Parametry przyrządów półprzewodnikowych
|
|
- Damian Kozłowski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Parametry przyrządów półprzewodnikowych Rodzaje danych Dane techniczne podawane są w kartach katalogowych fizyczne odnoszące się do wewnętrznej struktury przyrządu i występujących wewnątrz zjawisk techniczne odnoszące się do przebiegów wielkości elektrycznych i innych (np. temperatury) obserwowanych na końcówkach jedyne przydatne dla projektanta układu dane znamionowe zawierają wartości znamionowe, czyli wartości graniczne warunków użytkowania minimalne lub maksymalne wartości dopuszczalne (przekroczenie grozi uszkodzeniem przyrządu) charakterystyki wartości, które charakteryzują działanie przyrządu (pojedyncze wartości, lub zależności w postaci tabel lub wykresów) Warunki pracy zależą od nich dane techniczne środowiskowe (otoczenia) np. temperatura powietrza, parametry ścieżki chłodzenia opisujące obwód elektryczny wymuszenia napięciowe i prądowe (wartości, parametry przebiegów czasowych) 70
2 Współczesne osiągi przyrządów mocy (2013) Każdy parametr rozważany oddzielnie nie istnieje przyrząd posiadający najlepsze wartości wszystkich parametrów jednocześnie. 71
3 Częstotliwość przełączania moc przetwarzana 72
4 Część 4 Sterowanie i bezpieczna praca przyrządów półprzewodnikowych mocy 73
5 Sterowanie napięciowo-ładunkowe Główny warunek załączenia Pojemności pasożytnicze (~ pf): liniowe: CGN, CGO, CCP, CGD(ox) ε ox C ox =A =const t ox nieliniowe, zależne od napięcia (złączowe): CDS, CGD(sc) Dodatkowy warunek załączenia Q C= U UGS(on) > UGS(th) napięcie progowe bramka-źródło (1 5 V) QG > QG(on) załączający ładunek bramki (~1 100 nc) doprowadzenie ładunku wymaga przepływu określonego prądu przez określony czas 74
6 Dodatkowe wymagania związane z przełączaniem Charakterystyka przejściowa ID = f(ugs) UGS(on) > UGS(ID(on)) Charakterystyka wyjściowa zakres, UDS(on) = f(id, UGS) UGS(on) UGS(opt)(ID(on)) Wytrzymałość napięciowa układu bramka-podłoże UGS UGS(max,rat) Wyłączanie: UGS(of) drugorzędne, ale ma wpływ na: pewność wyłączenia szybkość wyłączania 75
7 Rezystancja w obwodzie bramki Wpływ na przełączanie zmiana czasu załączania i czasu wyłączania dwie drogi do tego samego wniosku: stała czasowa obwodu bramki u GS=U GS(on) (1 e τ G=R G C in t / τ G Q G = i G d t u g u GS i G= RG Rezystancja wewnętrzna bramki ) prąd bramki rzędu kilku Ω może wystarczyć, ale duży rozrzut Argumenty za skróceniem czasów przełączania zmniejszenie energii wydzielanej podczas przełączania możliwość zwiększenia częstotliwości przełączania zmniejszenie wymiarów elementów biernych Kontrargumenty indukcja zaburzeń na indukcyjnościach pasożytniczych di u ind=l s dt ograniczenie prądu sterownika większa kontrola nad czasem przełączania, szczególnie przy szeregowych połączeniach tranzystorów 76
8 Wykorzystanie charakterystyki ładunku bramki Ładunki bramki załączający QG(on) (punkt D) całkowity QG(tot) (punkt E) pewność załączenia moc strat dynamicznych (zał. QGD + QGS2 QG(on)) pobór prądu/mocy na sterowanie Zależność od warunków pracy QGS2 rośnie z ID(on) QGD rośnie z UDS(of) QG(on) jest niezależny od parametrów obwodu bramki RG, UGS(on), UGS(of) 77
9 Rzeczywisty generator impulsów bramkowych Najczęstsze rozwiązania tranzystor lub para wzmacniacz operacyjny mikrokontroler / sterownik logiczny (controller) dedykowany sterownik bramki (gate driver) Czasem dodatkowo izolacja optyczna może być scalona wymaga osobnego zasilania strony tranzystora transformator impulsowy Rola poziom(y) napięcia logika tranzystor amplituda podstawa wydajność/obciążalność prądowa pozwalająca na przełączenie tranzystora w pożądanym czasie 78
10 Sterownik bramki tranzystorów polowych mocy (MOSFET, IGBT) IR2117 prosty sterownik bramki Wyjście VHO = VS VHO = VB = VS+Ub Łącznik dolny VS = 0, Ub = UGG 79
11 Droga prądu bramki Przepływ ładunku = prąd prąd płynie w obwodzie zamkniętym, który należy dobrze zaplanować w przeciwnym razie duży prąd popłynie nieprzewidywalnie może uszkodzić elementy w obwodzie mogą występować zaburzenia Jak najmniejsza długość i powierzchnia VHO = VB ; ugs Ub VHO = VS ; ugs 0 szybkość propagacji generacja zaburzeń przechwytywanie zaburzeń Brak odcinków wspólnych z obwodem mocy inaczej przeniosą się zaburzenia 80
12 Sterownik łącznika górnego samoładujące się zasilanie obwodu bramki (układ bootstrap) Zadanie konieczna generacja sygnału bramkowego względem źródła tranzystora (VS) źródło T nie przyłączone do masy źródła zasilania sterownika UGG kondensator Cb jest niezbędny jako źródło napięcia Ub Działanie kondensator doładowuje się do UBS = UGG VS musi być czasowo równe 0 dzieje się to samoczynnie kiedy ug = 0, gdyż wtedy url 0 sterowniki (pół)mostka dolny tranzystor zamiast odbiornika Łącznik górny VS = url = var, Ub = UGG UF,Db Wymagania układ cały czas przełączany wykluczone D = 1 (i bliskie) połączone masy obu obwodów przez odbiornik mała RL (ZL, Ron dolnego T) 81
