Włączanie i wyłączanie tyrystora. Włączanie tyrystora przy pomocy kondensatora Cel ćwiczenia;

Wielkość: px
Rozpocząć pokaz od strony:

Download "Włączanie i wyłączanie tyrystora. Włączanie tyrystora przy pomocy kondensatora Cel ćwiczenia;"

Transkrypt

1 . Włączanie tyrystora przy pomocy kondensatora Cel ćwiczenia; Zapoznanie się z budową, działaniem i zastosowaniem tyrystora. Zapoznanie się z budową, działaniem i zastosowaniem tyrystora w obwodzie kondensatorem. Czytanie schematów elektrycznych. Obsługa przyrządów pomiarowych i badanie urządzeń elektronicznych, w oparciu o przedstawione schematy układów pomiarowych. Przestrzeganie przepisów bhp podczas ćwiczenia. TEORIA Tyrystor jest to element półprzewodnikowy o trzech złączach wykonanych w jednej płytce półprzewodnika typu P lub N. Ma on trzy elektrody: katodę K, bramkę G i anodę A (rys. 6.18a). Pod względem działania można go uważać za diodę półprzewodnikową sterowaną. Przewodzi on prąd jednokierunkowo, tj. od anody do katody. Elektrodą sterującą jest bramka. Z punktu widzenia użytkownika tyrystor jest wyłącznikiem w, zamykanym za pomocą dodatniego prądu bramki (rys.6.18b). Schemat budowy tyrystora przedstawiono na rys Na płytkę półprzewodnikową typu P, oznaczoną na rysunku przez P 1 nałożono warstwy półprzewodnikowe N 1, N 2, a następnie na N 2 warstwę P 2. Złącza między nimi oznaczono przez Z 1 (N 1 P 1 ), Z 2 (P 1 N 2 ) i Z3 (N 2 P 2 ). Elektroda zewnętrzna P 2 stanowi anodę, a elektroda N 1 - katodę Tyrystor: a) symbol graficzny; b) schemat zastępczy Jeżeli do anody doprowadzimy zacisk ( - ) ze źródła napięcia, a do katody zacisk ( + ), to prąd w tym obwodzie nie popłynie, bo złącza Z l i Z 3 będą działać zaporowo. Jeżeli natomiast anodę połączymy z zaciskiem (+), a katodę z zaciskiem (-) źródła napięcia przez zamknięcie wyłącznika na rys przy otwartym wyłączniku w2, to złącze Z 2 będzie działać zaporowo i prąd również nie popłynie. Układ złączy możemy traktować jako tranzystor o bazie P l Doprowadzając niewielkie napięcie między bramkę P l a katodę N 1 która odgrywa rolę emitera, możemy zniweczyć zaporowe działanie warstwy Z 2 Po zamknięciu wyłącznika w2, przy zamkniętym wyłączniku w1, zaobserwujemy odchylenie wskazówki amperomierza. Na tym polega działanie sterujące tyrystora. Elektroda P 1, nazywana bramką, jest elektrodą sterującą. Tyrystor można wyłączyć nie tylko przez spowodowanie krótkiego spięcia elektrod. Jednym ze sposobów wyłączania tyrystora jest wyłączanie przy pomocy kondensatora naładowanego z odwrotną biegunowością niż napięcie na tyrystorze. Włączanie tyrystora odbywa się w sposób już nam znany. Po naciśnięciu przycisku START popłynie przez elektrodę sterowniczą prąd, który otworzy tyrystor i żarówka się zapali. Przez opornik równocześnie naładuje się kondensator napięciem o zaznaczonej na rysunku biegunowości. Po naciśnięciu przycisku STOP zostanie doprowadzone do tyrystora napięcie z kondensatora o odwrotnej biegunowości niż napięcie na anodzie i katodzie tyrystora. Przez to na krótki czas spadnie prąd płynący przez tyrystor, ten przejdzie w stan nieprzewodności i żarówka zgaśnie. Przeprowadź kontrolę poprawności wykonanego zadania. Zmierz napięcie na kondensatorze, tyrystorze, żarówce, rezystorze po naciśnięciu przycisku START i STOP. Tyrystor jest to element półprzewodnikowy o trzech złączach wykonanych w jednej płytce półprzewodnika typu P lub N. Ma on trzy elektrody: katodę K, bramkę G i anodę Tyrystor konwencjonalny, ser (ang.silicon Controlled Reetifier), to element półprzewodnikowy jednokierunkowy, czterowarstwowy o strukturze PNPN. Inne spotykane w literaturze nazwy tyrystora konwencjonalnego to: tyrystor triodowy, tyrystor blokujący wstecznie, sterowana dioda półprzewodnikowa. Tyrystor SCR jest wyposażony w trzy wyprowadzenia (elektrody) dołączone do trzech warstw półprzewodnika: anodę - A, katodę - K oraz bramkę - G. Wyróżnia się trzy stany pracy tyrystora SCR: stan przewodzenia, stan blokowania, stan zaworowy. 1

2 PROGRAM ĆWICZENIA Przestrzegaj zasad BHP przy pomiarach elektrycznych. Zachowaj ostrożność w czasie ćwiczenia. Sprawdź stan elementów zastosowanych w ćwiczeniu oraz narzędzi. Obwód jest uzupełniony przyciskiem STOP, którym można odbiornik /żarówkę/ wyłączyć. Przez włączenie przycisku START doprowadzimy napięcie do elektrody sterowniczej tyrystora, tyrystor się włączy i żarówka się zapali. Także po zwolnieniu przycisku START żarówka się pali, ponieważ tyrystor pozostaje w stanie włączonym. Przy naciśnięciu przycisku STOP prąd przepływający przez tyrystor spadnie praktycznie do zera, jednak żarówka stale świeci, bowiem Obwód jest zamknięty przyciskiem STOP, który spina anodę i katodę tyrystora. Przy zwolnieniu przycisku STOP żarówka zgaśnie, ponieważ prąd tyrystora spadł i tyrystor się w ten sposób zamknął. Zmierz oporności na tyrystorze miedzy elektrodami oraz napięcia na rezystorach, żarówce i tyrystorze przy wyłączonym i włączonym przełączniku. SCHEMAT ELEKTRYCZNY. Włączanie tyrystora przy pomocy kondensatora Parametry tyrystora: graniczne napięcie przełączania U (BO) - jednostka: V (wolt); dopuszczalne napięcie między anodą a katodą w stanie blokowania UDdop - wartość napięcia, przy której tyrystor dla I G = 0 samoczynnie nie przejdzie w stan przewodzenia; wartość ta zwykle wynosi 0,8 U (BO) dla I G = 0, jednostka: V (wolt); napięcie przebicia U (BR) - jednostka: V (wolt); 2

