Wydział Elektroniki kierunek: Informatyka/INS. Systemy klasyfikujące w modelowaniu sztucznego życia

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wydział Elektroniki kierunek: Informatyka/INS. Systemy klasyfikujące w modelowaniu sztucznego życia"

Transkrypt

1 Wydział Elektroniki kierunek: Informatyka/INS Informatyka systemów autonomicznych (1) 2006/2007 Systemy klasyfikujące w modelowaniu sztucznego życia Opracowanie: Jędrysiak Sylwester Prowadzący: dr inż. Marek Piasecki Wrocław 2007

2 SPIS TREŚCI Informatyka systemów autonomicznych Spis treści 1 System klasyfikujący Definicja Składniki systemu klasyfikującego Sztuczne życie 4 3 Historia Gra w życie Animki Kiedy gonić listonosza 7 Literatura 9 Politechnika Wrocławska 2

3 1 System klasyfikujący Informatyka systemów autonomicznych 1 System klasyfikujący 1.1 Definicja System klasyfikujący jest to system, który uczy się prostych syntaktycznie reguł (zwanych klasyfikatorami), w celu koordynacji swoich działań w dowolnym środowisku. Jest to specjalizowana aplikacja na bazie algorytmów genetycznych czasami nazywana agentem adaptacyjnym. Jedynym sposobem na stworzenie działającego systemu klasyfikującego jest sklasyfikowanie środowiska, w którym ma działać i efektywne wykorzystanie reguł. Jest to bardzo ludzki sposób obserwacji świata. Ludzie zawszę obserwują środowisko, dzielą je na kategorie, podkategorie. Gdy napotykamy jakąś nieznaną sytuację, próbujemy użyć metody, która wydaje się być najodpowiedniejsza w danym momencie. Systemy klasyfikujące mają zdolność do kategoryzowania swojego środowiska i dynamicznego tworzenia reguł, dzięki czemu mogą przystosowywać się do zmiennych warunków. 1.2 Składniki systemu klasyfikującego Podstawowymi elementami systemu klasyfikującego są: 1. środowisko wysyłające komunikaty, 2. dane wejściowe, 3. reguły, 4. algorytm genetyczny. Układ przetwarzania komunikatów w systemie klasyfikującym stanowi szczególny przypadek systemu produkcji. Choć rozmaite warianty systemów produkcji różnią się szczegółami składniowymi, ogólnie biorąc produkcje mają w nich następującą postać: jeśli < warunek > to < akcja > Na pierwszy rzut oka ograniczenie się do tak prostego mechanizmu reprezentacji wiedzy wydaje się zbyt restrykcyjne. Jednakże dowiedziono, że systemy produkcji są systemami uniwersalnymi obliczeniowo. Co więcej są one dogodne w aspekcie algorytmicznym. Systemy klasyfikujące dopuszczają jedynie reguły mające reprezentacje o stałej długości. Takie ograniczenie ma dwie zalety. Po pierwsze wszystkie ciągi symboli określonego Politechnika Wrocławska 3

4 2 Sztuczne życie Informatyka systemów autonomicznych alfabetu są poprawnymi syntaktycznie regułami. Po drugie, reprezentacja w postaci słów o ustalonej długości umożliwia zastosowanie operacji typu genetycznego. Dzięki temu powstaje możliwość wykorzystania algorytmu genetycznego do poszukiwań w przestrzeni dopuszczalnych reguł. W tradycyjnych systemach doradczych wartość określonej reguły w stosunku do innych reguł zostaje ustalona przez programistę na podstawie ocen eksperta lub grupy ekspertów, których dany system ma emulować. W systemie uczącym się reguł nie ma miejsca na taki luksus. Względna wartość różnych reguł jest właśnie jedną z podstawowych rzeczy, których trzeba się wyuczyć. W celu wspomagania tego typu uczenia się systemy klasyfikujące zmuszają klasyfikatory do koegzystencji w ramach rynku usług informacyjnych. Klasyfikatory konkurują ze sobą o prawo do reakcji na komunikaty, przyznawane tym spośród nich, które składają najkorzystniejsze oferty, przy czym opłaty ponoszone z tego tytułu służą jako źródło przychodu dla nadawców, których komunikaty zostały pomyślnie odebrane. W ten sposób tworzy się łańcuch pośredników między producentem (detektory) a konsumentem (akcje). 2 Sztuczne życie Pojęcie sztuczne życie wydaje się mieć w sobie coś sztucznego. Jest to dość niefortunne określenie. Przecież życie nie może być sztuczne. Życie z samego swojego założenia jest żywe i nie można mówić o sztuczności. A jeśli coś jest sztuczne nie ma mowy o istnieniu życia. Pojęcie to sugeruje, że człowiek w swoim twórczym pędzie zabiera się do stworzenia życia. Życie w każdym swoim przejawie i na każdej płaszczyźnie opiera się na prostych interakcjach pomiędzy poszczególnymi jednostkami, które wzajemnie na siebie wpływają. Widać tu bardzo silną analogię do systemów klasyfikujących. Ta prosta zasada obowiązuje w niezwykle złożonym i różnorodnym świecie żywych organizmów. Podobne zasady wykorzystał w 1968 roku brytyjski matematyk John Conway, tworząc Grę w Życie (Game of Life). Politechnika Wrocławska 4

