Elementy i Układy Sterowania Mocą

Wielkość: px
Rozpocząć pokaz od strony:

Download "Elementy i Układy Sterowania Mocą"

Transkrypt

1 Elementy i Układy Sterowania Mocą Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: zbigniew.lisik@p.lodz.pl wykład 15 godz. laboratorium 15 godz.

2 Materiały półprzewodnikowe Podstawowe półprzewodniki: - krzem Ge - german GaN - azotek galu GaAs - arsenek galu C -węglik krzemu 2

3 Krzem (T=0K) Model pasmowy: W C W g W V

4 Krzem (T>0K) Generacja pary dziura-elektron Model pasmowy: W C W V

5 Krzem domieszkowany Ga akceptor Ga - As donor W C W D As + W A W V

6 Koncentracja nośników Bilans ładunku: n d + N a + n T = p T + N d + p a n 0 + N A = p 0 + N d Typy półprzewodników: N a > N d p p0 > n p0 typ p N a < N d p n0 < n n0 typ n N a = N d p 0 = n 0 = n i typ i

7 Koncentracja nośników Typ n ln n 0 ln p 0 n 0 n i W C W D T s p 0 T i T W V T s temperatura wyczerpania stanów T i temperatura przejścia w stan samoistny n 0 = n d + n T p 0 = n T n0p0 n 2 i

8 Koncentracja nośników Typ n ln n 0 ln p 0 n 0 n i ρ p 0 T T s T s temperatura wyczerpania stanów T i T i temperatura przejścia w stan samoistny T s ρ ~(n 0 + p 0 ) ρ rezystywność T i T

9 Ograniczenia termiczne Jeżeli parametry przyrządu półprzewodnikowego mają być zgodne z danymi katalogowymi, koncentracja nośników większościowych nie może się istotnie zmieniać Warunek 1: jest to prawdziwe kiedy T min nie mniejsze od T s. Dla T min -50 C Obszar zalecany ln n 0 ln p 0 n 0 n i T s p 0 T i T

10 Ograniczenia termiczne Jeżeli parametry przyrządu półprzewodnikowego mają być zgodne z danymi katalogowymi, koncentracja nośników większościowych nie może się istotnie zmieniać Warunek 2: jest prawdziwe kiedy T max mniejsze niż T i. Dla T max < 400 C Obszar zalecany ln n 0 ln p 0 n 0 n i T s p 0 T i T

11 Ograniczenia termiczne Jeżeli parametry przyrządu półprzewodnikowego mają być zgodne z danymi katalogowymi, koncentracja nośników większościowych nie może się istotnie zmieniać Warunek 3: jest prawdziwy kiedy T max nie powoduje wzrostu n 0. Typowe obszary definiowane w katalogach dla przyrządów krzemowych: Obszar zalecany Zakres [ C] Komercyjny 0 70 ln n 0 ln p 0 n 0 Przemysłowy n i Przemysłowy rozszerzony Militarny T s p 0 T i T

12 Ograniczenia termiczne Sznurowanie prądu hot spot Jeżeli T jest wewnątrz <T s,t i >, występuje ujemne cieplne sprzężenie zwrotne: pastylka krzemowa J Obszar bezpieczny Q T T i ρ Prąd jest wypychany z obszaru cieplejszego i maleje lokalne rozpraszanie ciepła T s T i T

13 Ograniczenia termiczne Sznurowanie prądu hot spot Jeżeli T jest wewnątrz <T s,t i >, występuje ujemne cieplne sprzężenie zwrotne: pastylka krzemowa J Obszar bezpieczny Q T ρ Prąd jest wypychany z obszaru cieplejszego i maleje lokalne rozpraszanie ciepła T s T i T

14 Ograniczenia termiczne Sznurowanie prądu hot spot Jeżeli T jest poza <Ts,Ti>, występuje dodatnie cieplne sprzężenie zwrotne: pastylka krzemowa J Obszar bezpieczny Q T T i ρ Prąd jest ściągany do obszaru cieplejszego i rośnie lokalne rozpraszanie ciepła T s T i T

15 Ograniczenia termiczne Sznurowanie prądu hot spot Jeżeli T jest poza <Ts,Ti>, występuje dodatnie cieplne sprzężenie zwrotne: pastylka krzemowa J Obszar bezpieczny Q T ρ Prąd jest ściągany do obszaru cieplejszego i rośnie lokalne rozpraszanie ciepła T s T i T

16 Koncentracja nośników Koncentracje równowagowe: n 0, p 0 h n W C Koncentracje nierównowagowe: n = n 0 + n p = p 0 + p Koncentracje nadmiarowe: n, p p zwykle: n = p W V

17 Rekombinacja Szybkość rekombinacji: R - dn dt - d n dt Δn τ h g R W C n 0 n g=0 W V n = n 0 + n t n = n 0 exp (-t/ ) - czas życia

18 Prąd unoszenia elektrony v ue = n E J ue = qnv ue = qn n E n (-q) E W C dziury v uh = p E J uh = qpv uh = qp p E p (q) W V E natężenie pola elektrycznego µ - ruchliwość v u prędkość unoszenia Prawo Ohma dla półprzewodnika: J u = J ue + J uh = q(n n + p p )E = E

19 Prąd dyfuzyjny J de = qd n grad n J dh = -qd p grad p J de J dh D stała dyfuzji Równania transportu: J e = q(n n E + D n grad n) J h = q(p p E - D p grad p)

20 Wstrzykiwanie nośników n 0 R = n/ g = 0 E = 0 n 0 j(0) j(w) β 1 j(0) > j(w) 0< β < 1 n 0 n 0 j(w) = 0 β =0 n(x) =? n(w)=0 w x w L> w L w L< w L = (D ) 0.5 droga dyfuzji w w β = j(w)/j(0) współczynnik transportu n 1 n R = n/ 1 n(w)=δn g = 0 2 n 2 E = 0 n(x) =? w x n p w x n = n 0 + n p = p 0 + n

21 Wstrzykiwanie nośników n 0 R = n/ g = 0 E = 0 n 0 n 0 n 0 n(x) =? n(w)=0 w x Q inj Q inj Q inj w L> w L w L< w Q inj ładunek wstrzykniętych nośników nadmiarowych C D pojemność dyfuzyjna gromadząca Q inj\ w w n 1 R = n/ g = 0 E = 0 n(x) =? n(w)=δn 2 n 1 n 2 Q inj n = n 0 + n p = p 0 + p w x w x

22 Złącze p-n SCR A pp0 n p0 p E n n n0 p n0 K Stan równowagi U AK = 0 V Q SCR = Q SCR0 A p p0 n p0 p n n n0 p n0 K Polaryzacja w kierunku przewodzenia U AK > 0 V Q SCR < Q SCR0 A p p0 n p0 p E n n n 0 p n0 K Polaryzacja wsteczna U AK < 0 V Q SCR > Q SCR0