3 dopuszczalne napięcie wsteczne w stanie zaworowym - najczęściej wynosi 0,8 U (BR), jednostka: V (wolt); maksymalna dopuszczalna wartość prądu w obwodzie głównym tyrystora It - jednostka: A (amper); prąd podtrzymania I H - jednostka: A (amper); maksymalne dopuszczalne straty mocy P Gmax W obwodzie głównym i obwodzie sterującym - jednostka: W (wat); maksymalny prąd bramki I Gmax - jednostka: A (amper); dopuszczalne napięcie U GK - jednostka: V (wolt). Tyrystory SCR są szeroko stosowane w układach sterowania i regulacji oraz jako łączniki, przerywacze w obwodach prądu stałego i zmiennego. Wykorzystuje się je w układach prostowniczych, napędowych, falownikach, przekształtnikach sterowanych fazowo itd. Mogą zastępować łączniki zestykowe: przekaźniki i styczniki lub z nimi współpracować, tworząc łączniki hybrydowe. Na rys. 6.3 przedstawiono charakterystykę napięciowo - prądową złącza bramka - katoda, na podstawie której można wyróżnić obszary: obszar nieprzełączania tyrystora - wartości prądów i napięć zawierające się w tym obszarze, nie spowodują załączenia żadnego tyrystora danego typu, niezależnie od temperatury, obszar możliwych przełączeń - przełączenie tyrystora może wystąpić tylko w wybranych egzemplarzach określonego typu tyrystora, obszar pewnych przełączeń - obszar wartości napięć i prądów bramkowych gwarantujących przełączenie ze stanu blokowania do stanu przewodzenia wszystkich tyrystorów danego typu. Rys Charakterystyka napięciowo-prądowa złącza bramkakatoda: I - obszar nieprzełączania tyrystora, II - obszar możliwych przełączeń tyrystora, III - obszar pewnych przełączeń tyrystora Nie należy stosować napięć i prądów bramkowych o wartościach znajdujących się w obszarze powyżej krzywej określającej szczytowe wartości strat mocy P GM, ponieważ może to spowodować uszkodzenie obwodu bramkowego tyrystora. Odpowiedz na pytania 1. Wymień parametry tyrystora. 2. Omów proces załączania tyrystora. 3. W jakich stanach pracy może znajdować się tyrystor? 3

4 Zespół Szkół Mechanicznych w Namysłowie Eksploatacja urządzeń elektronicznych Temat ćwiczenia: Włączanie tyrystora przy pomocy kondensatora Imię i nazwisko Nr ćw 6 Data wykonania Klasa 2TEZ Grupa Zespół OCENY Samoocena Wykonanie Ogólna CEL ĆWICZENIA; PLAN DZIAŁANIA Wykaz materiałów Wykaz narzędzi i sprzętu Wykaz aparatury kontrolno-pomiarowej. SCHEMAT Włączanie tyrystora przy pomocy kondensatora 4

5 TABELE POMIAROWE Tyrystor 1 A-K R/Ω K-A R/Ω K-G R/Ω G- K R/Ω A-G R/Ω G-A R/Ω Odpowiedz na pytania 1. Wymień parametry tyrystora. 2. Omów proces załączania tyrystora. 3. W jakich stanach pracy może znajdować się tyrystor? WNIOSKI I SPOSTRZEŻENIA 5

7. Tyrystory. Tyrystor SCR (Silicon Controlled Rectifier)

7. Tyrystory. Tyrystor SCR (Silicon Controlled Rectifier) 7. Tyrystory 1 Tyrystory są półprzewodnikowymi przyrządami mocy pracującymi jako łączniki dwustanowe to znaczy posiadające stan włączenia (charakteryzujący się małą rezystancją) i stan wyłączenia (o dużej

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE.

POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE. POLITECHNIK ŚLĄSK WYDZIŁ INŻYNIERII ŚRODOWISK I ENERGETYKI INSTYTUT MSZYN I URZĄDZEŃ ENERGETYCZNYCH LBORTORIUM ELEKTRYCZNE Badanie tyrystora (E 9) Opracował: Dr inż. Włodzimierz OGULEWICZ 3 1. Cel ćwiczenia

Bardziej szczegółowo

SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis

SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis SYMBOLE GRAFICZNE y Nazwa triasowy blokujący wstecznie SCR asymetryczny ASCR Symbol graficzny Struktura Charakterystyka Opis triasowy blokujący wstecznie SCR ma strukturę czterowarstwową pnpn lub npnp.

Bardziej szczegółowo

7. TYRYSTORY 7.1. WSTĘP

7. TYRYSTORY 7.1. WSTĘP 7. TYRYSTORY 7.1. WSTĘP Tyrystory są półprzewodnikowymi przyrządami mocy pracującymi jako łączniki dwustanowe, tj. mające stan włączenia (charakteryzujący się małą rezystancją) i stan wyłączenia (o dużej

Bardziej szczegółowo

ĆWICZENIE 10 BADANIE PARAMETRÓW STATYCZNYCH TYRYSTORA

ĆWICZENIE 10 BADANIE PARAMETRÓW STATYCZNYCH TYRYSTORA ĆWICZENIE 10 BADANIE PARAMETRÓW STATYCZNYCH TYRYSTORA 10.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie właściwości sterowanych elementów półprzewodnikowych, wykorzystujących struktury p - n - p - n, głównie

Bardziej szczegółowo

Temat: Tyrystor i triak.