5 3 Historia Informatyka systemów autonomicznych 3 Historia 3.1 Gra w życie Gra ta polega na stosowaniu określonych reguł (pojęcie reguły pojawia się po raz kolejny) dla każdego kwadratu reprezentującego komórkę w pewnej siatce. Te reguły to: Każdy czarny kwadracik (komórka) jest żywy. Każda biała komórka jest martwa. Każda komórka ma ośmiu sąsiadów. Każda komórka może jako żywa przejść do następnej generacji, jeżeli jej dwóch lub trzech sąsiadów to żywe komórki. Jeśli więcej niż trzy (zatłoczenie) lub mniej niż dwie (izolacja) sąsiednie komórki są żywe, to komórka umiera. Każda martwa komórka może zostać ożywiona, jeżeli jej trzech sąsiadów to żywe komórki. Stosowanie tych reguł za każdym razem dla każdej komórki jest równoznaczne z przechodzeniem z jednego pokolenia do drugiego. Kolejne generacje charakteryzują się zmianami wzorów powstających przy wizualizacji tego procesu. Po rozpoczęciu działania algorytmu od jakiegoś początkowego schematu komórek (losowego lub konkretnego) można się spodziewać nawet wyjątkowo złożonych fascynujących kształtów. Niektóre układy komórek szybko stawały się nieuporządkowanym zbiorem i umierały, ale inne pozostawały aktywne przez setki albo i tysiące pokoleń pozostając w skończonym układzie wzorów, wśród których można wyróżnić tzw. szybowce, oczy, bramki logiczne czy pamięci binarne. Tak więc przechodzimy od prostoty początkowej formy i prostych reguł do wysokiej złożoności otrzymywanych w ten sposób wyników. 3.2 Animki Wszystkie istoty automaty o złożonych regułach w sztucznym życiu przejawiające pewne zachowania prawdziwych zwierząt nazywane są animkami. Stewart Wilson pierwszy użył tego określenia, nazywając tak swoje wyewoluowane na komputerze poszukujące pożywienia automaty w kształcie kwadratów. Usiłował on zrozumieć podstawowe reguły uczenia się istot żywych prowadzące do lepszego dostosowania się do otoczenia i wymuszające odpowiednie zachowanie. W swoich badaniach wykorzystał systemy klasyfikujące Politechnika Wrocławska 5

6 3.2 Animki Informatyka systemów autonomicznych w podobny sposób, w jaki wykorzystał je John Holland w swojej komputerowej żabie. Żaba ta to indywiduum mogące określić jej stosunek do pojawiającego się w jej otoczeniu obcego obiektu. Na podstawie odpowiednich właściwości obiektu jak wielkość, położenie i odległość może podjąć albo atak, albo ucieczkę. Działanie systemu klasyfikującego pomaga jej odpowiedzieć na pytanie jak się zachować w jakiej sytuacji. Jeżeli obiekt jest duży i jest blisko to należy założyć, że jest wrogiem, a jeśli mały, lata i do tego blisko, to należy założyć, że jest pożywieniem. W pozostałych przypadkach żaba może nie reagować na ten obiekt. W ten sposób Wilson zaprogramował swojego pierwszego animka, którego głównym celem było znajdowanie pożywienia. Aby to osiągnąć posiadał on trzy podstawowe zmysły: wzrok, węch i smak oraz możliwość odczuwania bólu i przyjemności. Nowo stworzony animek po pewnym czasie wykorzystując swoje możliwości nauczył się odnajdować szybko jedzenie w swoim środowisku znacznie szybciej niż tuż po stworzeniu. Wyglądało to tak, że analizował otoczenie, sprawdzał swoje reguły i albo podejmował działanie na ich podstawie albo dodawał sobie nową regułę, gdy spotkał się z czymś nowym. W czasie swojego istnienia pewne reguły można było uogólnić, a inne usunąć, gdy się nie sprawdzały. W ten sposób utworzył sobie na własne potrzeby 8 podstawowych reguł i był w stanie za każdym razem sprawnie odnaleźć pożywienie. Na każdym poziomie życia, począwszy od reakcji biochemicznych w komórce, a skończywszy na ekosystemach, spotykamy ten sam schemat: pojedyncze jednostki mogące wpływać na zachowanie się innych jednostek i jednocześnie modyfikujące własne zachowanie pod wpływem pozostałych jednostek. A więc: jednostki i reguły ich zachowania, a w szczególności reguły akcji i reakcji przy spotkaniu z innymi jednostkami. Dla układów biologicznych jest przy tym charakterystyczne, że lokalne reguły są względnie proste, zwłaszcza w porównaniu z zachowaniem się całego układu. Własności układu, choćby najbardziej skomplikowane, muszą tu pojawić się jako skutek realizowania się jednostkowych reguł gry. Abstrahowanie od całej złożoności realnych układów niejednokrotnie już w historii nauki pozwoliło na intelektualne uchwycenie nowych sposobów ujęcia starych tematów. Politechnika Wrocławska 6