13 Sterowanie tranzystorów BJT w układach impulsowych Wzmocnienie prądowe I C =β f I B βf statyczne wzmocnienie prądowe przy pracy normalnej w układzie wspólnego emitera Praca w roli łącznika celem jest możliwość przewodzenia prądu obciążenia przy niskim spadku potencjału (UCE) jak największe IB nie uzyskanie konkretnego stosunku IC do IB wartość IC jest narzucona z zewnątrz (np. przez odbiornik) stąd częsta praca ze wzmocnieniem wymuszonym, tj. będącym konsekwencją IC i IB 82
14 Punkt pracy w stanie przewodzenia Zależność wzmocnienia od prądu kolektora BU1508DX: IC(rat) = 8 A, βf(nom) = 13 silna, nieliniowa, niemonotoniczna charakterystyka podawana dla UCE = const, w zakresie aktywnym stosunkowo duże UCE wartość znamionowa to wartość maksymalna, a nie występująca dla prądu znamionowego Zakres nasycenia duża liczba nośników nadmiarowych niski spadek napięcia niska statyczna moc strat powolne wyłączanie wysoka dynamiczna moc strat lepszy zakres quasi-nasycenia 83
15 Układy sterowania Zasilanie dwubiegunowe Zasilanie jednobiegunowe Przyspieszenie wyłączania Realizacja źródła prądowego 84
16 Załączanie bramkowe i wyłączanie tyrystora Załączanie Wyłączanie kontrolowane przez moment podania impulsu bramkowego prąd zatrzasku IL prąd podtrzymania IH Ograniczenie zakresu sterowania fazowego Przebicie cieplne przy załączaniu krytyczna stromość narastania prądu przewodzenia dit/dt ryzyko spada ze wzrostem ig 85
17 Wyłączanie tyrystorów Przebieg procesu układ pracy zapewnia ujemne napięcie na tyrystorze usuwanie ładunku prądem wstecznym czas odzyskiwania zdolności zaworowej trr Niebezpieczeństwo załączenia (niepożądanego) obecność nośników w głębi tyrystora nawet po upływie trr dalszy zanik w drodze rekombinacji powolny, do tego czasu wewnętrzne złącze nadal przewodzi czas wyłączania tq Załączanie stromościowe nośniki mogą również napłynąć w wyniku przepływu tzw. prądu przesunięcia krytyczna stromość narastania napięcia blokowania (dud/dt)crit 86
18 Impulsy bramkowe Warunki załączenia proste sterowanie przesunięte i przeskalowane napięcie sieci przekroczenie (w praktyce 3 5x) przełączającego prądu bramki IGT lub napięcia przełączającego UGT gwarantuje odpowiedni IGT dostateczna długość impulsu optymalny kształt impulsu prądu bramki z użyciem generatora impulsów (najprostszy: kondensator + diak) sterowanie ciągłe obciążenie indukcyjne ciąg impulsów jak wyżej, ale mniejsza moc sterowania 87
19 Generacja impulsów prądu bramki Serie o różnym IGT Prosty układ sterowania (G ) IGT di/dt, du/dt przyrządy logic-level, sensitive gate możliwe sterowanie bezpośrednio z wyjścia mikrokontrolera (IGT 5 ma) Tyrystory dwukierunkowe (traki) niesymetryczna budowa powoduje różne wartości IGT dla różnych polaryzacji obwodu głównego i prądu bramki najbardziej korzystna: MT2+ G+ niekorzystna: MT2 G+ jeżeli jedna polaryzacja ig, to Sterownik scalony z izolacją galwaniczną przełączanie przy zerowym napięciu minimalizuje di/dt przyrządy 3-ćwiartkowe brak wyzwalania dla MT2 G+, ale zwiększona niezawodność 88
20 Autonomiczny obwód sterowania bramki Źródłem prądu impulsowego jest kondensator szybkość narastania napięcia zależy od potencjometru Diak załącza się przy V Układ ulepszony dezaktywacja obwodu sterowania po załączeniu triaka mniejsza moc sterowania Rd 89
21 Obszar bezpiecznej pracy Definicja obszar na płaszczyźnie charakterystyk statycznych obwodu głównego, w którego dowolnym miejscu może się bezpiecznie znajdować punkt pracy przyrządu, w określonych warunkach cieplnych Granice mogą wynikać z: Tranzystor VDMOS, kierunek przewodzenia bezpieczeństwa napięciowego obwodu głównego bezpieczeństwa cieplnego obwodu głównego ale także: ograniczeń obwodu sterowania ograniczeń obudowy 1 2 3a 3 3b 4 5 rezystancja w stanie załączenia maksymalny dopuszczalny prąd impulsowy maksymalny dopuszczalny prąd ciągły maks. dopuszczalna moc strat dla pracy ciągłej maks. dopuszczalna moc strat dla pracy impulsowej przebicie cieplne przebicie lawinowe 90
22 Przebicie cieplne Prąd nośników generowanych cieplnie w obszarze ładunku przestrzennego złącza Moc odprowadzana do otoczenia Moc wydzielana w przyrządzie 91
23 Mikroskopowe mechanizmy i skutki przebicia cieplnego Przebicie cieplne zachodzi, gdy wystąpi niestabilność cieplna dodatnie sprzężenie zwrotne powodujące samorzutne narastanie temperatury W obszarze ładunku przestrzennego generowane są termicznie pary h-e Niestabilność cieplna ma charakter lokalny wywołuje ją nadmierna lokalna Tj gęstość objętościowa mocy pv gęstość prądu J przeciwdziałanie: zwiększenie przekroju, równomierny rozpływ prądu zwiększone niebezpieczeństwo w stanach dynamicznych Przy pewnej Tj: ni N (ND albo NA) n p ni (a nie N i ni2/n) krytyczne są gorące punkty w których T jest najwyższa σ jest wyższa, a więc ρ niższa ściąganie prądu J p T ni półprzewodnik staje się samoistnym o dużej przewodności (mezoplazma) zlanie obszarów N/P uniemożliwia działanie przyrządów zanikają złącza Ostatecznie uszkodzenie mechaniczne np. pęknięcie, stopienie 92