Temat: Tyrystor i triak. Temat: Tyrystor i triak. Tyrystor jest to półprzewodnikowy element który składa się z 4 warstw w układzie P N P N. Jest on wyposażony w 3 elektrody, z których dwie są przyłączone do warstw skrajnych, a

Bardziej szczegółowo

NIEZBĘDNY SPRZĘT LABORATORYJNY

NIEZBĘDNY SPRZĘT LABORATORYJNY Temat: Układ przełączający. Cel ćwiczenia Ćwiczenie 15 Poznanie zasady pracy tranzystorowego układu przełączającego. Pomiar prądu kolektorowego, gdy tranzystor jest w stanach włączenia i wyłączenia. Czytanie

Bardziej szczegółowo

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH. Ćwiczenie nr 6 TYRYSTOR

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH. Ćwiczenie nr 6 TYRYSTOR Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Ćwiczenie nr 6 TYRYSTOR Wykonując pomiary PRZESTRZEGAJ przepisów BHP związanych

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 11

Instrukcja do ćwiczenia laboratoryjnego nr 11 Instrukcja do ćwiczenia laboratoryjnego nr 11 Temat: Charakterystyki i parametry tyrystora Cel ćwiczenia. Celem ćwiczenia jest poznanie właściwości elektrycznych tyrystora. I. Wymagane wiadomości. 1. Podział

Bardziej szczegółowo

Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia

Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia Poznanie podstawowych własności tranzystora. Wyznaczenie prądów tranzystorów typu n-p-n i p-n-p. Czytanie schematów

Bardziej szczegółowo

Ćwiczenie 15 Temat: Zasada superpozycji, twierdzenia Thevenina i Nortona Cel ćwiczenia

Ćwiczenie 15 Temat: Zasada superpozycji, twierdzenia Thevenina i Nortona Cel ćwiczenia Ćwiczenie 15 Temat: Zasada superpozycji, twierdzenia Thevenina i Nortona Cel ćwiczenia Sprawdzenie zasady superpozycji. Sprawdzenie twierdzenia Thevenina. Sprawdzenie twierdzenia Nortona. Czytanie schematów

Bardziej szczegółowo

Ćwiczenie 8 Temat: Pomiar i regulacja natężenia prądu stałego jednym i dwoma rezystorem nastawnym Cel ćwiczenia

Ćwiczenie 8 Temat: Pomiar i regulacja natężenia prądu stałego jednym i dwoma rezystorem nastawnym Cel ćwiczenia Ćwiczenie 8 Temat: Pomiar i regulacja natężenia prądu stałego jednym i dwoma rezystorem nastawnym Cel ćwiczenia Właściwy dobór rezystorów nastawnych do regulacji natężenia w obwodach prądu stałego. Zapoznanie

Bardziej szczegółowo

Elektronika: Polaryzację złącza w kierunku zaporowym i w kierunku przewodzenia (pod rozdz. 6.3). Charakterystykę diody (rozdz. 7).

Elektronika: Polaryzację złącza w kierunku zaporowym i w kierunku przewodzenia (pod rozdz. 6.3). Charakterystykę diody (rozdz. 7). 114 PRZYPOMNIJ SOBIE! Elektronika: Polaryzację złącza w kierunku zaporowym i w kierunku przewodzenia (pod rozdz. 6.3). Charakterystykę diody (rozdz. 7). 9. Elektroniczne elementy przełączające Elementami

Bardziej szczegółowo

Diody, tranzystory, tyrystory. Materiały pomocnicze do zajęć.

Diody, tranzystory, tyrystory. Materiały pomocnicze do zajęć. Diody, tranzystory, tyrystory Materiały pomocnicze do zajęć. Złącze PN stanowi podstawę diod półprzewodnikowych. Rozpatrzmy właściwości złącza poddanego napięciu. Na poniŝszym rysunku pokazano złącze PN,

Bardziej szczegółowo

NIEZBĘDNY SPRZĘT LABORATORYJNY

NIEZBĘDNY SPRZĘT LABORATORYJNY Temat: Własności diody p-n Cel ćwiczenia Ćwiczenie 30 Zrozumienie właściwości diod ze złączem p-n. Poznanie własności diod każdego typu. Nauka testowania parametrów diod każdego typu za pomocą różnych

Bardziej szczegółowo

Ćwiczenie 01. Temat: Własności diody Zenera Cel ćwiczenia

Ćwiczenie 01. Temat: Własności diody Zenera Cel ćwiczenia Temat: Własności diody Zenera Cel ćwiczenia Ćwiczenie 01 Zrozumienie właściwości diod ze złączem p n. Poznanie własności diod każdego typu. Nauka testowania parametrów diod każdego typu za pomocą różnych

Bardziej szczegółowo

Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia

Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia Poznanie własności i zasad działania różnych bramek logicznych. Zmierzenie napięcia wejściowego i wyjściowego bramek

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości

Bardziej szczegółowo

Elementy półprzewodnikowe. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Elementy półprzewodnikowe. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Elementy półprzewodnikowe Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Elementy elektroniczne i ich zastosowanie. Elementy stosowane w elektronice w większości

Bardziej szczegółowo

Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki

Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki Ćwiczenie nr 4 Energoelektronika układy prądu zmiennego. Wstęp Energoelektronika to dział elektroniki, zajmująca się projektowaniem i stosowaniem

Bardziej szczegółowo

Część 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51

Część 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51 Część 3 Przegląd przyrządów półprzewodnikowych mocy Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51 Budowa przyrządów półprzewodnikowych Struktura składa się z warstw Warstwa

Bardziej szczegółowo

NIEZBĘDNY SPRZĘT LABORATORYJNY

NIEZBĘDNY SPRZĘT LABORATORYJNY Ćwiczenie 5 Temat: Pomiar napięcia i prądu stałego. Cel ćwiczenia Poznanie zasady pomiaru napięcia stałego. Zapoznanie się z działaniem modułu KL-22001. Obsługa przyrządów pomiarowych. Przestrzeganie przepisów

Bardziej szczegółowo

Ćwiczenie 13. Temat: Wzmacniacz w układzie wspólnej bazy. Cel ćwiczenia

Ćwiczenie 13. Temat: Wzmacniacz w układzie wspólnej bazy. Cel ćwiczenia Temat: Wzmacniacz w układzie wspólnej bazy. Cel ćwiczenia Ćwiczenie 13 Poznanie zasady pracy wzmacniacza w układzie OB. Wyznaczenie charakterystyk wzmacniacza w układzie OB. Czytanie schematów elektronicznych.