7 4 Kiedy gonić listonosza Informatyka systemów autonomicznych 4 Kiedy gonić listonosza Można by się zastanowić dlaczego psy ganiają listonoszy. Na pewno mają ku temu jakiś dobry powód, ale jedne psy to robią, inne nie. Zbudujmy system, który będzie podejmował decyzję czy gonić listonosza czy nie. Listonosz może różnie wyglądać i różnie się zachowywać. Może być duży, mały, szybki wolny. Przyjmijmy więc, że tego typu cechy listonosza będą wpływać na decyzję psa. Problem jaki możemy sobie postawić to jaka akcja będzie najlepsza dla konkretnego rodzaju listonosza. Więc odnosząc się do definicji z punktu 1.2 można wymienić: 1. środowiskiem jest prosty świat składający się z psów czekających na listonosza, 2. dane wejściowe to ciągły strumień różnych typów listonoszy, 3. chcemy odkryć reguły, które powiedzą psu co powinien zrobić w konfrontacji z określonym listonoszem, 4. użyjemy algorytmu genetycznego do wyznaczenia najlepszych reguł (na początku posiadamy jedynie losowe reguły postępowania) Jak zawsze jeśli chcemy, aby komputer wykonał za nas jakąś pracę musimy problem opisać w sposób dla niego zrozumiały. Przyjmijmy, że listonosza można opisać za pomocą 4 cech: wielkość szybkość czy boi się psów czy nosi karabin maszynowy Posiadając wyżej wymienione cechy możemy stworzyć 16 różnych typów listonoszy. Jednego z nich możemy opisać np. tak: DUŻY SZYBKI BOI SIĘ NOSI KARABIN czyli nasz listonosz jest duży, szybki, nie boi się psów i nie nosi karabinu. Każdy typ listonosza musi posiadać regułę mówiącą jak ma się zachować pies na jego widok. Najlepszym sposobem na wyznaczenie tych reguł jest pozwolić systemowi, aby sam je znalazł metodą kontrolowanych prób i błędów przez operacje genetyczne. Standardowo startujemy od reguł losowych. Politechnika Wrocławska 7

8 4 Kiedy gonić listonosza Informatyka systemów autonomicznych Zdefiniujmy sposób opisu reguł: IF [typ listonosza] THEN [akcja] Akcja oparta jest na ograniczonej liczbie wyborów. W tym przykładzie mamy do wyboru akcje: 1. goń listonosza, 2. uciekaj, 3. nic nie rób. Pozostaje jeszcze opisać całą regułę w sposób prosty do obróbki dla komputera i dla algorytmu genetycznego. Np. regułę IF [duży] AND [wolny] AND [boi się] AND [nie ma karabinu] THEN [goń listonosza] można zapisać: DUŻY SZYBKI BOI SIĘ NOSI KARABIN / GOŃ UCIEKAJ NIC NIE RÓB / Można także zdefiniować bardziej ogólną regułę IF [nosi karabin] THEN [uciekaj]: DUŻY SZYBKI BOI SIĘ NOSI KARABIN / GOŃ UCIEKAJ NIC NIE RÓB # # # 1 / Mając gotowe reprezentacje binarne reguł możemy je ewoluować za pomocą algorytmu genetycznego. Jednak aby algorytm zadziałał musimy mieć jakiś sposób oceny podejmowanych akcji. Np. nie chcemy, aby pies został skrzywdzony lub żeby nie marnował energii. Oba te warunki muszą zostać umieszczone w funkcji oceniającej, aby jedne reguły otrzymywały nagrody, a inne były karane. Jeśli np. mamy regułę, która mówi, że pies próbuje gonić listonosza, chociaż wiemy, że go nie dogoni, to taka reguła otrzyma niską wartość funkcji dopasowania. Używając powyższej miary funkcji dopasowania, nasz system po pewnym czasie mógłby wygenerować taki oto zestaw reguł: IF [duży] AND [wolny] THEN [nic nie rób] (pies może dogonić listonosza, ale ten może go skrzywdzić) IF [mały] AND [wolny] THEN [goń] (pies może dogonić listonosza bez obawy, że coś mu zrobi) IF [szybki] AND [boi się] THEN [nic nie rób] (listonosz ucieknie, bo jest szybki) Politechnika Wrocławska 8

9 LITERATURA Informatyka systemów autonomicznych IF [szybki] AND [nie boi się] THEN [goń] (listonosz jest szybki, ale nie będzie uciekał) IF [ma karabin] THEN [uciekaj] (listonosz ma broń, lepiej uciekać) Przedstawiony problem psa i listonosza jest na tyle prosty, że dałoby się go przedstawić w formie kilku równań z kilkoma niewiadomymi. Jednak jeśli mamy do czynienia z bardziej złożonym problemem, gdzie nie do końca znamy nasze wymagania, system klasyfikujący może okazać się przydatnym narzędziem. Może on nawet wytworzyć reguły, o których nigdy byśmy nie pomyśleli. Literatura [1] David E. Goldberg, Algorytmy genetyczne i ich zastosowanie, WNT 2003 [2] Politechnika Wrocławska 9

JAKIEGO RODZAJU NAUKĄ JEST

JAKIEGO RODZAJU NAUKĄ JEST JAKIEGO RODZAJU NAUKĄ JEST INFORMATYKA? Computer Science czy Informatyka? Computer Science czy Informatyka? RACZEJ COMPUTER SCIENCE bo: dziedzina ta zaistniała na dobre wraz z wynalezieniem komputerów

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 02 Jarosław Miszczak IITiS PAN Gliwice 06/10/2016 1 / 31 Czego dowiedzieliśmy się na poprzednim wykładzie? 1... 2... 3... 2 / 31 1 2 3 3 / 31 to jeden z pierwszych

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji www.math.uni.lodz.pl/ radmat Przeszukiwanie z ograniczeniami Zagadnienie przeszukiwania z ograniczeniami stanowi grupę problemów przeszukiwania w przestrzeni stanów, które składa się ze: 1 skończonego