24 Inicjacja przebicia cieplnego w przyrządach półprzewodnikowych mocy Tranzystor BJT z temperaturą rośnie prąd nasycenia, prąd dyfuzyjny, czas życia nośników, wzmocnienie prądowe pojedyncza struktura na całej pastylce krzemu łatwo o nierównomierny rozpływ prądu długie przełączanie łatwo osiągnąć Tcrit Tranzystor MOSFET zalety: T ρ ; struktura komórkowa; krótkie przełączanie występuje pasożytniczy BJT rozrzut UGS(th) komórek nierównomierny rozpływ prądu T UGS(th) J przebicie lawinowe nadmierne wydzielanie mocy 93
25 Prawo Fouriera przewodnictwa cieplnego W elektronice mocy konieczna jest analiza zjawisk cieplnych we wszystkich 4 stanach łącznika półprzewodnikowego wydzielana jest moc zbyt duża moc prowadzi do uszkodzenia przyrządu Postać ogólna i całkowa Materiał jednorodny q gęstość strumienia cieplnego [W/m2] T temperatura k przewodność cieplna [W/(m K)] Q ciepło [J] A pole przekroju U konduktancja cieplna [W/K] Rezystancja cieplna podstawowy parametr wykorzystywany w projektowaniu układów Rth rezystancja cieplna [K/W] 94
26 Cieplny układ pracy i elektryczny obwód równoważny Po uwzględnieniu P = dq/dt praktyczna postać prawa Fouriera: analog prawa Ohma analog napięciowego prawa Kirchhoffa: analog potencjału analog natężenia prądu analog rezystancji elektrycznej 95
27 Cieplny układ pracy z radiatorem Przy poprawnie dobranym radiatorze Rth(s-a) Rth(c-a) 96
28 Zastosowanie radiatorów Mechanizmy chłodzenia (oddawania ciepła) Montaż radiacja promieniowanie podczerwone konwekcja makroskopowy ruch czynnika chłodzącego naturalna grawitacyjna wymuszona wentylatory, pompy przewodności cieplnej materiału powierzchni i jej stosunku do objętości emisyjności powierzchni rodzaju i prędkości przepływu czynnika chłodzącego podkładki elektroizolacyjne zwiększają Rth(c-s) Rezystancja cieplna zależy od: pasty termoprzewodzące zmniejszają Rth(c-s) ale konieczne, gdy radiator wspólny dla kilku przyrządów chyba że posiadają izolowane obudowy Chłodzenie przy montażu powierzchniowym ścieżki drukowane dedykowane pole miedzi o dużej powierzchni, do którego lutowane jest odpowiednie wyprowadzenie przyrządu 97
29 Powierzchnia chłodząca np.: TO-3, 204 TO-220, 247, 262 TO-92 DO-204 (DO-35, 41) DIP Exposed Pad DIP Montaż przewlekany * * * * wyszczególnione wyprowadzenia dalej przez radiator Montaż powierzchniowy S Rth(j-a) TO-252, 263 np.: (DPAK, D2PAK) DO-214, SOD, SOT dalej przez miedź na płytce 1206, 1812 SOIC, (T)(S)SOP, QFP, DFN, QFN * * * * * Metalowe powierzchnie kontaktu standardowo nie są izolowane elektrycznie można je łączyć tylko ze ściśle określonym potencjałem obwodu dotyczy również radiatorów wspólnych dla kilku przyrządów 98
30 Wytrzymałość napięciowa W praktycznych przyrządach o wytrzymałości w zasadniczym kierunku blokowania decyduje przebicie lawinowe przebicie skrośne może występować jednocześnie (PT PIN, PT IGBT) zmniejsza napięcie przebicia lawinowego W kierunku zaporowym tranzystorów może decydować przebicie skrośne zależnie od typu tranzystora Przebicie lawinowe/skrośne nie jest niszczące samo z siebie, ale: przyrząd przestaje blokować płynie duży prąd (ograniczony impedancją obwodu) duża gęstość prądu aktywacja sprzężenia elektrotermicznego przebicie cieplne uszkodzenie połączeń wewnątrz obudowy duży prąd przy wysokim U=Ubr duża moc wydzielana wysoka Tj Tj > Tj(max) przyrząd poza SOA Tj > Tj(crit) przebicie cieplne 99
31 Napięcie przebicia Przyrządy bez wzmocnienia prądowego U br =U J(br) Przyrządy z mechanizmem tranzystora bipolarnego U br =U J(br) (1 α F )1/κ ; κ 5 mniejsza wytrzymałość napięciowa większy prąd upływu Napięcia przebicia BJT UCES(br) = UCBO(br) = UJ(br) UCEO(br) < UJ(br) stosowane częściowe zwarcie B-E opornikiem zwiększenie U br UCEO(br) < UCER(br) < UCES(br) kosztem spadku βf Wpływ temperatury na przebicie lawinowe T Ubr niekorzystna jest praca w niskich temperaturach 100
32 Polaryzacja wsteczna BJT CEO: przebicie skrośne bazy (BE) CES: przewodzenie dla UCE > UTO złącza PN (CB) przewodzenie dla U > UTO złącza PN (diody podłożowej) 1E-3 BJT CEO BJT CES MOSFET DSS IGBT-PT CES BJT+D CEO IGBT-PT+D CES 1E-4 1E-5 IR [A] MOSFET IGBT NPT: blokuje napięcie porównywalne z kierunkiem przewodzenia PT: niższe napięcie przebicia z powodu silnego domieszkowania warstwy buforowej B E N+ P N N+ C N N+ D N P+ C N+ P + C G S N+ P G 1E-6 E N+ P 1E-7 G 1E E N+ P N UR [V] 101
33 Wykorzystanie parametrów znamionowych w doborze przyrządu Napięcie znamionowe Prąd znamionowy (ciągły) P d(rat) = stosowalne bezpośrednio zapas % na przepięcia zależy od warunków chłodzenia jest pochodną mocy dopuszczalnej zwykle Tc(nom) = 25 warunki nierealistyczne (idealne chłodzenie obudowy, Rth(c-a)=0) może służyć wyłącznie do zgrubnego doboru oraz porównywania przyrządów między sobą I D(rat)= ograniczony przez sterowanie lub doprowadzenia R th(j-c) P D(rat) U DS(on) (I D(rat) ) Wzór prawdziwy zawsze P d(max)= T j(max) T a R th(j-a) Ta typowo 25, rozsądniej 40 uproszczenie na czas wstępnego poszukiwania przyrządu P d(max)= Prąd znamionowy szczytowy T j(max) T c(nom) T j(max) 100 R th(j-c) dla krótkich impulsów, niskich częstotliwości Rth Zth 102
34 Część 5 Przegląd przekształtników elektronicznych 103
35 Klasyfikacja przekształtników Podstawowa klasyfikacja oparta jest o stwierdzenie, z którą składową (stałą czy przemienną) związana jest wypadkowa energia na wejściu i na wyjściu przekształtnika tj. która składowa mocy czynnej przeważa Przekształtniki AC-AC Przekształtniki AC-DC falowniki, w tym: rezonansowe, impulsowe Przekształtniki DC-DC prostowniki Przekształtniki DC-AC sterowniki prądu przemiennego, przemienniki częstotliwości przetwornice, w tym: dławikowe, transformatorowe, rezonansowe Przekształtniki mogą być wielostopniowe prostownik z aktywną kompensacją współczynnika mocy: AC-DC DC-DC falownik podwyższający napięcie: DC-DC DC-AC impulsowy przemiennik częstotliwości: AC-DC DC-AC 104
36 Sterownik fazowy prądu przemiennego Prąd w obwodzie triak wyłączony: i = 0 triak załączony: i = ui / RL Zmiana kąta opóźnienia załączania θz powoduje zmianę wartości skutecznej więc także mocy czynnej odbiornika Po / Po(max) I / Imax 105
37 Sterowanie obciążenia indukcyjnego Zakres sterowania ograniczony przez kąt fazowy odbiornika Powolne narastanie prądu może wymagać wydłużenia lub zwielokrotnienia impulsów prądu bramki 106
38 Sterownik grupowy prądu przemiennego Zastosowania odbiorniki o długiej nieelektrycznej stałej czasowej (grzejnictwo) gdy moc ma być dostarczana długimi impulsami (stroboskop) Liniowa charakterystyka sterowania Małe stromości napięcia i prądu większe bezpieczeństwo triaka, mniejsze generowane zaburzenia Wytwarza podharmoniczne prądu niekorzystne dla transformatorów I / Imax Po / Po(max) 107
39 Sterownik prądu przemiennego z prostym sterowaniem cyfrowym detektor zera + zasilacz beztransformatorowy 108
40 Przerywacz napięcia stałego Przełączanie łącznika powoduje zmianę składowej stałej napięcia wyjściowego Współczynnik wypełnienia impulsów sterujących 109
Przegląd przyrządów półprzewodnikowych mocy (1) Łukasz Starzak, Przyrządy półprzewodnikowe mocy, zima 2015/16
Przegląd przyrządów półprzewodnikowych mocy (1) 49 Przegląd przyrządów półprzewodnikowych mocy (2) 50 Przegląd przyrządów półprzewodnikowych mocy (3) 51 Przegląd przyrządów półprzewodnikowych mocy (4)
Część 4. Sterowanie i bezpieczna praca przyrządów półprzewodnikowych mocy
Część 4 Sterowanie i bezpieczna praca przyrządów półprzewodnikowych mocy 73 Sterowanie napięciowo-ładunkowe Główny warunek załączenia Pojemności pasożytnicze (~10 1000 pf): liniowe: CGN, CGO, CCP, CGD(ox)
Właściwości tranzystora MOSFET jako przyrządu (klucza) mocy
Właściwości tranzystora MOSFET jako przyrządu (klucza) mocy Zalety sterowanie polowe niska moc sterowania wyłącznie nośniki większościowe krótki czas przełączania wysoka maksymalna częstotliwość pracy
Część 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51
Część 3 Przegląd przyrządów półprzewodnikowych mocy Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51 Budowa przyrządów półprzewodnikowych Struktura składa się z warstw Warstwa
Część 2. Sterowanie fazowe
Część 2 Sterowanie fazowe Sterownik fazowy prądu przemiennego (AC phase controller) Prąd w obwodzie triak wyłączony: i = 0 triak załączony: i = ui / RL Zmiana kąta opóźnienia załączania θz powoduje zmianę
Szacowanie mocy czynnej straty dynamiczne w tranzystorach MOSFET (obwód mocy)
Szacowanie mocy czynnej straty dynamiczne w tranzystorach MOSFET (obwód mocy) obciążenie rezystancyjne obciążenie indukcyjne na początek można przyjąć typową RG = 50 lub 10 Ω i oszacować czasy jako: tr
7. Tyrystory. Tyrystor SCR (Silicon Controlled Rectifier)
7. Tyrystory 1 Tyrystory są półprzewodnikowymi przyrządami mocy pracującymi jako łączniki dwustanowe to znaczy posiadające stan włączenia (charakteryzujący się małą rezystancją) i stan wyłączenia (o dużej
Polaryzacja wsteczna BJT IGBT MOSFET
Polaryzacja wsteczna BJT CEO: przebicie skrośne bazy (BE) CES: przewodzenie dla UCE > U TO złącza PN (CB) przewodzenie dla U > U TO złącza PN (diody podłożowej) 1E-3 BJT CEO BJT CES MOSFET DSS IGBT-PT
ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH
Politechnika Warszawska Wydział Elektryczny ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH Piotr Grzejszczak Mieczysław Nowak P W Instytut Sterowania i Elektroniki Przemysłowej 2015 Wiadomości ogólne Tranzystor
Część 2. Sterowanie fazowe
Część 2 Sterowanie fazowe Sterownik fazowy prądu przemiennego (AC phase controller) Prąd w obwodzie triak wyłączony: i = 0 triak załączony: i = ui / RL Zmiana kąta opóźnienia załączania θz powoduje zmianę
Elementy półprzewodnikowe. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.
Elementy półprzewodnikowe Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Elementy elektroniczne i ich zastosowanie. Elementy stosowane w elektronice w większości
SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis
SYMBOLE GRAFICZNE y Nazwa triasowy blokujący wstecznie SCR asymetryczny ASCR Symbol graficzny Struktura Charakterystyka Opis triasowy blokujący wstecznie SCR ma strukturę czterowarstwową pnpn lub npnp.
Przegląd półprzewodnikowych przyrządów mocy
Przegląd półprzewodnikowych przyrządów mocy Rozwój przyrządów siłą napędową energoelektroniki Najważniejsze: zdolność do przetwarzania wielkich mocy (napięcia i prądy znamionowe), szybkość przełączeń,
Złożone struktury diod Schottky ego mocy
Złożone struktury diod Schottky ego mocy Diody JBS (Junction Barrier Schottky) złącze blokujące na powierzchni krzemu obniżenie krytycznego natężenia pola (Ubr 50 V) Diody MPS (Merged PINSchottky) struktura
Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych
Część 2 Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Łukasz Starzak, Przyrządy półprzewodnikowe mocy, zima 2015/16 20 Półprzewodniki Materiały, w których
7. TYRYSTORY 7.1. WSTĘP
7. TYRYSTORY 7.1. WSTĘP Tyrystory są półprzewodnikowymi przyrządami mocy pracującymi jako łączniki dwustanowe, tj. mające stan włączenia (charakteryzujący się małą rezystancją) i stan wyłączenia (o dużej
Dobór współczynnika modulacji częstotliwości
Dobór współczynnika modulacji częstotliwości Im większe mf, tym wyżej położone harmoniczne wyższe częstotliwości mniejsze elementy bierne filtru większy odstęp od f1 łatwiejsza realizacja filtru dp. o
Rozmaite dziwne i specjalne
Rozmaite dziwne i specjalne dyskretne przyrządy półprzewodnikowe Ryszard J. Barczyński, 2009 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Podzespoły i układy scalone mocy część II
Podzespoły i układy scalone mocy część II dr inż. Łukasz Starzak Katedra Mikroelektroniki Technik Informatycznych ul. Wólczańska 221/223 bud. B18 pok. 51 http://neo.dmcs.p.lodz.pl/~starzak http://neo.dmcs.p.lodz.pl/uep
ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI
1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności
Budowa. Metoda wytwarzania
Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.
Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych
Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału
Część 1. Bezpieczeństwo przyrządów półprzewodnikowych mocy
Część 1 Bezpieczeństwo przyrządów półprzewodnikowych mocy Obszar bezpiecznej pracy Definicja Granice mogą wynikać z: obszar na płaszczyźnie charakterystyk statycznych obwodu głównego, w którego dowolnym
Właściwości przetwornicy zaporowej
Właściwości przetwornicy zaporowej Współczynnik przetwarzania napięcia Łatwa realizacja wielu wyjść z warunku stanu ustalonego indukcyjności magnesującej Duże obciążenie napięciowe tranzystorów (Vg + V/n
IV. TRANZYSTOR POLOWY
1 IV. TRANZYSTOR POLOWY Cel ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora polowego złączowego. Zagadnienia: zasada działania tranzystora FET 1. Wprowadzenie Nazwa tranzystor pochodzi z
Elementy elektroniczne Wykład 9: Elementy przełączające
Elementy elektroniczne Wykład 9: Elementy przełączające Tyrystory konwencjonalne - wprowadzenie A I A p 1 p 1 j 1 + G n 1 G n 1 j C - p 2 p 2 j 2 n 2 n 2 K I K SRC silicon controlled rectifier Tyrystory
Półprzewodnikowe przyrządy mocy
Temat i plan wykładu Półprzewodnikowe przyrządy mocy 1. Wprowadzenie 2. Tranzystor jako łącznik 3. Charakterystyki prądowo-napięciowe 4. Charakterystyki dynamiczne 5. Definicja czasów przełączania 6. Straty
Tranzystory. 1. Tranzystory bipolarne 2. Tranzystory unipolarne. unipolarne. bipolarny
POLTEHNKA AŁOSTOKA Tranzystory WYDZAŁ ELEKTYZNY 1. Tranzystory bipolarne 2. Tranzystory unipolarne bipolarny unipolarne Trójkońcówkowy (czterokońcówkowy) półprzewodnikowy element elektroniczny, posiadający
Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska
Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska 1947 r. pierwszy tranzystor ostrzowy John Bradeen (z lewej), William Shockley (w środku) i Walter Brattain (z prawej) (Bell Labs) Zygmunt Kubiak
1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne
Spis treści Przedmowa 13 Wykaz ważniejszych oznaczeń 15 1. Zarys właściwości półprzewodników 21 1.1. Półprzewodniki stosowane w elektronice 22 1.2. Struktura energetyczna półprzewodników 22 1.3. Nośniki
Temat: Tyrystor i triak.
Temat: Tyrystor i triak. Tyrystor jest to półprzewodnikowy element który składa się z 4 warstw w układzie P N P N. Jest on wyposażony w 3 elektrody, z których dwie są przyłączone do warstw skrajnych, a
Rozmaite dziwne i specjalne
Rozmaite dziwne i specjalne dyskretne przyrządy półprzewodnikowe Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Wykład X TRANZYSTOR BIPOLARNY
Wykład X TRANZYSTOR BIPOLARNY Tranzystor Trójkoocówkowy półprzewodnikowy element elektroniczny, posiadający zdolnośd wzmacniania sygnału elektrycznego. Nazwa tranzystor pochodzi z angielskiego zwrotu "transfer
Wykład VIII TRANZYSTOR BIPOLARNY
Wykład VIII TRANZYSTOR BIPOLARNY Tranzystor Trójkońcówkowy półprzewodnikowy element elektroniczny, posiadający zdolność wzmacniania sygnału elektrycznego. Nazwa tranzystor pochodzi z angielskiego zwrotu
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES
III. TRANZYSTOR BIPOLARNY
1. TRANZYSTOR BPOLARNY el ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora bipolarnego Zagadnienia: zasada działania tranzystora bipolarnego. 1. Wprowadzenie Nazwa tranzystor pochodzi z języka
Ćwiczenie - 3. Parametry i charakterystyki tranzystorów
Spis treści Ćwiczenie - 3 Parametry i charakterystyki tranzystorów 1 Cel ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Tranzystor bipolarny................................. 2 2.1.1 Charakterystyki statyczne
Przekształtniki napięcia stałego na stałe
Przekształtniki napięcia stałego na stałe Buck converter S 1 łącznik w pełni sterowalny, przewodzi prąd ze źródła zasilania do odbiornika S 2 łącznik diodowy zwiera prąd odbiornika przy otwartym S 1 U
Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych
Część 2 Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 23 Półprzewodniki
BADANIE TRANZYSTORA BIPOLARNEGO Z IZOLOWANĄ BRAMKĄ (IGBT)
Laboratorium Energoelektroniki BADANIE TRANZYSTORA BIPOLARNEGO Z IZOLOWANĄ BRAMKĄ (IGBT) Prowadzący: dr inż. Stanisław Kalisiak dr inż. Marcin Hołub mgr inż. Michał Balcerak mgr inż. Tomasz Jakubowski
płytka montażowa z tranzystorami i rezystorami, pokazana na rysunku 1. płytka montażowa do badania przerzutnika astabilnego U CC T 2 masa
Tranzystor jako klucz elektroniczny - Ćwiczenie. Cel ćwiczenia Zapoznanie się z podstawowymi układami pracy tranzystora bipolarnego jako klucza elektronicznego. Bramki logiczne realizowane w technice RTL
Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia
Wrocław, 21.03.2017 r. Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Podczas testu kompetencji studenci powinni wykazać się znajomością zagadnień określonych w kartach kursów
(57) 1. Układ samowzbudnej przetwornicy transformatorowej (12) OPIS PATENTOWY (19) PL (11) (13) B2 PL B2 H02M 3/315. fig.
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 161056 (13) B2 (21) Numer zgłoszenia: 283989 (51) IntCl5: H02M 3/315 Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 23.02.1990 (54)Układ
12. Zasilacze. standardy sieci niskiego napięcia tj. sieci dostarczającej energię do odbiorców indywidualnych
. Zasilacze Wojciech Wawrzyński Wykład z przedmiotu Podstawy Elektroniki - wykład Zasilacz jest to urządzenie, którego zadaniem jest przekształcanie napięcia zmiennego na napięcie stałe o odpowiednich
Przykładowe pytania do przygotowania się do zaliczenia poszczególnych ćwiczeń z laboratorium Energoelektroniki I. Seria 1
ENERGOELEKTRONIKA Laboratorium STUDIA STACJONARNE EEDI-3 Przykładowe pytania do przygotowania się do zaliczenia poszczególnych ćwiczeń z laboratorium Energoelektroniki I. Seria 1 1. Badanie charakterystyk
Prostowniki. Prostownik jednopołówkowy
Prostowniki Prostownik jednopołówkowy Prostownikiem jednopołówkowym nazywamy taki prostownik, w którym po procesie prostowania pozostają tylko te części przebiegu, które są jednego znaku a części przeciwnego
Elementy przełącznikowe
Elementy przełącznikowe Dwie główne grupy: - niesterowane (diody p-n lub Schottky ego), - sterowane (tranzystory lub tyrystory) Idealnie: stan ON zwarcie, stan OFF rozwarcie, przełączanie bez opóźnienia
Przyrządy półprzewodnikowe część 5 FET
Przyrządy półprzewodnikowe część 5 FET r inż. Bogusław Boratyński Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska 2011 Literatura i źródła rysunków G. Rizzoni, Fundamentals of Electrical
Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych
Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 1 Podstawy metrologii 1. Model matematyczny pomiaru. 2. Wzorce jednostek miar. 3. Błąd pomiaru.
Spis treści 3. Spis treści
Spis treści 3 Spis treści Przedmowa 11 1. Pomiary wielkości elektrycznych 13 1.1. Przyrządy pomiarowe 16 1.2. Woltomierze elektromagnetyczne 18 1.3. Amperomierze elektromagnetyczne 19 1.4. Watomierze prądu
Przerywacz napięcia stałego
Przerywacz napięcia stałego Efektywna topologia układu zmienia się w zależności od stanu łącznika Łukasz Starzak, Przyrządy i układy mocy, lato 2018/19 1 Napięcie wyjściowe przerywacza prądu stałego Przełączanie
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 (EZ1C500 055) BADANIE DIOD I TRANZYSTORÓW Białystok 2006
LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 Parametry statyczne tranzystorów polowych złączowych Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów polowych złączowych
Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET
Ćwiczenie 4 Parametry statyczne tranzystorów polowych JFET i MOSFET Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie charakterystyk statycznych tranzystorów polowych złączowych oraz z izolowaną
Liniowe układy scalone w technice cyfrowej
Liniowe układy scalone w technice cyfrowej Wykład 6 Zastosowania wzmacniaczy operacyjnych: konwertery prąd-napięcie i napięcie-prąd, źródła prądowe i napięciowe, przesuwnik fazowy Konwerter prąd-napięcie
Elektronika. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.
Elektronika Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Zadania elektroniki: Urządzenia elektroniczne służą do przetwarzania i przesyłania informacji w postaci
Część 4. Zmiana wartości napięcia stałego. Stabilizatory liniowe Przetwornice transformatorowe
Część 4 Zmiana wartości napięcia stałego Stabilizatory liniowe Przetwornice transformatorowe Bloki wyjściowe systemów fotowoltaicznych Systemy nie wymagające znaczącego podwyższania napięcia wyjście DC
Diody półprzewodnikowe
Diody półprzewodnikowe prostownicze detekcyjne impulsowe... Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Półprzewodniki
Diody półprzewodnikowe
Diody półprzewodnikowe prostownicze detekcyjne impulsowe... Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Półprzewodniki
Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych
Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 0 Podstawy metrologii 1. Model matematyczny pomiaru. 2. Wzorce jednostek miar. 3. Błąd pomiaru.
DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika.
Zadanie 4. Prostownik mostkowy 6-pulsowy z tyrystorami idealnymi o komutacji natychmiastowej zasilany z sieci 3 400 V, 50 Hz pracuje z kątem opóźnienia załączenia tyrystorów α = 60º. Obciążenie prostownika
BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO
Ćwiczenie 11 BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO 11.1 Cel ćwiczenia Celem ćwiczenia jest poznanie rodzajów, budowy i właściwości przerzutników astabilnych, monostabilnych oraz
Przekształtniki impulsowe prądu stałego (dc/dc)
Przekształtniki impulsowe prądu stałego (dc/dc) Wprowadzenie Sterowanie napięciem przez Modulację Szerokości Impulsów MSI (Pulse Width Modulation - PWM) Przekształtnik obniżający napięcie (buck converter)
Temat i cel wykładu. Tranzystory
POLTECHNKA BAŁOSTOCKA Temat i cel wykładu WYDZAŁ ELEKTRYCZNY Tranzystory Celem wykładu jest przedstawienie: konstrukcji i działania tranzystora bipolarnego, punktu i zakresów pracy tranzystora, konfiguracji
Włączanie i wyłączanie tyrystora. Włączanie tyrystora przy pomocy kondensatora Cel ćwiczenia;
. Włączanie tyrystora przy pomocy kondensatora Cel ćwiczenia; Zapoznanie się z budową, działaniem i zastosowaniem tyrystora. Zapoznanie się z budową, działaniem i zastosowaniem tyrystora w obwodzie kondensatorem.
Część 3. Układy scalone mocy
Część 3 Układy scalone mocy Sterowanie polowe z bramką izolowaną (MOS) tranzystor sygnałowy struktura symetryczna 4 końcówkowa; sterowanie G-B, role D/S zamienne VDMOS struktura asymetryczna 3 końcówkowa;
Przetwornica mostkowa (full-bridge)
Przetwornica mostkowa (full-bridge) Należy do grupy pochodnych od obniżającej identyczny (częściowo podwojony) podobwód wyjściowy Transformator można rozpatrywać jako 3-uzwojeniowy (1:n:n) oba uzwojenia
W2. Wiadomości nt. doboru termicznego (część 1)
W2. Wiadomości nt. doboru termicznego (część 1) Wstęp: Zgodnie z podanym w pierwszym wykładzie stwierdzeniem, kluczowym zagadnieniem przy projektowaniu przekształtnika jest przeprowadzenie obliczeń termicznych
Badanie charakterystyk elementów półprzewodnikowych
Badanie charakterystyk elementów półprzewodnikowych W ramach ćwiczenia student poznaje praktyczne właściwości elementów półprzewodnikowych stosowanych w elektronice przez badanie charakterystyk diody oraz
Część 4. Zagadnienia szczególne
Część 4 Zagadnienia szczególne a. Tryb nieciągłego prądu dławika Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 2011/12 1 Model przetwornicy w trybie nieciągłego prądu DC DC+AC Napięcie
Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki
Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Na podstawie instrukcji Wtórniki Napięcia,, Laboratorium układów Elektronicznych Opis badanych układów Spis Treści 1. CEL ĆWICZENIA... 2 2.
SDD287 - wysokoprądowy, podwójny driver silnika DC
SDD287 - wysokoprądowy, podwójny driver silnika DC Własności Driver dwóch silników DC Zasilanie: 6 30V DC Prąd ciągły (dla jednego silnika): do 7A (bez radiatora) Prąd ciągły (dla jednego silnika): do
Zasada działania tranzystora bipolarnego
Tranzystor bipolarny Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Zasada działania tranzystora bipolarnego
Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści
Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, 2015 Spis treści Przedmowa 7 Wstęp 9 1. PODSTAWY ELEKTROTECHNIKI 11 1.1. Prąd stały 11 1.1.1. Podstawowe
PL 217306 B1. AZO DIGITAL SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Gdańsk, PL 27.09.2010 BUP 20/10. PIOTR ADAMOWICZ, Sopot, PL 31.07.
PL 217306 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 217306 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 387605 (22) Data zgłoszenia: 25.03.2009 (51) Int.Cl.
Zadania z podstaw elektroniki. Zadanie 1. Wyznaczyć pojemność wypadkową układu (C1=1nF, C2=2nF, C3=3nF):
Zadania z podstaw elektroniki Zadanie 1. Wyznaczyć pojemność wypadkową układu (C1=1nF, C2=2nF, C3=3nF): Układ stanowi szeregowe połączenie pojemności C1 z zastępczą pojemnością równoległego połączenia
Elektronika: Polaryzację złącza w kierunku zaporowym i w kierunku przewodzenia (pod rozdz. 6.3). Charakterystykę diody (rozdz. 7).