Bardziej szczegółowo

Instrukcje do doświadczeń. Elektronika

Instrukcje do doświadczeń. Elektronika Instrukcje do doświadczeń Elektronika 1 Spis doświadczeń 1 Dioda podstawowy obwód elektryczny...7 2 Dioda badanie charakterystyki...8 3 Dioda jako prostownik...9 4 LED podstawowy obwód elektryczny...10

Bardziej szczegółowo

Elementy elektroniczne Wykład 9: Elementy przełączające

Elementy elektroniczne Wykład 9: Elementy przełączające Elementy elektroniczne Wykład 9: Elementy przełączające Tyrystory konwencjonalne - wprowadzenie A I A p 1 p 1 j 1 + G n 1 G n 1 j C - p 2 p 2 j 2 n 2 n 2 K I K SRC silicon controlled rectifier Tyrystory

Bardziej szczegółowo

Ćwiczenie 16. Temat: Wzmacniacz w układzie Darlingtona. Cel ćwiczenia

Ćwiczenie 16. Temat: Wzmacniacz w układzie Darlingtona. Cel ćwiczenia Temat: Wzmacniacz w układzie Darlingtona. Cel ćwiczenia Ćwiczenie 16 1. Poznanie zasady pracy układu Darlingtona. 2. Pomiar parametrów układu Darlingtona i użycie go w różnych aplikacjach sterowania. INSTRUKCJA

Bardziej szczegółowo

Rozmaite dziwne i specjalne

Rozmaite dziwne i specjalne Rozmaite dziwne i specjalne dyskretne przyrządy półprzewodnikowe Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Bardziej szczegółowo

Ćwiczenie 14 Temat: Pomiary rezystancji metodami pośrednimi, porównawczą napięć i prądów.

Ćwiczenie 14 Temat: Pomiary rezystancji metodami pośrednimi, porównawczą napięć i prądów. Ćwiczenie 14 Temat: Pomiary rezystancji metodami pośrednimi, porównawczą napięć i prądów. Cel ćwiczenia; Zaplanować pomiary w obwodach prądu stałego, dobrać metodę pomiarową do zadanej sytuacji, narysować

Bardziej szczegółowo

(a) Układ prostownika mostkowego

(a) Układ prostownika mostkowego Ćwiczenie 06 Temat: Prostownik mostkowy. Cel ćwiczenia Zrozumienie zasady działania prostownika mostkowego. Pomiar napięcia wyjściowego i napięcia tętnień prostownika mostkowego. Czytanie schematów elektronicznych,

Bardziej szczegółowo

Ćwiczenie 17 Temat: Własności tranzystora JFET i MOSFET. Cel ćwiczenia

Ćwiczenie 17 Temat: Własności tranzystora JFET i MOSFET. Cel ćwiczenia Ćwiczenie 17 Temat: Własności tranzystora JFET i MOSFET. Cel ćwiczenia Poznanie budowy i zasady pracy tranzystora JFET. Pomiar charakterystyk tranzystora JFET. Czytanie schematów elektronicznych. Przestrzeganie

Bardziej szczegółowo

Przegląd półprzewodnikowych przyrządów mocy

Przegląd półprzewodnikowych przyrządów mocy Przegląd półprzewodnikowych przyrządów mocy Rozwój przyrządów siłą napędową energoelektroniki Najważniejsze: zdolność do przetwarzania wielkich mocy (napięcia i prądy znamionowe), szybkość przełączeń,

Bardziej szczegółowo

PL B1. POLITECHNIKA OPOLSKA, Opole, PL BUP 05/18. JAROSŁAW ZYGARLICKI, Krzyżowice, PL WUP 09/18

PL B1. POLITECHNIKA OPOLSKA, Opole, PL BUP 05/18. JAROSŁAW ZYGARLICKI, Krzyżowice, PL WUP 09/18 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 230058 (13) B1 (21) Numer zgłoszenia: 422007 (51) Int.Cl. H02M 3/155 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 24.06.2017

Bardziej szczegółowo

Ćwiczenie 23. Temat: Własności podstawowych bramek logicznych. Cel ćwiczenia

Ćwiczenie 23. Temat: Własności podstawowych bramek logicznych. Cel ćwiczenia Temat: Własności podstawowych bramek logicznych. Cel ćwiczenia Ćwiczenie 23 Poznanie symboli własności. Zmierzenie parametrów podstawowych bramek logicznych TTL i CMOS. Czytanie schematów elektronicznych,

Bardziej szczegółowo

TYRYSTOROWY ŁĄCZNIK REGULATORA MOCY REZYSTANCYJNEGO URZĄDZENIA ELEKTROTERMICZNEGO

TYRYSTOROWY ŁĄCZNIK REGULATORA MOCY REZYSTANCYJNEGO URZĄDZENIA ELEKTROTERMICZNEGO Instrukcja do ćwiczenia laboratoryjnego. TYRYSTOROWY ŁĄCZNIK REGULATORA MOCY REZYSTANCYJNEGO URZĄDZENIA ELEKTROTERMICZNEGO Konieczność regulacji mocy urządzeń elektrotermicznych powoduje, Ŝe w układach

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Laboratorium Elektryczne Pracownia Automatyki i Robotyki (s.48) Instrukcja Laboratoryjna: 11. BADANIE I ZASTOSOWANIE UKŁADÓW Z TYRYSTORAMI

Bardziej szczegółowo

Ćwiczenie nr 4 Tranzystor bipolarny (npn i pnp)