Bardziej szczegółowo

O ISTOTNYCH OGRANICZENIACH METODY

O ISTOTNYCH OGRANICZENIACH METODY O ISTOTNYCH OGRANICZENIACH METODY ALGORYTMICZNEJ Dwa pojęcia algorytmu (w informatyce) W sensie wąskim Algorytmem nazywa się każdy ogólny schemat procedury możliwej do wykonania przez uniwersalną maszynę

Bardziej szczegółowo

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną

Bardziej szczegółowo

Modelowanie wieloskalowe. Automaty Komórkowe - podstawy

Modelowanie wieloskalowe. Automaty Komórkowe - podstawy Modelowanie wieloskalowe Automaty Komórkowe - podstawy Dr hab. inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 716 lmadej@agh.edu.pl

Bardziej szczegółowo

Turing i jego maszyny

Turing i jego maszyny Turing Magdalena Lewandowska Politechnika Śląska, wydział MS, semestr VI 20 kwietnia 2016 1 Kim był Alan Turing? Biografia 2 3 Mrówka Langtona Bomba Turinga 4 Biografia Kim był Alan Turing? Biografia Alan

Bardziej szczegółowo

Programowanie komputerów

Programowanie komputerów Programowanie komputerów Wykład 1-2. Podstawowe pojęcia Plan wykładu Omówienie programu wykładów, laboratoriów oraz egzaminu Etapy rozwiązywania problemów dr Helena Dudycz Katedra Technologii Informacyjnych

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład III

Agnieszka Nowak Brzezińska Wykład III Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność

Bardziej szczegółowo

Modelowanie wieloskalowe. Automaty Komórkowe - podstawy

Modelowanie wieloskalowe. Automaty Komórkowe - podstawy Modelowanie wieloskalowe Automaty Komórkowe - podstawy Dr hab. inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 716 lmadej@agh.edu.pl

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/

Bardziej szczegółowo

M T E O T D O ZI Z E E A LG L O G R O Y R TM

M T E O T D O ZI Z E E A LG L O G R O Y R TM O ALGORYTMACH I METODZIE ALGORYTMICZNEJ Czym jest algorytm? Czym jest algorytm? przepis schemat zestaw reguł [ ] program ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające

Bardziej szczegółowo

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ SZTUCZNA INTELIGENCJA dwa podstawowe znaczenia Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące się), pewną dyscyplinę badawczą (dział

Bardziej szczegółowo

komputery? Andrzej Skowron, Hung Son Nguyen Instytut Matematyki, Wydział MIM, UW

komputery? Andrzej Skowron, Hung Son Nguyen  Instytut Matematyki, Wydział MIM, UW Czego moga się nauczyć komputery? Andrzej Skowron, Hung Son Nguyen son@mimuw.edu.pl; skowron@mimuw.edu.pl Instytut Matematyki, Wydział MIM, UW colt.tex Czego mogą się nauczyć komputery? Andrzej Skowron,

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

Agnieszka Nowak Brzezińska

Agnieszka Nowak Brzezińska Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład III

Agnieszka Nowak Brzezińska Wykład III Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. dr inż. Paweł Pełczyński

Modelowanie i obliczenia techniczne. dr inż. Paweł Pełczyński Modelowanie i obliczenia techniczne dr inż. Paweł Pełczyński ppelczynski@swspiz.pl Literatura Z. Fortuna, B. Macukow, J. Wąsowski: Metody numeryczne, WNT Warszawa, 2005. J. Awrejcewicz: Matematyczne modelowanie

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO

Bardziej szczegółowo

1 Wprowadzenie do algorytmiki

1 Wprowadzenie do algorytmiki Teoretyczne podstawy informatyki - ćwiczenia: Prowadzący: dr inż. Dariusz W Brzeziński 1 Wprowadzenie do algorytmiki 1.1 Algorytm 1. Skończony, uporządkowany ciąg precyzyjnie i zrozumiale opisanych czynności

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

Innowacja pedagogiczna dla uczniów pierwszej klasy gimnazjum Programowanie

Innowacja pedagogiczna dla uczniów pierwszej klasy gimnazjum Programowanie Innowacja pedagogiczna dla uczniów pierwszej klasy gimnazjum Programowanie Opracował Ireneusz Trębacz 1 WSTĘP Dlaczego warto uczyć się programowania? Żyjemy w społeczeństwie, które coraz bardziej się informatyzuje.

Bardziej szczegółowo

Jazda autonomiczna Delphi zgodna z zasadami sztucznej inteligencji

Jazda autonomiczna Delphi zgodna z zasadami sztucznej inteligencji Jazda autonomiczna Delphi zgodna z zasadami sztucznej inteligencji data aktualizacji: 2017.10.11 Delphi Kraków Rozwój jazdy autonomicznej zmienia krajobraz technologii transportu w sposób tak dynamiczny,

Bardziej szczegółowo

O LICZBACH NIEOBLICZALNYCH I ICH ZWIĄZKACH Z INFORMATYKĄ

O LICZBACH NIEOBLICZALNYCH I ICH ZWIĄZKACH Z INFORMATYKĄ O LICZBACH NIEOBLICZALNYCH I ICH ZWIĄZKACH Z INFORMATYKĄ Jakie obiekty matematyczne nazywa się nieobliczalnymi? Jakie obiekty matematyczne nazywa się nieobliczalnymi? Najczęściej: a) liczby b) funkcje

Bardziej szczegółowo

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L, Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

CZYM SĄ OBLICZENIA NAT A URALNE?