23 Dioda idealna SCR A p p0 K n p0 p n n n0 p n0 K Obszar złącza I D Charakterystyka diody idealnej I D qu Is0 exp -1 kt I s0 U D I s0 prąd nasycenia

24 Dioda idealna a rzeczywista R sp DI R sn E p p0 n p0 p n J l prąd upływu G u G l D I C j C d R s R s rezystancja szeregowa G u konduktancja upływu C j pojemność złączowa C d pojemność dyfuzyjna D I dioda idealna

25 Dioda idealna a rzeczywista Napięcie przebicia: DI R s G l U br DI+R s +G l I D Rodzaje przebić: lawinowe Zenera skrośne U D

26 Przełączanie diody E R D E t E R E F E t I F I t s t f t E R I R I F = E F /R I R = E R /R

27 Przyrządy mocy - przegląd Podstawowe cechy : główne zastosowania klucze w obwodach DC i AC duże wymiary wymagają chłodzenia duża jednostkowa cena

28 Przyrządy mocy - przegląd Podstawowe wymagania : duży prąd przewodzenia : typowo A, max. 10 ka duże napięcie blokowania : typowo 300V - 2kV, max. 10 kv duża częstotliwość przełączania : dla bipolarnych > 10 khz dla unipolarnych > 100kHz małe straty mocy (U on I on ) w stanie przewodzenia proste sterowanie

29 Przyrządy mocy - przegląd Bipolarne Tranzystory Bipolarne Diody Tyrystory GTO BiMOS Tranzystory Bipolarne z Izolowaną Bramką (IGBT) Static Induction Thyristor (SITh) Unipolarne Tranzystory MOSFET Tranzystory JFET

30 Przyrządy bipolarne dioda p-i-n Budowa diody prostowniczej [cm -3 ] Profile rozkładu domieszkowania Elementy składowe: x 40 p + p n n + [ m] p-n -złącze blokujące napięcie A K p +, n + - warstwy emiterów wstrzykujące nośniki do obszarów słabo domieszkowanych oraz zapewniające dobry kontakt omowy metal-półprzewodnik

31 Przyrządy bipolarne dioda p-i-n Stan przewodzenia p + p n n + p n p + i n + n = p n p U F U P U I 0 w p+ w w n+ U N

32 Przyrządy bipolarne dioda p-i-n Stan przewodzenia U F = U P + U I + U N U F p + i n + U P Elementy składowe: U I napięcie na złączach p-i i n-i : w U N kt U ln J U P + U N = K 1 ln I q napięcie na obszarze i -omowe: I T 1 U I W J dx Edx 2 q n ( x ) ( x ) 0 0 W T 2 U I K 2 I 0.5 U F

33 Przyrządy bipolarne dioda p-i-n Stan przewodzenia U F = U P + U I + U N U P + U N = K 1 ln I U I K 2 I 0.5 U F p + i n + U P U I w U N U F = K 1 ln I + K 2 I 0.5 małe I U P + U N > U I I T 1 duże I U P + U N < U I T - cross point (U P + U N ) a U I T 2 U F

34 Przyrządy bipolarne dioda p-i-n Stan przewodzenia charakterystyka zastępcza rezystancja dynamiczna: R d U I F F 3π 2 I FAV I F U F I F przybliżenie liniowe: U F U O I F R d π 2 I FAV I FAV I FAV znamionowa wartość średnia prądu przewodzenia U O U F

35 Przyrządy bipolarne dioda p-i-n Stan blokowania dioda NPT: Cały ładunek przestrzenny w warstwie n - E max p + p n - n + w SCR dioda PT: Ładunek przestrzenny w warstwie n - i n + Złącze n - -n + uległo przebiciu skrośnemu E max w SCR

36 Przyrządy bipolarne dioda p-i-n Proces załączania

37 Przyrządy bipolarne dioda p-i-n Proces wyłączania

38 Przyrządy bipolarne dioda p-i-n Dane katalogowe

39 Przyrządy bipolarne dioda p-i-n Dane katalogowe

40 Przyrządy bipolarne dioda p-i-n Dane katalogowe

41 Przyrządy bipolarne dioda p-i-n Dane katalogowe

42 Przyrządy bipolarne tranzystor Zasada działania E C E J E J h J e R J hc JC C B p-n-p B J C =J hc = J h = J E = J E Typowe warunki pracy: U BE - przewodzenie U BC - blokowanie Współczynnik wzmocnienia J C /J E α γ β

43 Przyrządy bipolarne tranzystor Układ pracy tranzystorów OE I C OC I E I B U CE I B U EC U BE U BC OB I B I C U EB U CB

44 Przyrządy bipolarne tranzystor Układ wspólnego emitera U BE I B I C U CE β -współczynnik wzmocnienia I C /I B I C I C I C I E I I I I B E C C I E I C Charakterystyka wyjściowa I B Obszar nasycenia U CB >0 U EB >0 Obszar aktywny U CB <0 U EB >0 I B =0 Obszar odcięcia U CB <0 U EB <0 U CE

45 Przyrządy bipolarne tranzystor Obszar bezpiecznej pracy SOA I C I Cmax SOA Hiperbola mocy admisyjnej P max =I C U CE U br U CE I Cmax maksymalny prąd ograniczony przez połączenia drutowe, U br napięcie przebicia złącza kolektorowego, P max maksymalną moc, która może być wydzielona bez przekroczenia temperatury złącza T jmax

46 Przyrządy bipolarne tranzystor Układ klucza - inwertera E C R L I C E C /R L 0 U WE U WY 1 E C U CE Wejście Wyjście stan "0" U WE 0 V U WY E C stan "1" stan "1" U WE E C U WY 0 V stan "0"

47 Przyrządy bipolarne tranzystor Przełączanie tranzystora E C R L I C E U WE t t s t f UWE U WY I CM I C t t d t r t d czas opóźnienia t r czas narastania t s czas magazynowania t f czas opadania

48 Przyrządy bipolarne tranzystor Napięcie przebicia E C I C B I C0 + U - CB E αi E C I C0 I C0 + - U CE I C0 U CE0 U CB0 U gdy α to β i I C gdy I C to U CE0 (przebicie dynamiczne) β = 9 U CE0 = 0,63 U CB0 β = 99 U CE0 = 0,40 U CB0

49 Przyrządy bipolarne tranzystor Napięcie przebicia Napięcie przebicia U CE można zwiększyć poprzez: Wprowadzenie rezystancji R pomiędzy bazę B i emiter E (U CER ) Zwarcie kontaktów bazy B i emitera E (U CES ) Wprowadzenie wstecznego prądu bazy