Ćwiczenie nr 4 Tranzystor bipolarny (npn i pnp) Ćwiczenie nr 4 Tranzystor bipolarny (npn i pnp) Tranzystory są to urządzenia półprzewodnikowe, które umożliwiają sterowanie przepływem dużego prądu, za pomocą prądu znacznie mniejszego. Tranzystor bipolarny

Bardziej szczegółowo

Rozmaite dziwne i specjalne

Rozmaite dziwne i specjalne Rozmaite dziwne i specjalne dyskretne przyrządy półprzewodnikowe Ryszard J. Barczyński, 2009 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Bardziej szczegółowo

BADANIE TRANZYSTORA BIPOLARNEGO Z IZOLOWANĄ BRAMKĄ (IGBT)

BADANIE TRANZYSTORA BIPOLARNEGO Z IZOLOWANĄ BRAMKĄ (IGBT) Laboratorium Energoelektroniki BADANIE TRANZYSTORA BIPOLARNEGO Z IZOLOWANĄ BRAMKĄ (IGBT) Prowadzący: dr inż. Stanisław Kalisiak dr inż. Marcin Hołub mgr inż. Michał Balcerak mgr inż. Tomasz Jakubowski

Bardziej szczegółowo

Przyrządy i Układy Półprzewodnikowe

Przyrządy i Układy Półprzewodnikowe VI. Prostownik jedno i dwupołówkowy Cel ćwiczenia: Poznanie zasady działania układu prostownika jedno i dwupołówkowego. A) Wstęp teoretyczny Prostownik jest układem elektrycznym stosowanym do zamiany prądu

Bardziej szczegółowo

PL B1. POLITECHNIKA OPOLSKA, Opole, PL BUP 12/17. JAROSŁAW ZYGARLICKI, Krzyżowice, PL WUP 05/18

PL B1. POLITECHNIKA OPOLSKA, Opole, PL BUP 12/17. JAROSŁAW ZYGARLICKI, Krzyżowice, PL WUP 05/18 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 228977 (13) B1 (21) Numer zgłoszenia: 419603 (51) Int.Cl. G01R 19/14 (2006.01) H02H 1/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia

Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia Zapoznanie się z techniką połączenia za pośrednictwem interfejsu. Zbudowanie

Bardziej szczegółowo

Ćwiczenie 4- tranzystor bipolarny npn, pnp

Ćwiczenie 4- tranzystor bipolarny npn, pnp Ćwiczenie 4- tranzystor bipolarny npn, pnp Tranzystory są to urządzenia półprzewodnikowe, które umożliwiają sterowanie przepływem dużego prądu, za pomocą prądu znacznie mniejszego. Tranzystor bipolarny

Bardziej szczegółowo

Dioda półprzewodnikowa

Dioda półprzewodnikowa mikrofalowe (np. Gunna) Dioda półprzewodnikowa Dioda półprzewodnikowa jest elementem elektronicznym wykonanym z materiałów półprzewodnikowych. Dioda jest zbudowana z dwóch różnie domieszkowanych warstw

Bardziej szczegółowo

Ćwiczenie 26. Temat: Układ z bramkami NAND i bramki AOI..

Ćwiczenie 26. Temat: Układ z bramkami NAND i bramki AOI.. Temat: Układ z bramkami NAND i bramki AOI.. Ćwiczenie 26 Cel ćwiczenia Zapoznanie się ze sposobami konstruowania z bramek NAND różnych bramek logicznych. Konstruowanie bramek NOT, AND i OR z bramek NAND.

Bardziej szczegółowo

Elementy elektroniczne i przyrządy pomiarowe

Elementy elektroniczne i przyrządy pomiarowe Elementy elektroniczne i przyrządy pomiarowe Cel ćwiczenia. Nabycie umiejętności posługiwania się miernikami uniwersalnymi, oscyloskopem, generatorem, zasilaczem, itp. Nabycie umiejętności rozpoznawania

Bardziej szczegółowo

Ćwiczenie 21 Temat: Komparatory ze wzmacniaczem operacyjnym. Przerzutnik Schmitta i komparator okienkowy Cel ćwiczenia

Ćwiczenie 21 Temat: Komparatory ze wzmacniaczem operacyjnym. Przerzutnik Schmitta i komparator okienkowy Cel ćwiczenia Ćwiczenie 21 Temat: Komparatory ze wzmacniaczem operacyjnym. Przerzutnik Schmitta i komparator okienkowy Cel ćwiczenia Poznanie zasady działania układów komparatorów. Prześledzenie zależności napięcia

Bardziej szczegółowo

Ćwiczenie 12 Temat: Prawa Kirchhoffa w obwodach prądu stałego. Cel ćwiczenia

Ćwiczenie 12 Temat: Prawa Kirchhoffa w obwodach prądu stałego. Cel ćwiczenia Ćwiczenie 12 Temat: Prawa Kirchhoffa w obwodach prądu stałego. Cel ćwiczenia Wyrobienie umiejętności łączenia obwodów elektrycznych rozgałęzionych oraz sprawdzenie praw prądu stałego. Czytanie schematów

Bardziej szczegółowo

Prostowniki. Prostownik jednopołówkowy

Prostowniki. Prostownik jednopołówkowy Prostowniki Prostownik jednopołówkowy Prostownikiem jednopołówkowym nazywamy taki prostownik, w którym po procesie prostowania pozostają tylko te części przebiegu, które są jednego znaku a części przeciwnego

Bardziej szczegółowo

AC/DC. Jedno połówkowy, jednofazowy prostownik

AC/DC. Jedno połówkowy, jednofazowy prostownik AC/DC Przekształtniki AC/DC można podzielić na kilka typów, mianowicie: prostowniki niesterowane; prostowniki sterowane. Zależnie od stopnia skomplikowania układu i miejsca przyłączenia do sieci elektroenergetycznej

Bardziej szczegółowo

Ćw. III. Dioda Zenera

Ćw. III. Dioda Zenera Cel ćwiczenia Ćw. III. Dioda Zenera Zapoznanie się z zasadą działania diody Zenera. Pomiary charakterystyk statycznych diod Zenera. Wyznaczenie charakterystycznych parametrów elektrycznych diod Zenera,

Bardziej szczegółowo

PODSTAWOWE ELEMENTY ELEKTRONICZNE DIODA PROSTOWNICZA. W diodach dla prądu elektrycznego istnieje kierunek przewodzenia i kierunek zaporowy.

PODSTAWOWE ELEMENTY ELEKTRONICZNE DIODA PROSTOWNICZA. W diodach dla prądu elektrycznego istnieje kierunek przewodzenia i kierunek zaporowy. PODSTAWOWE ELEMENTY ELEKTRONICZNE DIODA PROSTOWNICZA W diodach dla prądu elektrycznego istnieje kierunek przewodzenia i kierunek zaporowy. Jeśli plus (+) zasilania jest podłączony do anody a minus (-)

Bardziej szczegółowo

Dioda półprzewodnikowa

Dioda półprzewodnikowa COACH 10 Dioda półprzewodnikowa Program: Coach 6 Projekt: na MN060c CMA Coach Projects\PTSN Coach 6\ Elektronika\dioda_2.cma Przykład wyników: dioda2_2.cmr Cel ćwiczenia - Pokazanie działania diody - Wyznaczenie

Bardziej szczegółowo

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 2

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 2 Ćwiczenie 2 Cel ćwiczenia Celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji parametrów odpowiadających im modeli małosygnałowych, poznanie metod

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI TYRYSTOR I TRIAK

LABORATORIUM PODSTAW ELEKTRONIKI TYRYSTOR I TRIAK ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 4 TYRYSTOR I TRIAK

Bardziej szczegółowo

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów Spis treści Ćwiczenie - 3 Parametry i charakterystyki tranzystorów 1 Cel ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Tranzystor bipolarny................................. 2 2.1.1 Charakterystyki statyczne

Bardziej szczegółowo

A-7. Tranzystor unipolarny JFET i jego zastosowania

A-7. Tranzystor unipolarny JFET i jego zastosowania A-7. Tranzystor unipolarny JFET i jego zastosowania 1 Zakres ćwiczenia 1.1 Pomiar charakterystyk statycznych tranzystora JFET. 1.2 Projekt, montaż i badanie układu: 1.2.1 sterowanego dzielnika napięcia,

Bardziej szczegółowo

Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET

Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET Ćwiczenie 4 Parametry statyczne tranzystorów polowych JFET i MOSFET Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie charakterystyk statycznych tranzystorów polowych złączowych oraz z izolowaną

Bardziej szczegółowo

Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki

Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Temat ćwiczenia: Przetwornica impulsowa DC-DC typu boost

Bardziej szczegółowo

Badanie charakterystyki diody

Badanie charakterystyki diody Badanie charakterystyki diody Cel ćwiczenia Celem ćwiczenia jest poznanie charakterystyk prądowo napięciowych różnych diod półprzewodnikowych. Wstęp Dioda jest jednym z podstawowych elementów elektronicznych,

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 123: Półprzewodnikowe złącze p-n

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 123: Półprzewodnikowe złącze p-n Nazwisko i imię: Zespół: Data: Ćwiczenie nr 123: Półprzewodnikowe złącze p-n Cel ćwiczenia: Zapoznanie się z własnościami warstwowych złącz półprzewodnikowych p-n. Wyznaczanie charakterystyk stałoprądowych

Bardziej szczegółowo

TYRYSTORY METODY DIAGNOSTYKI I ZABEZPIECZENIA

TYRYSTORY METODY DIAGNOSTYKI I ZABEZPIECZENIA TYRYSTORY METODY DIAGNOSTYKI I ZABEZPIECZENIA TEKST: inż. Wojciech Pawlak Powszechne stosowanie wysokoprądowych tyrystorów w urządzeniach przemysłowych powoduje, że elektrycy i automatycy, zatrudnieni

Bardziej szczegółowo

WZMACNIACZ ODWRACAJĄCY.

WZMACNIACZ ODWRACAJĄCY. Ćwiczenie 19 Temat: Wzmacniacz odwracający i nieodwracający. Cel ćwiczenia Poznanie zasady działania wzmacniacza odwracającego. Pomiar przebiegów wejściowego wyjściowego oraz wzmocnienia napięciowego wzmacniacza

Bardziej szczegółowo

ĆWICZENIE 8 ELEMENTY I UKŁADY PRZEŁĄCZAJĄCE WPROWADZENIE

ĆWICZENIE 8 ELEMENTY I UKŁADY PRZEŁĄCZAJĄCE WPROWADZENIE ĆWICZENIE 8 ELEMENTY I UKŁADY PRZEŁĄCZAJĄCE Opracował: mgr inż. Adam Kowalczyk Pierwotna wersja ćwiczenia i instrukcji jest dziełem mgr. inż. Leszka Widomskiego WPROWADZENIE Działanie i parametry przełącznika

Bardziej szczegółowo

płytka montażowa z tranzystorami i rezystorami, pokazana na rysunku 1. płytka montażowa do badania przerzutnika astabilnego U CC T 2 masa

płytka montażowa z tranzystorami i rezystorami, pokazana na rysunku 1. płytka montażowa do badania przerzutnika astabilnego U CC T 2 masa Tranzystor jako klucz elektroniczny - Ćwiczenie. Cel ćwiczenia Zapoznanie się z podstawowymi układami pracy tranzystora bipolarnego jako klucza elektronicznego. Bramki logiczne realizowane w technice RTL

Bardziej szczegółowo

Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302)

Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302) Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302) 1. Elementy elektroniczne stosowane w ćwiczeniach Elementy elektroniczne będące przedmiotem pomiaru, lub służące do zestawienia

Bardziej szczegółowo

Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki

Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Temat ćwiczenia: Przetwornica impulsowa DC-DC typu buck

Bardziej szczegółowo

WYBRANE ELEMENTY I UKŁADY ELEKTRONICZNE W ZASTOSOWANIU DLA CELÓW AUTOMATYZACJI. 1.1 Model pasmowy przewodników, półprzewodników i dielektryków.

WYBRANE ELEMENTY I UKŁADY ELEKTRONICZNE W ZASTOSOWANIU DLA CELÓW AUTOMATYZACJI. 1.1 Model pasmowy przewodników, półprzewodników i dielektryków. Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 1 str.1/10 ĆWICZENIE 1 WYBRANE ELEMENTY I UKŁADY ELEKTRONICZNE W ZASTOSOWANIU DLA CELÓW AUTOMATYZACJI. 1.CEL ĆWICZENIA: Zapoznanie się z podstawowymi

Bardziej szczegółowo

Ćwiczenie 29 Temat: Układy koderów i dekoderów. Cel ćwiczenia

Ćwiczenie 29 Temat: Układy koderów i dekoderów. Cel ćwiczenia Ćwiczenie 29 Temat: Układy koderów i dekoderów. Cel ćwiczenia Poznanie zasad działania układów koderów. Budowanie koderów z podstawowych bramek logicznych i układu scalonego Czytanie schematów elektronicznych,

Bardziej szczegółowo

Ćwiczenie 1 Konstrukcja Szafy Sterowniczej PLC

Ćwiczenie 1 Konstrukcja Szafy Sterowniczej PLC Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Automatyzacja Zajęcia laboratoryjne Ćwiczenie 1 Konstrukcja Szafy Sterowniczej PLC Poznań 2017 OGÓLNE ZASADY BEZPIECZEŃSTWA PODCZAS WYKONYWANIA

Bardziej szczegółowo

Ćwiczenie nr 123: Dioda półprzewodnikowa

Ćwiczenie nr 123: Dioda półprzewodnikowa Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 123: Dioda półprzewodnikowa

Bardziej szczegółowo

Półprzewodnikowe przyrządy mocy

Półprzewodnikowe przyrządy mocy Temat i plan wykładu Półprzewodnikowe przyrządy mocy 1. Wprowadzenie 2. Tranzystor jako łącznik 3. Charakterystyki prądowo-napięciowe 4. Charakterystyki dynamiczne 5. Definicja czasów przełączania 6. Straty

Bardziej szczegółowo

Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne

Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 3 Temat: Diody półprzewodnikowe i elementy reaktancyjne SPIS TREŚCI Spis treści... 2 1. Cel ćwiczenia... 3 2. Wymagania...

Bardziej szczegółowo

Ćwiczenie 3 Temat: Oznaczenia mierników, sposób podłączania i obliczanie błędów Cel ćwiczenia

Ćwiczenie 3 Temat: Oznaczenia mierników, sposób podłączania i obliczanie błędów Cel ćwiczenia Ćwiczenie 3 Temat: Oznaczenia mierników, sposób podłączania i obliczanie błędów Cel ćwiczenia Zaznajomienie się z oznaczeniami umieszczonymi na przyrządach i obliczaniem błędów pomiarowych. Obsługa przyrządów

Bardziej szczegółowo

Laboratorum 4 Dioda półprzewodnikowa

Laboratorum 4 Dioda półprzewodnikowa Laboratorum 4 Dioda półprzewodnikowa Marcin Polkowski (251328) 19 kwietnia 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Opis ćwiczenia 2 3 Wykonane pomiary 3 3.1 Dioda krzemowa...............................................

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 4

Instrukcja do ćwiczenia laboratoryjnego nr 4 Instrukcja do ćwiczenia laboratoryjnego nr 4 Temat: Badanie własności przełączających diod półprzewodnikowych Cel ćwiczenia. Celem ćwiczenia jest poznanie własności przełączających złącza p - n oraz wybranych

Bardziej szczegółowo

Rys Schemat montażowy (moduł KL blok e) Tablica C B A F

Rys Schemat montażowy (moduł KL blok e) Tablica C B A F Ćwiczenie 30 Temat: Układy multiplekserów i demultiplekserów. Cel ćwiczenia Poznanie zasad działania multiplekserów. Budowanie multiplekserów z podstawowych bramek logicznych i układu scalonego TTL. Czytanie

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA

WOJSKOWA AKADEMIA TECHNICZNA WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego ENERGOELEKTRONIKA Laboratorium Ćwiczenie nr 2 Łączniki prądu przemiennego Warszawa 2015r. Łączniki prądu przemiennego na przemienny Celem ćwiczenia

Bardziej szczegółowo

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 26/16

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 26/16 PL 227999 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 227999 (13) B1 (21) Numer zgłoszenia: 412711 (51) Int.Cl. H02M 3/07 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 (EZ1C500 055) BADANIE DIOD I TRANZYSTORÓW Białystok 2006

Bardziej szczegółowo

Ćwiczenie 25. Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia

Ćwiczenie 25. Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia Ćwiczenie 25 Poznanie własności obwodu szeregowego RC w układzie. Zrozumienie znaczenia reaktancji pojemnościowej, impedancji kąta fazowego. Poznanie

Bardziej szczegółowo

(57) mochodowych, utworzony z transformatora o regulowanej liczbie (12) OPIS PATENTOWY (19) PL (11) (13) B1 PL B1 H02M 7/02 H02J 7/02

(57) mochodowych, utworzony z transformatora o regulowanej liczbie (12) OPIS PATENTOWY (19) PL (11) (13) B1 PL B1 H02M 7/02 H02J 7/02 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 188210 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia 3 2 6146 (22) Data zgłoszenia. 05.05.1998 (13) B1 (5 1) IntCl7 H02J 7/02 H02M

Bardziej szczegółowo

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Układem

Bardziej szczegółowo

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2018 Nazwa kwalifikacji: Eksploatacja maszyn, urządzeń i instalacji elektrycznych Oznaczenie kwalifikacji:

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 Parametry statyczne tranzystorów polowych złączowych Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów polowych złączowych

Bardziej szczegółowo

Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED)

Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED) Temat ćwiczenia: Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED) - - ` Symbol studiów (np. PK10): data wykonania ćwiczenia - godzina wykonania ćwiczenia. Nazwisko i imię*: 1 Pluton/Grupa