CZYM SĄ OBLICZENIA NAT A URALNE? CZYM SĄ OBLICZENIA NATURALNE? Co to znaczy obliczać (to compute)? Co to znaczy obliczać (to compute)? wykonywać operacje na liczbach? (komputer = maszyna licząca) wyznaczać wartości pewnych funkcji? (program

Bardziej szczegółowo

Efekt motyla i dziwne atraktory

Efekt motyla i dziwne atraktory O układzie Lorenza Wydział Matematyki i Informatyki Uniwersytet Mikołaja kopernika Toruń, 3 grudnia 2009 Spis treści 1 Wprowadzenie Wyjaśnienie pojęć 2 O dziwnych atraktorach 3 Wyjaśnienie pojęć Dowolny

Bardziej szczegółowo

ALGORYTMY GENETYCZNE (wykład + ćwiczenia)

ALGORYTMY GENETYCZNE (wykład + ćwiczenia) ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja

Bardziej szczegółowo

Układy dynamiczne Chaos deterministyczny

Układy dynamiczne Chaos deterministyczny Układy dynamiczne Chaos deterministyczny Proste iteracje odwzorowań: Funkcja liniowa Funkcja logistyczna chaos deterministyczny automaty komórkowe Ewolucja układu dynamicznego Rozwój w czasie układu dynamicznego

Bardziej szczegółowo

XV FESTIWAL NAUKI 2011 WPROWADZENIE DO BIOCYBERNETYKI

XV FESTIWAL NAUKI 2011 WPROWADZENIE DO BIOCYBERNETYKI XV FESTIWAL NAUKI 2011 WPROWADZENIE DO BIOCYBERNETYKI ZESPÓŁ APARATURY BIOCYBERNETYCZNEJ (http://www.ise.pw.edu.pl/index.php?id=138) STUDENCKIE KOŁO NAUKOWE CYBERNETYKI (http://cyber.ise.pw.edu.pl) INSTYTUT

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

Wprowadzenie do teorii systemów ekspertowych

Wprowadzenie do teorii systemów ekspertowych Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z

Bardziej szczegółowo

Algebra Boole a i jej zastosowania

Algebra Boole a i jej zastosowania lgebra oole a i jej zastosowania Wprowadzenie Niech dany będzie zbiór dwuelementowy, którego elementy oznaczymy symbolami 0 oraz 1, tj. {0, 1}. W zbiorze tym określamy działania sumy :, iloczynu : _ oraz

Bardziej szczegółowo

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Łańcuchy Markowa: zagadnienia graniczne. Ukryte modele Markowa. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ KLASYFIKACJA STANÓW Stan i jest osiągalny

Bardziej szczegółowo

Liczby zmiennoprzecinkowe i błędy

Liczby zmiennoprzecinkowe i błędy i błędy Elementy metod numerycznych i błędy Kontakt pokój B3-10 tel.: 829 53 62 http://golinski.faculty.wmi.amu.edu.pl/ golinski@amu.edu.pl i błędy Plan wykładu 1 i błędy Plan wykładu 1 2 i błędy Plan

Bardziej szczegółowo

Maciej Piotr Jankowski

Maciej Piotr Jankowski Reduced Adder Graph Implementacja algorytmu RAG Maciej Piotr Jankowski 2005.12.22 Maciej Piotr Jankowski 1 Plan prezentacji 1. Wstęp 2. Implementacja 3. Usprawnienia optymalizacyjne 3.1. Tablica ekspansji

Bardziej szczegółowo

Informacja w perspektywie obliczeniowej. Informacje, liczby i obliczenia

Informacja w perspektywie obliczeniowej. Informacje, liczby i obliczenia Informacja w perspektywie obliczeniowej Informacje, liczby i obliczenia Cztery punkty odniesienia (dla pojęcia informacji) ŚWIAT ontologia fizyka UMYSŁ psychologia epistemologia JĘZYK lingwistyka nauki

Bardziej szczegółowo

Systemy uczące się Lab 4

Systemy uczące się Lab 4 Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego

Bardziej szczegółowo

Optymalizacja. Wybrane algorytmy

Optymalizacja. Wybrane algorytmy dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem

Bardziej szczegółowo

Prawdopodobieństwo czerwonych = = 0.33

Prawdopodobieństwo czerwonych = = 0.33 Temat zajęć: Naiwny klasyfikator Bayesa a algorytm KNN Część I: Naiwny klasyfikator Bayesa Naiwny klasyfikator bayerowski jest prostym probabilistycznym klasyfikatorem. Naiwne klasyfikatory bayesowskie

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

Szczegółowy opis wszystkich sprawdzanych czynności wraz z poziomem ich wykonania zawiera poniższa tabela.