50 Przyrządy bipolarne tranzystor Dynamiczne przebicie lawinowe Obszar I obszar nasycenia Obszar II obszar aktywny Obszar III obszar powielania lawinowego

51 Przyrządy bipolarne tranzystor Konstrukcja tranzystora wysokonapięciowego Rozkład domieszkowania U CE0 150 V: Cecha charakterystyczna: Złącze kolektorowe wykonane jako złącze wysokonapięciowe z szeroką warstwą niskodomieszkowaną, odpowiedzialną za wartość blokowanego napięcia

52 Przyrządy bipolarne tranzystor Konstrukcja tranzystora wysokonapięciowego Charakterystyki wyjściowe: A B C Charakterystyczne obszary: A B C Obszar pełnego nasycenia Obszar quasi-nasycenia Obszar aktywny

53 Przyrządy bipolarne tranzystor Efekty poprzeczne Palczasta elektroda bramki i emitera:

54 Przyrządy bipolarne tranzystor Efekty poprzeczne Wtórne przebicie (second breakdown): second breakdown Tranzystor npn BUL45 Motorola 5A / 700V

55 Przyrządy bipolarne tranzystor Tranzystor Darlingtona Idea- rozwiązanie techniczne struktura: B B E

56 Przyrządy bipolarne tyrystor Zasada budowy Jest to przyrząd 3-złączowy pochodzący od znanego układu dwutranzystorowego, tzw. łącznika TT: struktura n-p-n-p cztery warstwy A A trzy złącza p I A trzy elektrody: n T2 A anoda p G T1 G K katoda G bramka n K K I K = I A + I G I G

57 Przyrządy bipolarne tyrystor Zasada działania polaryzacja wsteczna - U AK < 0, przyrząd może jedyne blokować napięcie, polaryzacja w kierunku przewodzenia - U AK > 0, przyrząd blokuje napięcie lub może być przełączony w stan przewodzenia (duży anodowy prąd I A przy małym spadku napięcia), p n A p n K G T1 K A I A T2 I K = I A + I G przyrząd jest sterowany prądem bramki I G, który może go załączyć przy polaryzacji w kierunku przewodzenia, w normalnych tyrystorach wyłączenie prądem bramki nie jest możliwe (jest ono możliwe jedynie w tyrystorach GTO). I G G

58 Przyrządy bipolarne tyrystor Zasada działania - charakterystyka I T U AK x K n+ p n - n p + [ m] A

59 Przyrządy bipolarne tyrystor Załączanie bramkowe I GM U D amplituda prądu bramki napięcie blokowania I T prąd przewodzenia tyrystora I GM I 0.1I GM G t t G t G czas trwania impulsu prądu bramki t d czas opóźnienia U D M U AK t d t r 0.9U D 0.1U D t t r czas narastania I T I A t on = t d + t r t

60 Przyrządy bipolarne tyrystor Charakterystyka bramkowa A obszar niemożliwych przełączeń tyrystora B obszar niepewnego wyzwalania I G C obszar pewnego wyzwalania I FGM P max I GT U GT prąd przełączający bramki napięcie przełączające bramki I GT B C I FGM szczytowy prąd przewodzenia bramki A U GT U FGM U G U FGM szczytowe napięcie przewodzenia bramki

61 Przyrządy bipolarne tyrystor Wyłączanie wymuszone obwód wyłączania wymuszonego E t d R Th I T t E U T t d czas dysponowany określony przez obwód zewnętrzny

62 Przyrządy bipolarne tyrystor Wyłączanie wymuszone Proces wyłączania E t d t E R T h I T U T I T U T t q t q czas wyłączania, określony przez zjawiska wewnątrz tyrystora prowadzące do odzyskania zdolności blokowania napięcia

63 Przyrządy bipolarne GTO Struktura GTO Komórka podstawowa Struktury palczaste

64 Przyrządy bipolarne GTO Wyłączanie tyrystora Układ podstawowy t dq czas opóźnienia t rq t tq czas opadania czas ogona prądowego g współczynnik wzmocnienia prądowego I RG I T / g

65 Przyrządy bipolarne GTO Wyłączanie tyrystora Straty mocy przy wyłączaniu

66 Przyrządy bipolarne GTO Wyłączanie tyrystora Układ z tłumikiem ograniczającym straty U DP - spike voltage

67 Przyrządy bipolarne GTO Przebieg procesu wyłączania

68 Przyrządy bipolarne GTO Przebieg procesu wyłączania

69 Przyrządy bipolarne GTO Niejednorodność procesu wyłączania

70 Przyrządy bipolarne GTO Niejednorodność krzem neutronowy

71 Przyrządy bipolarne GTO Idea hard drive

72 Przyrządy bipolarne GTO Fazy wprowadzania hard drive

73 Przyrządy bipolarne GTO Fazy wprowadzania hard drive Tyrystory IGCT firmy ABB

74 Przyrządy bipolarne GTO Maska tyrystora wykonanego w Katedrze

75 Przyrządy sterowane polowo Wywodzący się z idei JFET Static Induction Transistor SIT (unipolarny) p + n + n - n + S D G Konstrukcja bramki zagrzebanej Konstrukcja SIT jest wzorowana na idei lampy elektronowej triody

76 Przyrządy sterowane polowo Wywodzący się z idei JFET Static Induction Thyristor SITh (Bi-MOS) p + n + n - p + K A G Złącze emiterowe Konstrukcja SITh jest wzorowana na idei lampy elektronowej triody

77 Przyrządy sterowane polowo Wywodzący się z idei MOSFET Vertical MOS -VMOS (unipolarny) p n - S n G n S Pojedyncza komórka przyrząd składa się z tysięcy takich komórek n + D Identyczność komórek MOS jest uzyskiwana dzięki jednorodności procesu suchego trawienia

78 Przyrządy sterowane polowo Wywodzący się z idei MOSFET Vertical Double diffusion MOS - VDMOS (unipolarny) S p n G n S Pojedyncza komórka n - przyrząd składa się z tysięcy takich komórek n + D Identyczność komórek MOS jest uzyskiwana dzięki jednorodności procesu podwójnej dyfuzji (jedna maska dla wysp n i p)

79 Przyrządy sterowane polowo Wywodzący się z idei MOSFET Tranzystor CoolMOS (unipolarny) Pojedyncza komórka przyrząd składa się z tysięcy takich komórek Identyczność komórek jest uzyskiwana m.in. dzięki jednorodności procesu podwójnej dyfuzji (jedna maska dla wysp n i p)

80 Przyrządy sterowane polowo Dane katalogowe MOSFET

81 Przyrządy sterowane polowo Dane katalogowe MOSFET

82 Przyrządy sterowane polowo Dane katalogowe MOSFET

83 Przyrządy sterowane polowo Tranzystor IGBT Integrated Gate Bipolal Transistor IGBT (Bi-MOS) G S G G E G n p + n n p + n E G n - n + n - p + C D C VDMOS IGBT

84 Przyrządy sterowane polowo Tranzystor IGBT Zasada działania tranzystora IGBT G E G n p + n E G I C n - p + C C I B U CE

85 Przyrządy sterowane polowo Tranzystor IGBT Charakterystyki wyjściowe tranzystora IGBT G E G n p + n n - p + C

86 Przyrządy sterowane polowo Tranzystor IGBT Modele zastępcze tranzystora IGBT

87 Przyrządy sterowane polowo Tranzystor IGBT Tranzystor IGBT typu PT i NPT NPT PT

88 Przyrządy sterowane polowo Tranzystor IGBT Proces wyłączania tranzystora IGBT G E G n p + n n - p + C

89 Przyrządy sterowane polowo Tranzystor IGBT Wpływ R G na przebieg wyłączania

Elementy i Układy Sterowania Mocą

Elementy i Układy Sterowania Mocą Elementy i Układy Sterowania Mocą Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl wykład 15 godz. laboratorium 15 godz. Materiały

Bardziej szczegółowo

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój:

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: Podstawy Elektroniki Prowadzący: Prof. dr hab. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl Program: wykład - 15h laboratorium

Bardziej szczegółowo

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój:

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: Podstawy Elektroniki Prowadzący: Prof. dr hab. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl Program: wykład - 15h laboratorium

Bardziej szczegółowo

Prowadzący: Prof. PŁ, dr hab. Zbigniew Lisik. Program: wykład - 15h laboratorium - 15h wizyta w laboratorium technologicznym - 4h

Prowadzący: Prof. PŁ, dr hab. Zbigniew Lisik. Program: wykład - 15h laboratorium - 15h wizyta w laboratorium technologicznym - 4h Prowadzący: Prof. PŁ, dr hab. Zbigniew Lisik Program: wykład - 15h laboratorium - 15h wizyta w laboratorium technologicznym - 4h Materiały półprzewodnikowe Metal Półprzewodnik Izolator T T T Materiały

Bardziej szczegółowo

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój:

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: Podstawy Elektroniki Prowadzący: Prof. dr hab. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl Program: wykład - 15h laboratorium

Bardziej szczegółowo

Przyrządy półprzewodnikowe

Przyrządy półprzewodnikowe Przyrządy półprzewodnikowe Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA E&T Metal

Bardziej szczegółowo

Część 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51

Część 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51 Część 3 Przegląd przyrządów półprzewodnikowych mocy Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51 Budowa przyrządów półprzewodnikowych Struktura składa się z warstw Warstwa

Bardziej szczegółowo

Przyrządy półprzewodnikowe część 3

Przyrządy półprzewodnikowe część 3 Przyrządy półprzewodnikowe część 3 Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 110 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA

Bardziej szczegółowo

Przyrządy półprzewodnikowe część 5

Przyrządy półprzewodnikowe część 5 Przyrządy półprzewodikowe część 5 Prof. Zbigiew Lisik Katedra Przyrządów Półprzewodikowych i Optoelektroiczych pokój: 116 e-mail: zbigiew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA E&T

Bardziej szczegółowo

Prawo Ohma. qnv. E ρ U I R U>0V. v u E +

Prawo Ohma. qnv. E ρ U I R U>0V. v u E + Prawo Ohma U>0V J v u J qnv u - E + J qne d J gęstość prądu [A/cm 2 ] n koncentracja elektronów [cm -3 ] ρ rezystywność [Ωcm] σ - przewodność [S/cm] E natężenie pola elektrycznego [V/cm] I prąd [A] R rezystancja

Bardziej szczegółowo

Przyrządy półprzewodnikowe część 3

Przyrządy półprzewodnikowe część 3 Przyrządy półprzewodnikowe część 3 Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 110 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA

Bardziej szczegółowo

Właściwości tranzystora MOSFET jako przyrządu (klucza) mocy

Właściwości tranzystora MOSFET jako przyrządu (klucza) mocy Właściwości tranzystora MOSFET jako przyrządu (klucza) mocy Zalety sterowanie polowe niska moc sterowania wyłącznie nośniki większościowe krótki czas przełączania wysoka maksymalna częstotliwość pracy

Bardziej szczegółowo

Przyrządy półprzewodnikowe część 5

Przyrządy półprzewodnikowe część 5 Przyrządy półprzewodikowe część 5 Prof. Zbigiew Lisik Katedra Przyrządów Półprzewodikowych i Optoelektroiczych pokój: 116 e-mail: zbigiew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA E&T

Bardziej szczegółowo

Przyrządy półprzewodnikowe część 2

Przyrządy półprzewodnikowe część 2 Przyrządy półprzewodnikowe część 2 Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 110 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA

Bardziej szczegółowo

SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis

SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis SYMBOLE GRAFICZNE y Nazwa triasowy blokujący wstecznie SCR asymetryczny ASCR Symbol graficzny Struktura Charakterystyka Opis triasowy blokujący wstecznie SCR ma strukturę czterowarstwową pnpn lub npnp.

Bardziej szczegółowo

7. Tyrystory. Tyrystor SCR (Silicon Controlled Rectifier)

7. Tyrystory. Tyrystor SCR (Silicon Controlled Rectifier) 7. Tyrystory 1 Tyrystory są półprzewodnikowymi przyrządami mocy pracującymi jako łączniki dwustanowe to znaczy posiadające stan włączenia (charakteryzujący się małą rezystancją) i stan wyłączenia (o dużej

Bardziej szczegółowo

Elementy elektroniczne Wykład 9: Elementy przełączające

Elementy elektroniczne Wykład 9: Elementy przełączające Elementy elektroniczne Wykład 9: Elementy przełączające Tyrystory konwencjonalne - wprowadzenie A I A p 1 p 1 j 1 + G n 1 G n 1 j C - p 2 p 2 j 2 n 2 n 2 K I K SRC silicon controlled rectifier Tyrystory

Bardziej szczegółowo

ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH

ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH Politechnika Warszawska Wydział Elektryczny ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH Piotr Grzejszczak Mieczysław Nowak P W Instytut Sterowania i Elektroniki Przemysłowej 2015 Wiadomości ogólne Tranzystor

Bardziej szczegółowo

Przegląd półprzewodnikowych przyrządów mocy

Przegląd półprzewodnikowych przyrządów mocy Przegląd półprzewodnikowych przyrządów mocy Rozwój przyrządów siłą napędową energoelektroniki Najważniejsze: zdolność do przetwarzania wielkich mocy (napięcia i prądy znamionowe), szybkość przełączeń,

Bardziej szczegółowo

Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych

Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Część 2 Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Łukasz Starzak, Przyrządy półprzewodnikowe mocy, zima 2015/16 20 Półprzewodniki Materiały, w których

Bardziej szczegółowo

Wykład VIII TRANZYSTOR BIPOLARNY

Wykład VIII TRANZYSTOR BIPOLARNY Wykład VIII TRANZYSTOR BIPOLARNY Tranzystor Trójkońcówkowy półprzewodnikowy element elektroniczny, posiadający zdolność wzmacniania sygnału elektrycznego. Nazwa tranzystor pochodzi z angielskiego zwrotu

Bardziej szczegółowo

Elementy przełącznikowe

Elementy przełącznikowe Elementy przełącznikowe Dwie główne grupy: - niesterowane (diody p-n lub Schottky ego), - sterowane (tranzystory lub tyrystory) Idealnie: stan ON zwarcie, stan OFF rozwarcie, przełączanie bez opóźnienia

Bardziej szczegółowo

Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych

Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Część 2 Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 23 Półprzewodniki

Bardziej szczegółowo

TRANZYSTORY MOCY. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi tranzystorami i ich charakterystykami.

TRANZYSTORY MOCY. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi tranzystorami i ich charakterystykami. 12 Ć wiczenie 2 TRANZYSTORY MOCY Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi tranzystorami i ich charakterystykami. 1. Wiadomości wstępne Tranzystory są to trójelektrodowe przyrządy

Bardziej szczegółowo

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 2

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 2 Ćwiczenie 2 Cel ćwiczenia Celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji parametrów odpowiadających im modeli małosygnałowych, poznanie metod

Bardziej szczegółowo

Złożone struktury diod Schottky ego mocy

Złożone struktury diod Schottky ego mocy Złożone struktury diod Schottky ego mocy Diody JBS (Junction Barrier Schottky) złącze blokujące na powierzchni krzemu obniżenie krytycznego natężenia pola (Ubr 50 V) Diody MPS (Merged PINSchottky) struktura

Bardziej szczegółowo

Elementy elektroniczne Wykłady 5,6: Tranzystory bipolarne

Elementy elektroniczne Wykłady 5,6: Tranzystory bipolarne lementy elektroniczne Wykłady 5,6: Tranzystory bipolarne Wprowadzenie Złacze PN spolaryzowane zaporowo: P N U - + S S U SAT =0.1...0.2V U S q D p L p p n D n n L n p gdzie: D p,n współczynniki dyfuzji

Bardziej szczegółowo

Równanie Shockley a. Potencjał wbudowany

Równanie Shockley a. Potencjał wbudowany Wykład VI Diody Równanie Shockley a Potencjał wbudowany 2 I-V i potencjał wbudowany Temperatura 77K a) Ge E g =0.7eV b) Si E g =1.14eV c) GaAs E g =1.5eV d) GaAsP E g =1.9eV qv 0 (0. 5 0. 7)E g 3 I-V i

Bardziej szczegółowo

ELEKTRONIKA ELM001551W

ELEKTRONIKA ELM001551W ELEKTRONIKA ELM001551W W4 Unoszenie Dyfuzja 2 Półprzewodnik w stanie nierównowagi termodynamicznej np n 2 i n = n0 + n' p = p0 + p ' Półprzewodnik w stanie nierównowagi termodynamicznej Generacja i rekombinacja

Bardziej szczegółowo

Wykład IV. Półprzewodniki samoistne i domieszkowe

Wykład IV. Półprzewodniki samoistne i domieszkowe Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent

Bardziej szczegółowo

7. TYRYSTORY 7.1. WSTĘP

7. TYRYSTORY 7.1. WSTĘP 7. TYRYSTORY 7.1. WSTĘP Tyrystory są półprzewodnikowymi przyrządami mocy pracującymi jako łączniki dwustanowe, tj. mające stan włączenia (charakteryzujący się małą rezystancją) i stan wyłączenia (o dużej

Bardziej szczegółowo

1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne

1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne Spis treści Przedmowa 13 Wykaz ważniejszych oznaczeń 15 1. Zarys właściwości półprzewodników 21 1.1. Półprzewodniki stosowane w elektronice 22 1.2. Struktura energetyczna półprzewodników 22 1.3. Nośniki

Bardziej szczegółowo

Elementy półprzewodnikowe. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Elementy półprzewodnikowe. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Elementy półprzewodnikowe Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Elementy elektroniczne i ich zastosowanie. Elementy stosowane w elektronice w większości

Bardziej szczegółowo

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM LKTRONIKI Ćwiczenie Parametry statyczne tranzystorów bipolarnych el ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji

Bardziej szczegółowo

Wykład X TRANZYSTOR BIPOLARNY

Wykład X TRANZYSTOR BIPOLARNY Wykład X TRANZYSTOR BIPOLARNY Tranzystor Trójkoocówkowy półprzewodnikowy element elektroniczny, posiadający zdolnośd wzmacniania sygnału elektrycznego. Nazwa tranzystor pochodzi z angielskiego zwrotu "transfer

Bardziej szczegółowo

Układy nieliniowe - przypomnienie

Układy nieliniowe - przypomnienie Układy nieliniowe - przypomnienie Generacja-rekombinacja E γ Na bazie półprzewodników γ E (Si)= 1.14 ev g w.8, p.1 Domieszkowanie n (As): Większościowe elektrony pasmo przewodnictwa swobodne elektrony

Bardziej szczegółowo

Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET

Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET Ćwiczenie 4 Parametry statyczne tranzystorów polowych JFET i MOSFET Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie charakterystyk statycznych tranzystorów polowych złączowych oraz z izolowaną

Bardziej szczegółowo

EL08s_w03: Diody półprzewodnikowe

EL08s_w03: Diody półprzewodnikowe EL08s_w03: Diody półprzewodnikowe Złącza p-n i m-s Dioda półprzewodnikowa ( Zastosowania diod ) 1 Złącze p-n 2 Rozkład domieszek w złączu a) skokowy b) stopniowy 3 Rozkłady przestrzenne w złączu: a) bez

Bardziej szczegółowo

Rozmaite dziwne i specjalne

Rozmaite dziwne i specjalne Rozmaite dziwne i specjalne dyskretne przyrządy półprzewodnikowe Ryszard J. Barczyński, 2009 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Bardziej szczegółowo

III. TRANZYSTOR BIPOLARNY

III. TRANZYSTOR BIPOLARNY 1. TRANZYSTOR BPOLARNY el ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora bipolarnego Zagadnienia: zasada działania tranzystora bipolarnego. 1. Wprowadzenie Nazwa tranzystor pochodzi z języka

Bardziej szczegółowo

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Półprzewodniki i elementy z półprzewodników homogenicznych Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja

Bardziej szczegółowo

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska 1947 r. pierwszy tranzystor ostrzowy John Bradeen (z lewej), William Shockley (w środku) i Walter Brattain (z prawej) (Bell Labs) Zygmunt Kubiak

Bardziej szczegółowo

Badanie charakterystyk elementów półprzewodnikowych

Badanie charakterystyk elementów półprzewodnikowych Badanie charakterystyk elementów półprzewodnikowych W ramach ćwiczenia student poznaje praktyczne właściwości elementów półprzewodnikowych stosowanych w elektronice przez badanie charakterystyk diody oraz

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA ENS1C300 022 BADANIE TRANZYSTORÓW BIAŁYSTOK 2013 1. CEL I ZAKRES

Bardziej szczegółowo

5. Tranzystor bipolarny

5. Tranzystor bipolarny 5. Tranzystor bipolarny Tranzystor jest to trójkońcówkowy element półprzewodnikowy zdolny do wzmacniania sygnałów prądu stałego i zmiennego. Każdy tranzystor jest zatem wzmacniaczem. Definicja wzmacniacza:

Bardziej szczegółowo

IV. TRANZYSTOR POLOWY

IV. TRANZYSTOR POLOWY 1 IV. TRANZYSTOR POLOWY Cel ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora polowego złączowego. Zagadnienia: zasada działania tranzystora FET 1. Wprowadzenie Nazwa tranzystor pochodzi z

Bardziej szczegółowo

Zasada działania tranzystora bipolarnego

Zasada działania tranzystora bipolarnego Tranzystor bipolarny Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Zasada działania tranzystora bipolarnego

Bardziej szczegółowo

Przyrządy półprzewodnikowe część 5 FET

Przyrządy półprzewodnikowe część 5 FET Przyrządy półprzewodnikowe część 5 FET r inż. Bogusław Boratyński Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska 2011 Literatura i źródła rysunków G. Rizzoni, Fundamentals of Electrical

Bardziej szczegółowo

Półprzewodnikowe przyrządy mocy

Półprzewodnikowe przyrządy mocy Temat i plan wykładu Półprzewodnikowe przyrządy mocy 1. Wprowadzenie 2. Tranzystor jako łącznik 3. Charakterystyki prądowo-napięciowe 4. Charakterystyki dynamiczne 5. Definicja czasów przełączania 6. Straty

Bardziej szczegółowo

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Wrocław, 21.03.2017 r. Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Podczas testu kompetencji studenci powinni wykazać się znajomością zagadnień określonych w kartach kursów

Bardziej szczegółowo

Badanie diod półprzewodnikowych

Badanie diod półprzewodnikowych POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Badanie diod półprzewodnikowych (E 7) Opracował: Dr inż. Włodzimierz OGULEWICZ

Bardziej szczegółowo

Tranzystory. 1. Tranzystory bipolarne 2. Tranzystory unipolarne. unipolarne. bipolarny

Tranzystory. 1. Tranzystory bipolarne 2. Tranzystory unipolarne. unipolarne. bipolarny POLTEHNKA AŁOSTOKA Tranzystory WYDZAŁ ELEKTYZNY 1. Tranzystory bipolarne 2. Tranzystory unipolarne bipolarny unipolarne Trójkońcówkowy (czterokońcówkowy) półprzewodnikowy element elektroniczny, posiadający

Bardziej szczegółowo

TRANZYSTORY BIPOLARNE SMK WYKŁAD

TRANZYSTORY BIPOLARNE SMK WYKŁAD TRAZYSTORY BPOLARE SMK WYKŁAD 9 a pdstw. W. Marciniak, WT 1987: Przyrządy półprzewodnikowe i układy scalone 6. Zakresy pracy i układy włączania tranzystora bipolarnego Opis funkcjonalny zestaw równań wiążących

Bardziej szczegółowo

Diody, tranzystory, tyrystory. Materiały pomocnicze do zajęć.

Diody, tranzystory, tyrystory. Materiały pomocnicze do zajęć. Diody, tranzystory, tyrystory Materiały pomocnicze do zajęć. Złącze PN stanowi podstawę diod półprzewodnikowych. Rozpatrzmy właściwości złącza poddanego napięciu. Na poniŝszym rysunku pokazano złącze PN,

Bardziej szczegółowo

Budowa. Metoda wytwarzania

Budowa. Metoda wytwarzania Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.

Bardziej szczegółowo

Diody i tranzystory. - prostownicze, stabilizacyjne (Zenera), fotodiody, elektroluminescencyjne, pojemnościowe (warikapy)

Diody i tranzystory. - prostownicze, stabilizacyjne (Zenera), fotodiody, elektroluminescencyjne, pojemnościowe (warikapy) Diody i tranzystory - prostownicze, stabilizacyjne (Zenera), fotodiody, elektroluminescencyjne, pojemnościowe (warikapy) bipolarne (NPN i PNP) i polowe (PNFET i MOSFET), Fototranzystory i IGBT (Insulated

Bardziej szczegółowo

TRANZYSTORY - PORÓWNANIE WYKŁAD 15 SMK

TRANZYSTORY - PORÓWNANIE WYKŁAD 15 SMK TRANZYSTORY - PORÓWNANIE WYKŁAD 15 SMK Na pdstw.: W. Marciniak, WNT 1987: Przyrządy półprzewodnikowe i układy scalone, Z. Nosal, J. Baranowski, Układy elektroniczne, PWN 2003 7. PORÓWNANIE TRANZYSTORÓW

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 Parametry statyczne tranzystorów polowych złączowych Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów polowych złączowych

Bardziej szczegółowo

ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH Kurs 15/30 g

ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH Kurs 15/30 g Instytut Sterowania i Elektroniki Przemysłowej Politechnika Warszawska ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH Kurs 15/30 g Mieczysław Nowak Czerwiec/lipiec 2009 Informacje wstępne Przekształtnik przedmiot

Bardziej szczegółowo

Diody półprzewodnikowe

Diody półprzewodnikowe Diody półprzewodnikowe prostownicze detekcyjne impulsowe... Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Półprzewodniki

Bardziej szczegółowo

Wykład V Złącze P-N 1

Wykład V Złącze P-N 1 Wykład V Złącze PN 1 Złącze pn skokowe i liniowe N D N A N D N A p n p n zjonizowane akceptory + zjonizowane donory x + x Obszar zubożony Obszar zubożony skokowe liniowe 2 Złącze pn skokowe N D N A p n

Bardziej szczegółowo

PRZEŁĄCZANIE DIOD I TRANZYSTORÓW

PRZEŁĄCZANIE DIOD I TRANZYSTORÓW L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE PRZEŁĄCZANIE DIOD I TRANZYSTORÓW REV. 1.1 1. CEL ĆWICZENIA - obserwacja pracy diod i tranzystorów podczas przełączania, - pomiary charakterystycznych czasów

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES

Bardziej szczegółowo

Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r.

Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r. Fizyka i technologia złącza P Adam Drózd 25.04.2006r. O czym będę mówił: Półprzewodnik definicja, model wiązań walencyjnych i model pasmowy, samoistny i niesamoistny, domieszki donorowe i akceptorowe,

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 (EZ1C500 055) BADANIE DIOD I TRANZYSTORÓW Białystok 2006

Bardziej szczegółowo

Przyrządy półprzewodnikowe część 4

Przyrządy półprzewodnikowe część 4 Przyrządy półprzewodnikowe część 4 Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 110 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA

Bardziej szczegółowo

Wykład 7. Złącza półprzewodnikowe - przyrządy półprzewodnikowe

Wykład 7. Złącza półprzewodnikowe - przyrządy półprzewodnikowe Wykład 7 Złącza półprzewodnikowe - przyrządy półprzewodnikowe Złącze p-n Złącze p-n Tworzy się złącze p-n E Złącze po utworzeniu Pole elektryczne na styku dwóch półprzewodników powoduje, że prąd łatwo

Bardziej szczegółowo

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Badanie tranzystorów unipolarnych typu JFET i MOSFET

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Badanie tranzystorów unipolarnych typu JFET i MOSFET Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej TIA ZIENNE LAORATORIM PRZYRZĄÓW PÓŁPRZEWONIKOWYCH Ćwiczenie nr 8 adanie tranzystorów unipolarnych typu JFET i MOFET I. Zagadnienia

Bardziej szczegółowo

W książce tej przedstawiono:

W książce tej przedstawiono: Elektronika jest jednym z ważniejszych i zarazem najtrudniejszych przedmiotów wykładanych na studiach technicznych. Co istotne, dogłębne zrozumienie jej prawideł, jak również opanowanie pewnej wiedzy praktycznej,

Bardziej szczegółowo

Diody półprzewodnikowe

Diody półprzewodnikowe Diody półprzewodnikowe prostownicze detekcyjne impulsowe... Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Półprzewodniki

Bardziej szczegółowo

BADANIE TRANZYSTORA BIPOLARNEGO Z IZOLOWANĄ BRAMKĄ (IGBT)

BADANIE TRANZYSTORA BIPOLARNEGO Z IZOLOWANĄ BRAMKĄ (IGBT) Laboratorium Energoelektroniki BADANIE TRANZYSTORA BIPOLARNEGO Z IZOLOWANĄ BRAMKĄ (IGBT) Prowadzący: dr inż. Stanisław Kalisiak dr inż. Marcin Hołub mgr inż. Michał Balcerak mgr inż. Tomasz Jakubowski

Bardziej szczegółowo

Urządzenia półprzewodnikowe

Urządzenia półprzewodnikowe Urządzenia półprzewodnikowe Diody: - prostownicza - Zenera - pojemnościowa - Schottky'ego - tunelowa - elektroluminescencyjna - LED - fotodioda półprzewodnikowa Tranzystory - tranzystor bipolarny - tranzystor

Bardziej szczegółowo

Rozmaite dziwne i specjalne

Rozmaite dziwne i specjalne Rozmaite dziwne i specjalne dyskretne przyrządy półprzewodnikowe Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Bardziej szczegółowo

Złącza p-n, zastosowania. Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET

Złącza p-n, zastosowania. Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET Złącza p-n, zastosowania Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET Złącze p-n, polaryzacja złącza, prąd dyfuzyjny (rekombinacyjny) Elektrony z obszaru n na złączu dyfundują

Bardziej szczegółowo

TRANZYSTORY BIPOLARNE ZŁĄCZOWE

TRANZYSTORY BIPOLARNE ZŁĄCZOWE TRANZYSTORY IPOLARN ZŁĄCZO ipolar Junction Transistor - JT Tranzystor bipolarny to odpowiednie połączenie dwóch złącz pn p n p n p n kolektor baza emiter kolektor baza emiter udowa tranzystora w technologii

Bardziej szczegółowo

Ćwiczenie 5P. Właściwości statyczne tranzystorów mocy Wysokonapięciowy tranzystor BJT LABORATORIUM PRZYRZĄDÓW I UKŁADÓW MOCY

Ćwiczenie 5P. Właściwości statyczne tranzystorów mocy Wysokonapięciowy tranzystor BJT LABORATORIUM PRZYRZĄDÓW I UKŁADÓW MOCY Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl

Bardziej szczegółowo

Temat i cel wykładu. Tranzystory

Temat i cel wykładu. Tranzystory POLTECHNKA BAŁOSTOCKA Temat i cel wykładu WYDZAŁ ELEKTRYCZNY Tranzystory Celem wykładu jest przedstawienie: konstrukcji i działania tranzystora bipolarnego, punktu i zakresów pracy tranzystora, konfiguracji

Bardziej szczegółowo

Tranzystory polowe JFET, MOSFET

Tranzystory polowe JFET, MOSFET Tranzystory polowe JFET, MOSFET Zbigniew Usarek, 2018 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Tranzystor polowy złączowy JFET Zasada

Bardziej szczegółowo

Tranzystory polowe FET(JFET), MOSFET

Tranzystory polowe FET(JFET), MOSFET Tranzystory polowe FET(JFET), MOSFET Ryszard J. Barczyński, 2009 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Tranzystor polowy złączowy

Bardziej szczegółowo

Ćwiczenie 5P. Właściwości statyczne tranzystorów mocy Wysokonapięciowy tranzystor BJT LABORATORIUM PRZYRZĄDÓW I UKŁADÓW MOCY

Ćwiczenie 5P. Właściwości statyczne tranzystorów mocy Wysokonapięciowy tranzystor BJT LABORATORIUM PRZYRZĄDÓW I UKŁADÓW MOCY Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl

Bardziej szczegółowo

Ćwiczenie nr 4 Charakterystyki I= f(u) złącza p-n.

Ćwiczenie nr 4 Charakterystyki I= f(u) złącza p-n. Wydział Elektroniki Mikrosystemów i otoniki Politechniki Wrocławskiej TUDA DZENNE LABORATORUM PRZYRZĄDÓW PÓŁPRZEWODNKOWYCH Ćwiczenie nr 4 Charakterystyki = f(u) złącza p-n.. Zagadnienia do samodzielnego

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE.

POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE. POLITECHNIK ŚLĄSK WYDZIŁ INŻYNIERII ŚRODOWISK I ENERGETYKI INSTYTUT MSZYN I URZĄDZEŃ ENERGETYCZNYCH LBORTORIUM ELEKTRYCZNE Badanie tyrystora (E 9) Opracował: Dr inż. Włodzimierz OGULEWICZ 3 1. Cel ćwiczenia

Bardziej szczegółowo

Elektronika: Polaryzację złącza w kierunku zaporowym i w kierunku przewodzenia (pod rozdz. 6.3). Charakterystykę diody (rozdz. 7).

Elektronika: Polaryzację złącza w kierunku zaporowym i w kierunku przewodzenia (pod rozdz. 6.3). Charakterystykę diody (rozdz. 7). 114 PRZYPOMNIJ SOBIE! Elektronika: Polaryzację złącza w kierunku zaporowym i w kierunku przewodzenia (pod rozdz. 6.3). Charakterystykę diody (rozdz. 7). 9. Elektroniczne elementy przełączające Elementami

Bardziej szczegółowo

Przewodnictwo elektryczne ciał stałych. Fizyka II, lato

Przewodnictwo elektryczne ciał stałych. Fizyka II, lato Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2016 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi

Bardziej szczegółowo

Półprzewodniki - najczęściej substancje krystaliczne, których rezystywność (oporność właściwa) jest rzędu 10 8 do 10-6 Ohm*m.

Półprzewodniki - najczęściej substancje krystaliczne, których rezystywność (oporność właściwa) jest rzędu 10 8 do 10-6 Ohm*m. Materiały półprzewodnikowe Półprzewodniki - najczęściej substancje krystaliczne, których rezystywność (oporność właściwa) jest rzędu 10 8 do 10-6 Ohm*m. Pod względem przewodnictwa zajmują miejsce pośrednie

Bardziej szczegółowo

Ćwiczenie 5. Zastosowanie tranzystorów bipolarnych cd. Wzmacniacze MOSFET

Ćwiczenie 5. Zastosowanie tranzystorów bipolarnych cd. Wzmacniacze MOSFET Ćwiczenie 5 Zastosowanie tranzystorów bipolarnych cd. Wzmacniacze MOSFET Układ Super Alfa czyli tranzystory w układzie Darlingtona Zbuduj układ jak na rysunku i zaobserwuj dla jakiego położenia potencjometru

Bardziej szczegółowo

Diody półprzewodnikowe

Diody półprzewodnikowe Diody półprzewodnikowe prostownicze detekcyjne impulsowe... Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja

Bardziej szczegółowo

Podstawy fizyki ciała stałego półprzewodniki domieszkowane

Podstawy fizyki ciała stałego półprzewodniki domieszkowane Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,

Bardziej szczegółowo

3.4 Badanie charakterystyk tranzystora(e17)

3.4 Badanie charakterystyk tranzystora(e17) 152 Elektryczność 3.4 Badanie charakterystyk tranzystora(e17) Celem ćwiczenia jest wyznaczenie charakterystyk tranzystora npn w układzie ze wspólnym emiterem W E. Zagadnienia do przygotowania: półprzewodniki,

Bardziej szczegółowo

Przewodnictwo elektryczne ciał stałych

Przewodnictwo elektryczne ciał stałych Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2011 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi

Bardziej szczegółowo

Tranzystory. bipolarne (NPN i PNP), polowe (MOSFET), fototranzystory

Tranzystory. bipolarne (NPN i PNP), polowe (MOSFET), fototranzystory Tranzystory bipolarne (NPN i PNP), polowe (MOSFET), fototranzystory Tranzystory -rodzaje Tranzystor to element, który posiada zdolność wzmacniania mocy sygnału elektrycznego. Z uwagi na tą właściwość,

Bardziej szczegółowo

Złącze p-n powstaje wtedy, gdy w krysztale półprzewodnika wytworzone zostaną dwa obszary o odmiennym typie przewodnictwa p i n. Nośniki większościowe

Złącze p-n powstaje wtedy, gdy w krysztale półprzewodnika wytworzone zostaną dwa obszary o odmiennym typie przewodnictwa p i n. Nośniki większościowe Diody Dioda jest to przyrząd elektroniczny z dwiema elektrodami mający niesymetryczna charakterystykę prądu płynącego na wyjściu w funkcji napięcia na wejściu. Symbole graficzne diody, półprzewodnikowej

Bardziej szczegółowo

Elektronika. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.

Elektronika. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Elektronika Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Zadania elektroniki: Urządzenia elektroniczne służą do przetwarzania i przesyłania informacji w postaci

Bardziej szczegółowo

Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy

Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy Złącze p-n: dioda Półprzewodniki Przewodnictwo półprzewodników Dioda Dioda: element nieliniowy Przewodnictwo kryształów Atomy dyskretne poziomy energetyczne (stany energetyczne); określone energie elektronów

Bardziej szczegółowo

Cel wykładu. Elektronika Jakub Dawidziuk

Cel wykładu. Elektronika Jakub Dawidziuk Elektronika program Złącze p-n, diody półprzewodnikowe. Elementy optoelektroniczne. Prostowniki. Zasada działania BJT, charakterystyki statyczne, modele, parametry. Układy polaryzacji i stabilizacja punktu

Bardziej szczegółowo

Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA

Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA B V B C ZEWNĘTRZNE POLE ELEKTRYCZNE B C B V B D = 0 METAL IZOLATOR PRZENOSZENIE ŁADUNKÓW ELEKTRYCZNYCH B C B D B V B D PÓŁPRZEWODNIK PODSTAWOWE MECHANIZMY

Bardziej szczegółowo

Ćwiczenie nr 2 Charakterystyki I= f(u) złącza p-n.

Ćwiczenie nr 2 Charakterystyki I= f(u) złącza p-n. Wydział Elektroniki Mikrosystemów i otoniki Opracował zespół: Marek Panek, Waldemar Oleszkiewicz, wona Zborowska-Lindert, Bogdan Paszkiewicz, Małgorzata Kramkowska, Beata Ściana, Zdzisław ynowiec, Bogusław

Bardziej szczegółowo

TEORIA TRANZYSTORÓW MOS. Charakterystyki statyczne

TEORIA TRANZYSTORÓW MOS. Charakterystyki statyczne TEORIA TRANZYSTORÓW MOS Charakterystyki statyczne n Aktywne podłoże, a napięcia polaryzacji złącz tranzystora wzbogacanego nmos Obszar odcięcia > t, = 0 < t Obszar liniowy (omowy) Kanał indukowany napięciem

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo