KIERUNKOWE EFEKTY KSZTAŁCENIA

KIERUNKOWE EFEKTY KSZTAŁCENIA WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA II STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA NAUK TECHNICZNYCH Dyscyplina

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Efekt kształcenia. Ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną w zakresie algorytmów i ich złożoności obliczeniowej.

Efekt kształcenia. Ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną w zakresie algorytmów i ich złożoności obliczeniowej. Efekty dla studiów pierwszego stopnia profil ogólnoakademicki na kierunku Informatyka w języku polskim i w języku angielskim (Computer Science) na Wydziale Matematyki i Nauk Informacyjnych, gdzie: * Odniesienie-

Bardziej szczegółowo

Systemy ekspertowe. Podstawowe pojęcia, geneza, metody wnioskowania, PC-Shell

Systemy ekspertowe. Podstawowe pojęcia, geneza, metody wnioskowania, PC-Shell Systemy ekspertowe Podstawowe pojęcia, geneza, metody wnioskowania, PC-Shell Inteligencja i ekspert dziedzinowy Inteligencja - (psych.) zespół zdolności umysłowych umożliwiających jednostce sprawne korzystanie

Bardziej szczegółowo

zna podstawową terminologię w języku obcym umożliwiającą komunikację w środowisku zawodowym

zna podstawową terminologię w języku obcym umożliwiającą komunikację w środowisku zawodowym Wykaz kierunkowych efektów kształcenia PROGRAM KSZTAŁCENIA: Kierunek Edukacja techniczno-informatyczna POZIOM KSZTAŁCENIA: studia pierwszego stopnia PROFIL KSZTAŁCENIA: praktyczny Przyporządkowanie kierunku

Bardziej szczegółowo

zna metody matematyczne w zakresie niezbędnym do formalnego i ilościowego opisu, zrozumienia i modelowania problemów z różnych

zna metody matematyczne w zakresie niezbędnym do formalnego i ilościowego opisu, zrozumienia i modelowania problemów z różnych Grupa efektów kierunkowych: Matematyka stosowana I stopnia - profil praktyczny (od 17 października 2014) Matematyka Stosowana I stopień spec. Matematyka nowoczesnych technologii stacjonarne 2015/2016Z

Bardziej szczegółowo

Co to jest jest oprogramowanie? 8. Co to jest inżynieria oprogramowania? 9. Jaka jest różnica pomiędzy inżynierią oprogramowania a informatyką?

Co to jest jest oprogramowanie? 8. Co to jest inżynieria oprogramowania? 9. Jaka jest różnica pomiędzy inżynierią oprogramowania a informatyką? ROZDZIAŁ1 Podstawy inżynierii oprogramowania: - Cele 2 - Zawartość 3 - Inżynieria oprogramowania 4 - Koszty oprogramowania 5 - FAQ o inżynierii oprogramowania: Co to jest jest oprogramowanie? 8 Co to jest

Bardziej szczegółowo

Sztuczna inteligencja - wprowadzenie

Sztuczna inteligencja - wprowadzenie Sztuczna inteligencja - wprowadzenie Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Sztuczna inteligencja komputerów - wprowadzenie Kontakt: dr inż. Dariusz Banasiak, pok.

Bardziej szczegółowo

EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6

EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6 EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6 studia pierwszego stopnia o profilu ogólnoakademickim Symbol K_W01 Po ukończeniu studiów pierwszego stopnia

Bardziej szczegółowo

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW WYDZIAŁ KIERUNEK z obszaru nauk POZIOM KSZTAŁCENIA FORMA STUDIÓW PROFIL JĘZYK STUDIÓW Podstawowych Problemów Techniki Informatyka technicznych 6 poziom, studia inżynierskie

Bardziej szczegółowo

mgr inż. Magdalena Deckert Poznań, r. Metody przyrostowego uczenia się ze strumieni danych.

mgr inż. Magdalena Deckert Poznań, r. Metody przyrostowego uczenia się ze strumieni danych. mgr inż. Magdalena Deckert Poznań, 30.11.2010r. Metody przyrostowego uczenia się ze strumieni danych. Plan prezentacji Wstęp Concept drift i typy zmian Algorytmy przyrostowego uczenia się ze strumieni

Bardziej szczegółowo

Opracował: mgr inż. Marcin Olech

Opracował: mgr inż. Marcin Olech Laboratorium 1. i 2. Strona 1 z 8 Spis treści: 1. Podstawy pracy w zintegrowanym pakiecie sztucznej inteligencji AITECH Sphinx. 2. Szkieletowy system ekspertowy PC Shell 4.0 3. Tworzenie bazy wiedzy w

Bardziej szczegółowo

Syste t m e y m ek e s k per pe to t w o e w Wykład 8 1

Syste t m e y m ek e s k per pe to t w o e w Wykład 8 1 Systemy ekspertowe Wykład 8 1 SYSTEMY HYBRYDOWE 2 Definicja (przykładowa) Przez (inteligentny) system hybrydowy rozumiemy system ze sztuczną inteligencją zdolny do rozwiązywania złożonych problemów, który

Bardziej szczegółowo

WIEDZA T1P_W06. K_W01 ma podstawową wiedzę o zarządzaniu jako nauce, jej miejscu w systemie nauk i relacjach do innych nauk;

WIEDZA T1P_W06. K_W01 ma podstawową wiedzę o zarządzaniu jako nauce, jej miejscu w systemie nauk i relacjach do innych nauk; SYMBOL Efekty kształcenia dla kierunku studiów: inżynieria zarządzania; Po ukończeniu studiów pierwszego stopnia na kierunku inżynieria zarządzania, absolwent: Odniesienie do obszarowych efektów kształcenia

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych Rodzaj zajęć: wykład, laboratorium BAZY DANYCH I SYSTEMY EKSPERTOWE Database and expert systems Forma

Bardziej szczegółowo

Zakładane efekty kształcenia dla kierunku Wydział Telekomunikacji, Informatyki i Elektrotechniki

Zakładane efekty kształcenia dla kierunku Wydział Telekomunikacji, Informatyki i Elektrotechniki Jednostka prowadząca kierunek studiów Nazwa kierunku studiów Specjalności Obszar kształcenia Profil kształcenia Poziom kształcenia Forma kształcenia Tytuł zawodowy uzyskiwany przez absolwenta Dziedziny

Bardziej szczegółowo

Alan M. TURING. Matematyk u progu współczesnej informatyki

Alan M. TURING. Matematyk u progu współczesnej informatyki Alan M. TURING n=0 1 n! Matematyk u progu współczesnej informatyki Wykład 5. Alan Turing u progu współczesnej informatyki O co pytał Alan TURING? Czym jest algorytm? Czy wszystkie problemy da się rozwiązać

Bardziej szczegółowo

Opis efektu kształcenia dla programu kształcenia

Opis efektu kształcenia dla programu kształcenia TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: Kierunek Fizyka Techniczna POZIOM

Bardziej szczegółowo

5 Moduył do wyboru II *[zobacz opis poniżej] 4 Projektowanie i konfiguracja sieci komputerowych Z

5 Moduył do wyboru II *[zobacz opis poniżej] 4 Projektowanie i konfiguracja sieci komputerowych Z 1. Nazwa kierunku informatyka 2. Cykl rozpoczęcia 2016/2017L 3. Poziom kształcenia studia drugiego stopnia 4. Profil kształcenia ogólnoakademicki 5. Forma prowadzenia studiów stacjonarna Specjalizacja:

Bardziej szczegółowo

Systemy ekspertowe. PC-Shell. Sprawozdanie z bazy wiedzy

Systemy ekspertowe. PC-Shell. Sprawozdanie z bazy wiedzy Wydział Informatyki i Nauki o Materiałach Uniwersytet Śląski Systemy ekspertowe PC-Shell Sprawozdanie z bazy wiedzy Zbigniew Kędzior Informatyka inżynierska Studia niestacjonarne Trzeci rok Grupa A 1.

Bardziej szczegółowo

Odniesienie do obszarowych efektów kształcenia 1 2 3. Kierunkowe efekty kształcenia WIEDZA (W)

Odniesienie do obszarowych efektów kształcenia 1 2 3. Kierunkowe efekty kształcenia WIEDZA (W) EFEKTY KSZTAŁCENIA NA KIERUNKU "MECHATRONIKA" nazwa kierunku studiów: Mechatronika poziom kształcenia: studia pierwszego stopnia profil kształcenia: ogólnoakademicki symbol kierunkowych efektów kształcenia

Bardziej szczegółowo

STUDIA I MONOGRAFIE NR

STUDIA I MONOGRAFIE NR STUDIA I MONOGRAFIE NR 21 WYBRANE ZAGADNIENIA INŻYNIERII WIEDZY Redakcja naukowa: Andrzej Cader Jacek M. Żurada Krzysztof Przybyszewski Łódź 2008 3 SPIS TREŚCI WPROWADZENIE 7 SYSTEMY AGENTOWE W E-LEARNINGU

Bardziej szczegółowo

5 Moduył do wyboru II *[zobacz opis poniżej] 4 Projektowanie i konfiguracja sieci komputerowych Z

5 Moduył do wyboru II *[zobacz opis poniżej] 4 Projektowanie i konfiguracja sieci komputerowych Z 1. Nazwa kierunku informatyka 2. Cykl rozpoczęcia 2016/2017Z, 2016/2017L 3. Poziom kształcenia studia drugiego stopnia 4. Profil kształcenia ogólnoakademicki 5. Forma prowadzenia studiów niestacjonarna

Bardziej szczegółowo

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW. TRANSPORT studia stacjonarne i niestacjonarne

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW. TRANSPORT studia stacjonarne i niestacjonarne Załącznik do uchwały Nr 000-8/4/2012 Senatu PRad. z dnia 28.06.2012r. EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW TRANSPORT studia stacjonarne i niestacjonarne Nazwa wydziału: Wydział Transportu i Elektrotechniki

Bardziej szczegółowo

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia

Bardziej szczegółowo

Inteligentne Multimedialne Systemy Uczące

Inteligentne Multimedialne Systemy Uczące Działanie realizowane w ramach projektu Absolwent informatyki lub matematyki specjalistą na rynku pracy Matematyka i informatyka może i trudne, ale nie nudne Inteligentne Multimedialne Systemy Uczące dr

Bardziej szczegółowo

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW INFORMATYKA

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW INFORMATYKA EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW INFORMATYKA poziom kształcenia profil kształcenia tytuł zawodowy uzyskiwany przez absolwenta studia drugiego stopnia ogólnoakademicki magister inżynier 1. Umiejscowienie

Bardziej szczegółowo

Kilka zagadnień dotyczących Sztucznej inteligencji.

Kilka zagadnień dotyczących Sztucznej inteligencji. Kilka zagadnień dotyczących Sztucznej inteligencji. Artykuł pobrano ze strony eioba.pl Jest tu kilka zagadnień dotyczących SI. Autor przygotowania: Magister inżynier Ireneusz Łukasz Dzitkowski Wałcz, dnia:

Bardziej szczegółowo

Podsumowanie wyników ankiety

Podsumowanie wyników ankiety SPRAWOZDANIE Kierunkowego Zespołu ds. Programów Kształcenia dla kierunku Informatyka dotyczące ankiet samooceny osiągnięcia przez absolwentów kierunkowych efektów kształcenia po ukończeniu studiów w roku

Bardziej szczegółowo

Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej

Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej Efekty na kierunku AiR drugiego stopnia - Wiedza K_W01 K_W02 K_W03 K_W04 K_W05 K_W06 K_W07 K_W08 K_W09 K_W10 K_W11 K_W12 K_W13 K_W14 Ma rozszerzoną wiedzę dotyczącą dynamicznych modeli dyskretnych stosowanych

Bardziej szczegółowo

KIERUNKOWE EFEKTY KSZTAŁCENIA

KIERUNKOWE EFEKTY KSZTAŁCENIA Zał. nr 1 do Programu kształcenia KIERUNKOWE EFEKTY KSZTAŁCENIA WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INŻYNIERIA SYSTEMÓW Stopień studiów: STUDIA II STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR

Bardziej szczegółowo

KARTA PRZEDMIOTU. Dyscyplina:

KARTA PRZEDMIOTU. Dyscyplina: KARTA PRZEDMIOTU Jednostka: WIPiE Dyscyplina: Poziom studiów: 3 Semestr: 3 lub 4 Forma studiów: stacjonarne Język wykładowy: Nazwa przedmiotu: Metody sztucznej inteligencji Symbol przedmiotu: MSI Liczba

Bardziej szczegółowo

O ISTOTNYCH OGRANICZENIACH METODY

O ISTOTNYCH OGRANICZENIACH METODY O ISTOTNYCH OGRANICZENIACH METODY ALGORYTMICZNEJ Dwa pojęcia algorytmu (w informatyce) W sensie wąskim Algorytmem nazywa się każdy ogólny schemat procedury możliwej do wykonania przez uniwersalną maszynę

Bardziej szczegółowo

Symbol efektu kształcenia

Symbol efektu kształcenia Efekty dla studiów drugiego stopnia - profil ogólnoakademicki, na kierunku Informatyka, na specjalnościach Metody sztucznej inteligencji (Tabela 1), Projektowanie systemów CAD/CAM (Tabela 2) oraz Przetwarzanie

Bardziej szczegółowo

ROZWÓJ SYSTEMÓW SZTUCZNEJ INTELIGENCJI W PERSPEKTYWIE "PRZEMYSŁ 4.0"

ROZWÓJ SYSTEMÓW SZTUCZNEJ INTELIGENCJI W PERSPEKTYWIE PRZEMYSŁ 4.0 ROZWÓJ SYSTEMÓW SZTUCZNEJ INTELIGENCJI W PERSPEKTYWIE "PRZEMYSŁ 4.0" Dr inż. Andrzej KAMIŃSKI Instytut Informatyki i Gospodarki Cyfrowej Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie

Bardziej szczegółowo

Efekty uczenia się na kierunku. Logistyka (studia pierwszego stopnia o profilu praktycznym)

Efekty uczenia się na kierunku. Logistyka (studia pierwszego stopnia o profilu praktycznym) Efekty uczenia się na kierunku Załącznik nr 2 do uchwały nr 412 Senatu Uniwersytetu Zielonogórskiego z dnia 29 maja 2019 r. Logistyka (studia pierwszego stopnia o profilu praktycznym) Tabela 1. Kierunkowe

Bardziej szczegółowo

Pytania z przedmiotów kierunkowych

Pytania z przedmiotów kierunkowych Pytania na egzamin dyplomowy z przedmiotów realizowanych przez pracowników IIwZ studia stacjonarne I stopnia Zarządzanie i Inżynieria Produkcji Pytania z przedmiotów kierunkowych 1. Co to jest algorytm?

Bardziej szczegółowo

Kierunek Zarządzanie II stopnia Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów kształcenia dla obszaru nauk społecznych

Kierunek Zarządzanie II stopnia Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów kształcenia dla obszaru nauk społecznych Kierunek Zarządzanie II stopnia Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów kształcenia dla obszaru nauk społecznych Objaśnienie oznaczeń: Z efekty kierunkowe dla Zarządzania W wiedza

Bardziej szczegółowo

2

2 1 2 3 4 5 Dużo pisze się i słyszy o projektach wdrożeń systemów zarządzania wiedzą, które nie przyniosły oczekiwanych rezultatów, bo mało kto korzystał z tych systemów. Technologia nie jest bowiem lekarstwem

Bardziej szczegółowo

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania 2/32 Cel analizy Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie:

Bardziej szczegółowo

Systemy uczące się wykład 2

Systemy uczące się wykład 2 Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania

Bardziej szczegółowo

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów Eksploracja danych Piotr Lipiński Informacje ogólne Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów UWAGA: prezentacja to nie

Bardziej szczegółowo

Systemy ekspertowe. Wnioskowanie w systemach regułowych. Część piąta. Autor Roman Simiński.

Systemy ekspertowe. Wnioskowanie w systemach regułowych. Część piąta.  Autor Roman Simiński. Część piąta Autor Roman Simiński Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi uważnego w nim uczestnictwa.

Bardziej szczegółowo

ANKIETA SAMOOCENY OSIĄGNIĘCIA KIERUNKOWYCH EFEKTÓW KSZTAŁCENIA

ANKIETA SAMOOCENY OSIĄGNIĘCIA KIERUNKOWYCH EFEKTÓW KSZTAŁCENIA Szanowny Studencie, ANKIETA SAMOOCENY OSIĄGNIĘCIA KIERUNKOWYCH EFEKTÓW KSZTAŁCENIA bardzo prosimy o anonimową ocenę osiągnięcia kierunkowych efektów kształcenia w trakcie Twoich studiów. Twój głos pozwoli

Bardziej szczegółowo

Efekty kształcenia. Tabela efektów kształcenia

Efekty kształcenia. Tabela efektów kształcenia Efekty kształcenia Tabela efektów kształcenia W opisie efektów kierunkowych uwzględniono wszystkie efekty kształcenia występujące w obszarze kształcenia w zakresie nauk technicznych. Objaśnienie oznaczeń:

Bardziej szczegółowo

Metody sztucznej inteligencji w układach sterowania METODY SZTUCZNEJ INTELIGENCJI W UKŁADACH STEROWANIA

Metody sztucznej inteligencji w układach sterowania METODY SZTUCZNEJ INTELIGENCJI W UKŁADACH STEROWANIA 1 Metody sztucznej inteligencji w układach sterowania Podstawy algorytmów genetycznych oraz ich aplikacje w procesach optymalizacji Sztuczne sieci neuronowe-formalne podstawy i wybrane aplikacje Wprowadzenie

Bardziej szczegółowo

Efekty kształcenia dla makrokierunku: INFORMATYKA STOSOWANA Z KOMPUTEROWĄ NAUKĄ O MATERIAŁACH Wydział: MECHANICZNY TECHNOLOGICZNY

Efekty kształcenia dla makrokierunku: INFORMATYKA STOSOWANA Z KOMPUTEROWĄ NAUKĄ O MATERIAŁACH Wydział: MECHANICZNY TECHNOLOGICZNY Efekty kształcenia dla makrokierunku: INFORMATYKA STOSOWANA Z KOMPUTEROWĄ NAUKĄ O MATERIAŁACH Wydział: MECHANICZNY TECHNOLOGICZNY nazwa kierunku studiów: Makrokierunek: Informatyka stosowana z komputerową

Bardziej szczegółowo

WIEDZA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza

WIEDZA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING WIEDZA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki

Bardziej szczegółowo

Zakładane efekty kształcenia dla kierunku

Zakładane efekty kształcenia dla kierunku Zakładane efekty dla kierunku Jednostka prowadząca kierunek studiów Nazwa kierunku studiów Specjalności Obszar Profil Poziom Tytuł zawodowy uzyskiwany przez absolwenta Dziedziny nauki / sztuki i dyscypliny

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH

Bardziej szczegółowo

Metody Sztucznej Inteligencji Methods of Artificial Intelligence. Elektrotechnika II stopień ogólno akademicki. niestacjonarne. przedmiot kierunkowy

Metody Sztucznej Inteligencji Methods of Artificial Intelligence. Elektrotechnika II stopień ogólno akademicki. niestacjonarne. przedmiot kierunkowy Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

DLA SEKTORA INFORMATYCZNEGO W POLSCE

DLA SEKTORA INFORMATYCZNEGO W POLSCE DLA SEKTORA INFORMATYCZNEGO W POLSCE SRK IT obejmuje kompetencje najważniejsze i specyficzne dla samego IT są: programowanie i zarządzanie systemami informatycznymi. Z rozwiązań IT korzysta się w każdej

Bardziej szczegółowo

Informatyka. II stopień. Ogólnoakademicki. Stacjonarne/Niestacjonarne. Kierunkowy efekt kształcenia - opis WIEDZA

Informatyka. II stopień. Ogólnoakademicki. Stacjonarne/Niestacjonarne. Kierunkowy efekt kształcenia - opis WIEDZA Załącznik nr 6 do uchwały nr 509 Senatu Uniwersytetu Zielonogórskiego z dnia 25 kwietnia 2012 r. w sprawie określenia efektów kształcenia dla kierunków studiów pierwszego i drugiego stopnia prowadzonych

Bardziej szczegółowo

UCHWAŁA NR 46/2013. Senatu Akademii Marynarki Wojennej im. Bohaterów Westerplatte z dnia 19 września 2013 roku

UCHWAŁA NR 46/2013. Senatu Akademii Marynarki Wojennej im. Bohaterów Westerplatte z dnia 19 września 2013 roku UCHWAŁA NR 46/2013 Senatu Akademii Marynarki Wojennej im. Bohaterów Westerplatte z dnia 19 września 2013 roku w sprawie: korekty efektów kształcenia dla kierunku informatyka Na podstawie ustawy z dnia

Bardziej szczegółowo

2/4. informatyka" studia I stopnia. Nazwa kierunku studiów i kod. Informatyka WM-I-N-1 programu wg USOS. Tytuł zawodowy uzyskiwany przez

2/4. informatyka studia I stopnia. Nazwa kierunku studiów i kod. Informatyka WM-I-N-1 programu wg USOS. Tytuł zawodowy uzyskiwany przez Załącznik Nr 5 do Uchwały Nr 67/2015 Senatu UKSW z dnia 22 maja 2015 r. Dokumentacja dotycząca opisu efektów kształcenia dla programu kształcenia na kierunku informatyka" studia I stopnia Nazwa kierunku

Bardziej szczegółowo

Systemy ekspertowe Część siódma Realizacja dziedzinowego systemu ekspertowego Roman Simiński

Systemy ekspertowe Część siódma Realizacja dziedzinowego systemu ekspertowego Roman Simiński Część siódma Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.us.edu.pl/~siminski Realizacja dziedzinowego systemu ekspertowego Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych

Bardziej szczegółowo

KIERUNKOWE EFEKTY KSZTAŁCENIA

KIERUNKOWE EFEKTY KSZTAŁCENIA KIERUNKOWE EFEKTY KSZTAŁCENIA WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA II STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA

Bardziej szczegółowo

Programowanie gier. wykład 0. Joanna Kołodziejczyk. 30 września Joanna Kołodziejczyk Programowanie gier 30 września / 13

Programowanie gier. wykład 0. Joanna Kołodziejczyk. 30 września Joanna Kołodziejczyk Programowanie gier 30 września / 13 Programowanie gier wykład 0 Joanna Kołodziejczyk 30 września 2016 Joanna Kołodziejczyk Programowanie gier 30 września 2016 1 / 13 Program przedmiotu Formy zajęć: 1 Wykład studia stacjonarne (15h) 2 Laboratorium

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO

Bardziej szczegółowo

zagranicznej wybranych państw oraz stosunków międzynarodowych w Europie Środkowo-Wschodniej

zagranicznej wybranych państw oraz stosunków międzynarodowych w Europie Środkowo-Wschodniej Załącznik nr 5 do Uchwały nr 64/2013 Senatu UKSW z dnia 21 maja 2013 r. Załącznik nr 5 do Uchwały nr 53/2012 Senatu UKSW z dnia 24 maja 2012 r. Dokumentacja dotycząca opisu efektów kształcenia dla programu

Bardziej szczegółowo

I rok. semestr 1 semestr 2 15 tyg. 15 tyg. Razem ECTS. laborat. semin. ECTS. konwer. wykł. I rok. w tym. Razem ECTS. laborat. semin. ECTS. konwer.

I rok. semestr 1 semestr 2 15 tyg. 15 tyg. Razem ECTS. laborat. semin. ECTS. konwer. wykł. I rok. w tym. Razem ECTS. laborat. semin. ECTS. konwer. Wydział Informatyki i Nauki o Materiałach Kierunek Informatyka studia I stopnia inżynierskie studia stacjonarne 08- IO1S-13 od roku akademickiego 2015/2016 A Lp GRUPA TREŚCI PODSTAWOWYCH kod Nazwa modułu

Bardziej szczegółowo

Uchwała obowiązuje od dnia podjęcia przez Senat. Traci moc Uchwała nr 144/06/2013 Senatu Uniwersytetu Rzeszowskiego z 27 czerwca 2013 r.

Uchwała obowiązuje od dnia podjęcia przez Senat. Traci moc Uchwała nr 144/06/2013 Senatu Uniwersytetu Rzeszowskiego z 27 czerwca 2013 r. Rektor Uniwersytetu Rzeszowskiego al. Rejtana 16c; 35-959 Rzeszów tel.: + 48 17 872 10 00 (centrala) + 48 17 872 10 10 fax: + 48 17 872 12 65 e-mail: rektorur@ur.edu.pl Uchwała nr 282/03/2014 Senatu Uniwersytetu

Bardziej szczegółowo

prawda symbol WIEDZA DANE komunikat fałsz liczba INFORMACJA (nie tyko w informatyce) kod znak wiadomość ENTROPIA forma przekaz

prawda symbol WIEDZA DANE komunikat fałsz liczba INFORMACJA (nie tyko w informatyce) kod znak wiadomość ENTROPIA forma przekaz WIEDZA prawda komunikat symbol DANE fałsz kod INFORMACJA (nie tyko w informatyce) liczba znak forma ENTROPIA przekaz wiadomość Czy żyjemy w erze informacji? TAK Bo używamy nowego rodzaju maszyn maszyn

Bardziej szczegółowo

M T E O T D O ZI Z E E A LG L O G R O Y R TM

M T E O T D O ZI Z E E A LG L O G R O Y R TM O ALGORYTMACH I METODZIE ALGORYTMICZNEJ Czym jest algorytm? Czym jest algorytm? przepis schemat zestaw reguł [ ] program ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające

Bardziej szczegółowo

ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)

ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ID1SII4 Nazwa modułu Systemy inteligentne 1 Nazwa modułu w języku angielskim Intelligent

Bardziej szczegółowo

Prof. Stanisław Jankowski

Prof. Stanisław Jankowski Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny

Bardziej szczegółowo