Szczegółowy opis wszystkich sprawdzanych czynności wraz z poziomem ich wykonania zawiera poniższa tabela. Analiza wyników egzaminu gimnazjalnego w części matematyczno-przyrodniczej z zakresu przedmiotów przyrodniczych przeprowadzonego w roku szkolnym 2012/2013 Arkusz egzaminacyjny z przedmiotów przyrodniczych

Bardziej szczegółowo

Tworzenie gier na urządzenia mobilne

Tworzenie gier na urządzenia mobilne Katedra Inżynierii Wiedzy Wykład 11 O czym dzisiaj? labirynty, dużo labiryntów; automaty komórkowe; algorytmy do budowy labiryntów; algorytmy do szukania wyjścia z labiryntów; Blueprints i drzewa zachowań

Bardziej szczegółowo

Metoda Karnaugh. B A BC A

Metoda Karnaugh. B A BC A Metoda Karnaugh. Powszechnie uważa się, iż układ o mniejszej liczbie elementów jest tańszy i bardziej niezawodny, a spośród dwóch układów o takiej samej liczbie elementów logicznych lepszy jest ten, który

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu. SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu

Bardziej szczegółowo

Algorytm genetyczny (genetic algorithm)-

Algorytm genetyczny (genetic algorithm)- Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie

Bardziej szczegółowo

Komputer nie myśli. On tylko wykonuje nasze polecenia. Nauczmy się więc wydawać mu rozkazy

Komputer nie myśli. On tylko wykonuje nasze polecenia. Nauczmy się więc wydawać mu rozkazy Programowanie w C++ 1.Czym jest programowanie Pisanie programów to wcale nie czarna magia, tylko bardzo logiczna rozmowa z komputerem. Oczywiście w jednym ze specjalnie stworzonych do tego celu języków.

Bardziej szczegółowo

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH 1. Czym jest eksploracja danych Eksploracja danych definiowana jest jako zbiór technik odkrywania nietrywialnych zależności i schematów w dużych

Bardziej szczegółowo

ROZUMIENIE ZE SŁUCHU

ROZUMIENIE ZE SŁUCHU Imię i nazwisko: Data urodzenia: Kraj: Kierunek studiów: punkty: / 70 p. ROZUMIENIE ZE SŁUCHU Proszę wysłuchać tekstu i wykonać zadania. Tekst zostanie odczytany dwa razy. 1. Proszę wybrać jedną poprawną

Bardziej szczegółowo

Wykład I. Wprowadzenie do baz danych

Wykład I. Wprowadzenie do baz danych Wykład I Wprowadzenie do baz danych Trochę historii Pierwsze znane użycie terminu baza danych miało miejsce w listopadzie w 1963 roku. W latach sześcdziesątych XX wieku został opracowany przez Charles

Bardziej szczegółowo

Ćwiczenia z przetwarzania tablic 2D

Ćwiczenia z przetwarzania tablic 2D Ćwiczenia z przetwarzania tablic 2D Wyświetlanie tablic 2D Jako wstęp do przetwarzania obrazów w pythonie przećwiczmy podstawowe operacje na dwuwymiarowych tablicach numpy w postaci których będziemy takie

Bardziej szczegółowo

Laboratorium 5: Tablice. Wyszukiwanie binarne

Laboratorium 5: Tablice. Wyszukiwanie binarne Wojciech Myszka Laboratorium 5: Tablice. Wyszukiwanie binarne 2016-05-07 09:02:17 +0200 1. Tablice Do tej pory nie było potrzeby odwoływać się do zmiennych złożonych. Programy były bardzo proste i korzystały

Bardziej szczegółowo

Mateusz Żyliński Tadeusz Włodarkiewicz. WireWorld. Zebranie informacji dotyczących tematyki projektu oraz przedstawienie koncepcji realizacji projektu

Mateusz Żyliński Tadeusz Włodarkiewicz. WireWorld. Zebranie informacji dotyczących tematyki projektu oraz przedstawienie koncepcji realizacji projektu Mateusz Żyliński Tadeusz Włodarkiewicz WireWorld Zebranie informacji dotyczących tematyki projektu oraz przedstawienie koncepcji realizacji projektu 1 I. Informacje ogólne A utomat komórkowy to system

Bardziej szczegółowo

O ALGORYTMACH I MASZYNACH TURINGA

O ALGORYTMACH I MASZYNACH TURINGA O ALGORYTMACH I MASZYNACH TURINGA ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające współcześnie precyzyjny schemat mechanicznej lub maszynowej realizacji zadań określonego

Bardziej szczegółowo

Z matematyką i programowaniem za pan brat. Szkoła Podstawowa im. A. Fiedlera w Połajewie

Z matematyką i programowaniem za pan brat. Szkoła Podstawowa im. A. Fiedlera w Połajewie INNOWACJA PEDAGOGICZNA Z matematyką i programowaniem za pan brat Szkoła Podstawowa im. A. Fiedlera w Połajewie Termin realizacji: 1 października 2018 r. 20 czerwca 2018 r. Opracowały: Ewa Magdziarz Aleksandra

Bardziej szczegółowo

NAUKA JAK UCZYĆ SIĘ SKUTECZNIE (A2 / B1)

NAUKA JAK UCZYĆ SIĘ SKUTECZNIE (A2 / B1) NAUKA JAK UCZYĆ SIĘ SKUTECZNIE (A2 / B1) CZYTANIE A. Mówi się, że człowiek uczy się całe życie. I jest to bez wątpienia prawda. Bo przecież wiedzę zdobywamy nie tylko w szkole, ale również w pracy, albo

Bardziej szczegółowo

Scenariusz lekcji Ozobot w klasie: Spacer losowy po układzie współrzędnych

Scenariusz lekcji Ozobot w klasie: Spacer losowy po układzie współrzędnych Scenariusz lekcji Ozobot w klasie: Spacer losowy po układzie współrzędnych Opracowanie scenariusza: Richard Born Adaptacja scenariusza na język polski: mgr Piotr Szlagor Tematyka: Informatyka, Matematyka,

Bardziej szczegółowo

Alan M. TURING. Matematyk u progu współczesnej informatyki

Alan M. TURING. Matematyk u progu współczesnej informatyki Alan M. TURING n=0 1 n! Matematyk u progu współczesnej informatyki Wykład 5. Alan Turing u progu współczesnej informatyki O co pytał Alan TURING? Czym jest algorytm? Czy wszystkie problemy da się rozwiązać

Bardziej szczegółowo

UCHWAŁA Nr 31/2014 Senatu Uniwersytetu Wrocławskiego z dnia 26 marca 2014 r.