Bardziej szczegółowo

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2017 Nazwa kwalifikacji: Eksploatacja urządzeń elektronicznych Oznaczenie kwalifikacji: E.20 Numer zadania:

Bardziej szczegółowo

Ćwiczenie 22. Temat: Przerzutnik monostabilny. Cel ćwiczenia

Ćwiczenie 22. Temat: Przerzutnik monostabilny. Cel ćwiczenia Temat: Przerzutnik monostabilny. Cel ćwiczenia Ćwiczenie 22 Poznanie zasady działania układu przerzutnika monostabilnego. Pomiar przebiegów napięć wejściowego wyjściowego w przerzutniku monostabilny. Czytanie

Bardziej szczegółowo

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą. Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane

Bardziej szczegółowo

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 CZĘŚĆ PRAKTYCZNA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 CZĘŚĆ PRAKTYCZNA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2016 Nazwa kwalifikacji: Eksploatacja urządzeń elektronicznych Oznaczenie kwalifikacji: E.20 Numer zadania:

Bardziej szczegółowo

Rys Filtr górnoprzepustowy aktywny R

Rys Filtr górnoprzepustowy aktywny R Ćwiczenie 20 Temat: Filtr górnoprzepustowy i dolnoprzepustowy aktywny el ćwiczenia Poznanie zasady działania filtru górnoprzepustowego aktywnego. Wyznaczenie charakterystyki przenoszenia filtru górnoprzepustowego

Bardziej szczegółowo

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Badanie tranzystorów unipolarnych typu JFET i MOSFET

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Badanie tranzystorów unipolarnych typu JFET i MOSFET Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej TIA ZIENNE LAORATORIM PRZYRZĄÓW PÓŁPRZEWONIKOWYCH Ćwiczenie nr 8 adanie tranzystorów unipolarnych typu JFET i MOFET I. Zagadnienia

Bardziej szczegółowo

Ćwiczenie 6 WYBRANE ELEMENTY PÓŁPRZEWODNIKOWE. 1. Cel ćwiczenia. 2. Wprowadzenie

Ćwiczenie 6 WYBRANE ELEMENTY PÓŁPRZEWODNIKOWE. 1. Cel ćwiczenia. 2. Wprowadzenie Ćwiczenie 6 WYRANE ELEMENTY PÓŁPRZEWODNIKOWE 1. el ćwiczenia Większość z dostępnych na rynku urządzeń elektronicznych wymaga zasilania napięciem i prądem stałym. Jak wiadomo, napięcie i prąd w gniazdkach

Bardziej szczegółowo

Badanie diody półprzewodnikowej

Badanie diody półprzewodnikowej Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 2 Pracownia Elektroniki Badanie diody półprzewodnikowej Zakres materiału obowiązujący do ćwiczenia: (Oprac dr Radosław Gąsowski) półprzewodniki samoistne

Bardziej szczegółowo

Badanie układów prostowniczych

Badanie układów prostowniczych Instrukcja do ćwiczenia: Badanie układów prostowniczych (wersja robocza) Laboratorium Elektroenergetyki 1 1. Cel ćwiczenia Poznanie budowy, zasady działania i właściwości podstawowych układów elektronicznych,

Bardziej szczegółowo

Zasilacze: Prostowniki niesterowane, prostowniki sterowane

Zasilacze: Prostowniki niesterowane, prostowniki sterowane Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych Ciężkich Politechnika Warszawska Laboratorium Elektrotechniki i Elektroniki Ćwiczenie E1 - instrukcja Zasilacze: Prostowniki niesterowane, prostowniki

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE JEDNOSTKA ORGANIZACYJNA: ZAKŁAD KOMUNIKACYJNYCH TECHNOLOGII MORSKICH INSTRUKCJA

AKADEMIA MORSKA W SZCZECINIE JEDNOSTKA ORGANIZACYJNA: ZAKŁAD KOMUNIKACYJNYCH TECHNOLOGII MORSKICH INSTRUKCJA AKADEMIA MORSKA W SZCZECINIE JEDNOSTKA ORGANIZACYJNA: ZAKŁAD KOMUNIKACYJNYCH TECHNOLOGII MORSKICH INSTRUKCJA ELEKTROTECHNIKA I ELEKTRONIKA Laboratorium Ćwiczenie nr 3: Elementy półprzewodnikowe Opracował:

Bardziej szczegółowo

Przykładowe pytania do przygotowania się do zaliczenia poszczególnych ćwiczeń z laboratorium Energoelektroniki I. Seria 1

Przykładowe pytania do przygotowania się do zaliczenia poszczególnych ćwiczeń z laboratorium Energoelektroniki I. Seria 1 ENERGOELEKTRONIKA Laboratorium STUDIA STACJONARNE EEDI-3 Przykładowe pytania do przygotowania się do zaliczenia poszczególnych ćwiczeń z laboratorium Energoelektroniki I. Seria 1 1. Badanie charakterystyk

Bardziej szczegółowo

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 07 Nazwa kwalifikacji: Eksploatacja maszyn, urządzeń i instalacji elektrycznych Oznaczenie kwalifikacji:

Bardziej szczegółowo

BADANIE DIOD PÓŁPRZEWODNIKOWYCH

BADANIE DIOD PÓŁPRZEWODNIKOWYCH BAANE O PÓŁPZEWONKOWYCH nstytut izyki Akademia Pomorska w Słupsku Cel i ćwiczenia. Celem ćwiczenia jest: - zapoznanie się z przebiegiem charakterystyk prądowo-napięciowych diod różnych typów, - zapoznanie

Bardziej szczegółowo

Ćwiczenie 14. Temat: Wzmacniacz w układzie wspólnego kolektora. Cel ćwiczenia

Ćwiczenie 14. Temat: Wzmacniacz w układzie wspólnego kolektora. Cel ćwiczenia Temat: Wzmacniacz w układzie wspólnego kolektora. Cel ćwiczenia Ćwiczenie 14 1 Poznanie zasady pracy wzmacniacza w układzie OC. 2. Wyznaczenie charakterystyk wzmacniacza w układzie OC. INSTRUKCJA DO WYKONANIA

Bardziej szczegółowo