114 PRZYPOMNIJ SOBIE! Elektronika: Polaryzację złącza w kierunku zaporowym i w kierunku przewodzenia (pod rozdz. 6.3). Charakterystykę diody (rozdz. 7). 9. Elektroniczne elementy przełączające Elementami
Modelowanie diod półprzewodnikowych
Modelowanie diod półprzewodnikowych Programie PSPICE wbudowane są modele wielu elementów półprzewodnikowych takich jak diody, tranzystory bipolarne, tranzystory dipolowe złączowe, tranzystory MOSFET, tranzystory
Przekaźniki w automatyce przemysłowej
Przekaźniki w automatyce przemysłowej 1 Podział przekaźników Przekaźniki elektromagnetyczne Przekaźniki półprzewodnikowe (SSR) 2 1 Przekaźniki elektromagnetyczne Podział przekaźników ze względu na: napięcie
Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 4
Ćwiczenie 4 Cel ćwiczenia Celem ćwiczenia jest poznanie charakterystyk statycznych układów scalonych CMOS oraz ich własności dynamicznych podczas procesu przełączania. Wiadomości podstawowe. Budowa i działanie
IMPULSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM
Instrukcja do ćwiczenia laboratoryjnego. IMPSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM Przekształtnik impulsowy z tranzystorem szeregowym słuŝy do przetwarzania energii prądu jednokierunkowego
Diody półprzewodnikowe
Diody półprzewodnikowe prostownicze detekcyjne impulsowe... Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja
Działanie przetwornicy synchronicznej
Działanie przetwornicy synchronicznej Dodatkowy tranzystor musi być wysterowywany impulsem ugs dokładnie wtedy, kiedy dioda przewodziłaby, czyli główny tranzystor nie przewodzi przełączanie obu musi być
Tranzystory bipolarne elementarne układy pracy i polaryzacji
Tranzystory bipolarne elementarne układy pracy i polaryzacji Ryszard J. Barczyński, 2010 2014 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Wykaz symboli, oznaczeń i skrótów
Wykaz symboli, oznaczeń i skrótów Symbole a a 1 operator obrotu podstawowej zmiennych stanu a 1 podstawowej uśrednionych zmiennych stanu b 1 podstawowej zmiennych stanu b 1 A A i A A i, j B B i cosφ 1
11. Wzmacniacze mocy. Klasy pracy tranzystora we wzmacniaczach mocy. - kąt przepływu
11. Wzmacniacze mocy 1 Wzmacniacze mocy są układami elektronicznymi, których zadaniem jest dostarczenie do obciążenia wymaganej (na ogół dużej) mocy wyjściowej przy możliwie dużej sprawności i małych zniekształceniach
Tranzystory polowe FET(JFET), MOSFET
Tranzystory polowe FET(JFET), MOSFET Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja współfinansowana
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Badanie tranzystorów unipolarnych typu JFET i MOSFET
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej TIA ZIENNE LAORATORIM PRZYRZĄÓW PÓŁPRZEWONIKOWYCH Ćwiczenie nr 8 adanie tranzystorów unipolarnych typu JFET i MOFET I. Zagadnienia
Część 3. Układy scalone mocy
Część 3 Układy scalone mocy Sterowanie polowe z bramką izolowaną (MOS) tranzystor sygnałowy struktura symetryczna 4 końcówkowa; sterowanie G-B, role D/S zamienne VDMOS struktura asymetryczna 3 końcówkowa;
Lekcja 19. Temat: Wzmacniacze pośrednich częstotliwości.
Lekcja 19 Temat: Wzmacniacze pośrednich częstotliwości. Wzmacniacze pośrednich częstotliwości zazwyczaj są trzy- lub czterostopniowe, gdyż sygnał na ich wejściu musi być znacznie wzmocniony niż we wzmacniaczu
Analiza ustalonego punktu pracy dla układu zamkniętego
Analiza ustalonego punktu pracy dla układu zamkniętego W tym przypadku oznacza stałą odchyłkę od ustalonego punktu pracy element SUM element DIFF napięcie odniesienia V ref napięcie uchybu V e V ref HV
Przetwornica SEPIC. Single-Ended Primary Inductance Converter z przełączanym jednym końcem cewki pierwotnej Zalety. Wady
Przetwornica SEPIC Single-Ended Primary Inductance Converter z przełączanym jednym końcem cewki pierwotnej Zalety Wady 2 C, 2 L niższa sprawność przerywane dostarczanie prądu na wyjście duże vo, icout
Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki
Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Temat ćwiczenia: Przetwornica impulsowa DC-DC typu boost
Elementy i Układy Sterowania Mocą
Elementy i Układy Sterowania Mocą Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl wykład 15 godz. laboratorium 15 godz. Materiały
Część 4. Zagadnienia szczególne. b. Sterowanie prądowe i tryb graniczny prądu dławika
Część 4 Zagadnienia szczególne b. Sterowanie prądowe i tryb graniczny prądu dławika Idea sterowania prądowego sygnał sterujący pseudo-prądowy prąd tranzystora Pomiar prądu tranzystora Zegar Q1 załączony
EL08s_w03: Diody półprzewodnikowe
EL08s_w03: Diody półprzewodnikowe Złącza p-n i m-s Dioda półprzewodnikowa ( Zastosowania diod ) 1 Złącze p-n 2 Rozkład domieszek w złączu a) skokowy b) stopniowy 3 Rozkłady przestrzenne w złączu: a) bez
Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia
Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia Poznanie własności i zasad działania różnych bramek logicznych. Zmierzenie napięcia wejściowego i wyjściowego bramek
Funkcje sterowania cyfrowego przekształtników (lista nie wyczerpująca)
Funkcje sterowania cyfrowego przekształtników (lista nie wyczerpująca) tryb niskiego poboru mocy przełączanie źródeł zasilania łagodny start pamięć i zarządzanie awariami zmiana (nastawa) sygnału odniesienia
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 TRANZYSTORY JAKO ELEMENTY DWUSTANOWE BIAŁYSTOK
ELEKTRONIKA ELM001551W
ELEKTRONIKA ELM001551W W4 Unoszenie Dyfuzja 2 Półprzewodnik w stanie nierównowagi termodynamicznej np n 2 i n = n0 + n' p = p0 + p ' Półprzewodnik w stanie nierównowagi termodynamicznej Generacja i rekombinacja