UCHWAŁA Nr 31/2014 Senatu Uniwersytetu Wrocławskiego z dnia 26 marca 2014 r. UCHWAŁA Nr 31/2014 Senatu Uniwersytetu Wrocławskiego z dnia 26 marca 2014 r. w sprawie utworzenia kierunku genetyka i biologia eksperymentalna - studia pierwszego stopnia oraz zmieniająca uchwałę w sprawie

Bardziej szczegółowo

Ćwiczenia nr 7. TEMATYKA: Krzywe Bézier a

Ćwiczenia nr 7. TEMATYKA: Krzywe Bézier a TEMATYKA: Krzywe Bézier a Ćwiczenia nr 7 DEFINICJE: Interpolacja: przybliżanie funkcji za pomocą innej funkcji, zwykle wielomianu, tak aby były sobie równe w zadanych punktach. Poniżej przykład interpolacji

Bardziej szczegółowo

Definicje. Najprostszy schemat blokowy. Schemat dokładniejszy

Definicje. Najprostszy schemat blokowy. Schemat dokładniejszy Definicje owanie i symulacja owanie zastosowanie określonej metodologii do stworzenia i weryfikacji modelu dla danego rzeczywistego Symulacja zastosowanie symulatora, w którym zaimplementowano model, do

Bardziej szczegółowo

Algorytmy i struktury danych. Wykład 4 Tablice nieporządkowane i uporządkowane

Algorytmy i struktury danych. Wykład 4 Tablice nieporządkowane i uporządkowane Algorytmy i struktury danych Wykład 4 Tablice nieporządkowane i uporządkowane Tablice uporządkowane Szukanie binarne Szukanie interpolacyjne Tablice uporządkowane Szukanie binarne O(log N) Szukanie interpolacyjne

Bardziej szczegółowo

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może

Bardziej szczegółowo

Zastosowanie bisymulacji do. Non-Interference XVI FIT, Karpacz 2002

Zastosowanie bisymulacji do. Non-Interference XVI FIT, Karpacz 2002 Zastosowanie bisymulacji do weryfikowania własności Non-Interference XVI FIT, Karpacz 2002 Wojciech Tomanik, Wiktor Zychla Uniwersytet Wrocławski Instytut Informatyki 14 grudnia 2002 Zastosowanie bisymulacji

Bardziej szczegółowo

Technologie cyfrowe. Artur Kalinowski. Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15

Technologie cyfrowe. Artur Kalinowski. Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Technologie cyfrowe Artur Kalinowski Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Artur.Kalinowski@fuw.edu.pl Semestr letni 2014/2015 Zadanie algorytmiczne: wyszukiwanie dane wejściowe:

Bardziej szczegółowo

Nie święci garnki lepią. czyli wprowadzenie do programowania

Nie święci garnki lepią. czyli wprowadzenie do programowania Nie święci garnki lepią czyli wprowadzenie do programowania Dlaczego warto uczyć się programowania? Badanie PISA Creative Problem Solving. Sytuacje z życia: kupno biletu w automacie, użycie odtwarzacza

Bardziej szczegółowo

Mikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 6 Mikołaj Czajkowski Wiktor Budziński Metody symulacyjne Monte Carlo Metoda Monte-Carlo Wykorzystanie mocy obliczeniowej komputerów, aby poznać charakterystyki zmiennych losowych poprzez

Bardziej szczegółowo

Spostrzeganie jako proces kategoryzacji percepcyjnej.

Spostrzeganie jako proces kategoryzacji percepcyjnej. Spostrzeganie jako proces kategoryzacji percepcyjnej. Odbiór informacji przez organizmy żywe przebiega w specyficzny sposób. Zespoły komórek nerwowych nazywanych detektorami cech wykonują kodowanie wybranych

Bardziej szczegółowo

Teoria obliczeń i złożoność obliczeniowa

Teoria obliczeń i złożoność obliczeniowa Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do otrzymania przez ucznia śródrocznych i rocznych ocen klasyfikacyjnych. z przedmiotu etyka

Wymagania edukacyjne niezbędne do otrzymania przez ucznia śródrocznych i rocznych ocen klasyfikacyjnych. z przedmiotu etyka Wymagania edukacyjne niezbędne do otrzymania przez ucznia śródrocznych i rocznych ocen klasyfikacyjnych z przedmiotu etyka Klasa 5, rok szkolny 2017/2018 dr Grzegorz Rostkowski Odniesienia do podstawy

Bardziej szczegółowo

dr Anna Mazur Wyższa Szkoła Promocji Intuicja a systemy przekonań

dr Anna Mazur Wyższa Szkoła Promocji Intuicja a systemy przekonań dr Anna Mazur Wyższa Szkoła Promocji Intuicja a systemy przekonań Systemy przekonań Dlaczego mądrzy ludzie podejmują głupie decyzje? Odpowiedzialne są nasze przekonania. Przekonania, które składają się

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 01 Modele obliczeń Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 33 1 2 3 4 5 6 2 / 33 Co to znaczy obliczać? Co to znaczy obliczać? Deterministyczna maszyna Turinga

Bardziej szczegółowo

Najprostszy schemat blokowy

Najprostszy schemat blokowy Definicje Modelowanie i symulacja Modelowanie zastosowanie określonej metodologii do stworzenia i weryfikacji modelu dla danego układu rzeczywistego Symulacja zastosowanie symulatora, w którym zaimplementowano

Bardziej szczegółowo

Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY.

Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY. Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY. 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przykładowym systemem ekspertowym napisanym w JESS. Studenci poznają strukturę systemu ekspertowego,

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium

Bardziej szczegółowo

Efekt kształcenia. Ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną w zakresie algorytmów i ich złożoności obliczeniowej.

Efekt kształcenia. Ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną w zakresie algorytmów i ich złożoności obliczeniowej. Efekty dla studiów pierwszego stopnia profil ogólnoakademicki na kierunku Informatyka w języku polskim i w języku angielskim (Computer Science) na Wydziale Matematyki i Nauk Informacyjnych, gdzie: * Odniesienie-

Bardziej szczegółowo

Jak wytresować swojego psa? Częs ć 6. Nie podejmowanie przedmiotów

Jak wytresować swojego psa? Częs ć 6. Nie podejmowanie przedmiotów Jak wytresować swojego psa? Częs ć 6 Nie podejmowanie przedmiotów Nie podejmowanie przedmiotów Zabieranie z ziemi przedmiotów swoich właścicieli czy zbieranie jedzenia na spacerze to niestety domena wielu

Bardziej szczegółowo

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania 2/32 Cel analizy Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie:

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI 16/01/2017 WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Repetytorium złożoność obliczeniowa 2 Złożoność obliczeniowa Notacja wielkie 0 Notacja Ω i Θ Rozwiązywanie

Bardziej szczegółowo

Wymagania edukacyjne z informatyki w klasie IIIa gimnazjum

Wymagania edukacyjne z informatyki w klasie IIIa gimnazjum Lp. Wymagania edukacyjne z informatyki w klasie IIIa gimnazjum 1. Internet i sieci [17 godz.] 1 Sieci komputerowe. Rodzaje sieci, topologie, protokoły transmisji danych w sieciach. Internet jako sie rozległa

Bardziej szczegółowo

Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to

Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to wprowadzili J. Hartmanis i R. Stearns. Najczęściej przez zasób rozumie się czas oraz pamięć dlatego

Bardziej szczegółowo

Techniki animacji komputerowej

Techniki animacji komputerowej Techniki animacji komputerowej 1 Animacja filmowa Pojęcie animacji pochodzi od ożywiania i ruchu. Animować oznacza dawać czemuś życie. Słowem animacja określa się czasami film animowany jako taki. Animacja

Bardziej szczegółowo

Automaty komórkowe. Katarzyna Sznajd-Weron

Automaty komórkowe. Katarzyna Sznajd-Weron Automaty komórkowe Katarzyna Sznajd-Weron Trochę historii CA (Cellular Automata) Koniec lat 40-tych John von Neuman maszyna z mechanizmem samopowielania Sugestia Ulama 1952 dyskretny układ komórek dyskretne

Bardziej szczegółowo

Efekt kształcenia. Wiedza

Efekt kształcenia. Wiedza Efekty dla studiów drugiego stopnia profil ogólnoakademicki na kierunku Informatyka na specjalności Przetwarzanie i analiza danych, na Wydziale Matematyki i Nauk Informacyjnych, gdzie: * Odniesienie oznacza

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona

Bardziej szczegółowo

Generowanie i optymalizacja harmonogramu za pomoca

Generowanie i optymalizacja harmonogramu za pomoca Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska

Bardziej szczegółowo

oności. Zastosowanie modelowania Agent-based Computational Economics w nauczaniu zdalnym

oności. Zastosowanie modelowania Agent-based Computational Economics w nauczaniu zdalnym Ekonomia złożonoz oności. Zastosowanie modelowania Agent-based Computational Economics w nauczaniu zdalnym Tomasz Kopczewski Wydział Nauk Ekonomicznych, Uniwersytet Warszawski Mikroekonomia Praktyka wykładania:

Bardziej szczegółowo

składa się z m + 1 uporządkowanych niemalejąco liczb nieujemnych. Pomiędzy p, n i m zachodzi następująca zależność:

składa się z m + 1 uporządkowanych niemalejąco liczb nieujemnych. Pomiędzy p, n i m zachodzi następująca zależność: TEMATYKA: Krzywe typu Splajn (Krzywe B sklejane) Ćwiczenia nr 8 Krzywe Bezier a mają istotne ograniczenie. Aby uzyskać kształt zawierający wiele punktów przegięcia niezbędna jest krzywa wysokiego stopnia.

Bardziej szczegółowo

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia 1. Liczby naturalne, podzielność, silnie, reszty z dzielenia kwadratów i sześcianów przez małe liczby, cechy podzielności przez 2, 4, 8, 5, 25, 125, 3, 9. 26 września 2009 r. Uwaga: Przyjmujemy, że 0 nie

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo