Tadeusz Hofman, CHEMIA FIZYCZNA, TERMODYNAMIKA wykłady dla kierunku Biotechnologia

Wielkość: px
Rozpocząć pokaz od strony:

Download "Tadeusz Hofman, CHEMIA FIZYCZNA, TERMODYNAMIKA wykłady dla kierunku Biotechnologia"

Transkrypt

1 adeusz Hofman, CHEMIA FIZYCZNA, ERMODYNAMIKA wykłady dla kierunku Biotechnologia Adres internetowy: gdzie można znaleźć: regulamin zaliczeń i egzaminów, tematy egzaminacyjne, teksty wykładów, kolokwia z lat ubiegłych, wyjaśnienie sposobu rozwiązywania problemów z ćwiczeń rachunkowych etc. Literatura: 1. Chemia fizyczna, praca zbiorowa, PWN, Warszawa P.W. Atkins, Chemia fizyczna, PWN, Warszawa H. Buchowski, W. Ufnalski, Podstawy termodynamiki, WN, Warszawa H. Buchowski, W. Ufnalski, Gazy, ciecze, płyny, WN, Warszawa H. Buchowski, W. Ufnalski, Roztwory, WN, Warszawa H. Buchowski, W. Ufnalski, Równowagi chemiczne. WN, Warszawa K. Gumiński, ermodynamika, PWN, Warszawa K. Pigoń, K. Ruziewicz, Chemia fizyczna. Podstawy fenomenologiczne. PWN, Warszawa, K. Zalewski, Wykłady z mechaniki i termodynamiki statystycznej dla chemików, PWN, Warszawa K. Zalewski, Wykłady z termodynamiki fenomenologicznej i statystycznej, PWN, Warszawa WYKŁAD 1-6 A. Wstęp i podstawy B. I zasada termodynamiki C. Podstawy termochemii D. II zasada termodynamiki A. WSĘP I PODSAWY 1. ermodynamika jest częścią fizyki, a zatem jej podstawowym celem jest wyjaśnianie i odkrywanie praw rządzących otaczającym nas światem. Wyróżniamy wiele jej działów, przy czym ich wyodrębnienie następuje ze względu na ograniczenie przedmiotu zainteresowania jedynie do: - określonych właściwości (np. optyka, akustyka, mechanika) - określonych układów, czyli do ściśle sprecyzowanych obiektów, a nie do całej rzeczywistości. Najprostszy podział dotyczy ich rozmiarów (tak więc z jednej strony mamy fizykę cząstek elementarnych, z drugiej astrofizykę, czy nawet kosmologię). 2. ermodynamika zajmuje się obiektami makroskopowymi i ogranicza swoje zainteresowanie do właściwości mechanicznych. 3. Podstawowa różnica pomiędzy mechaniką i dynamiką z jednej strony, a termodynamiką z drugiej, leży w liczbie elementów składających się na badany układ. W tym pierwszym przypadku układ jest jedno- lub kilkuelementowy, w tym drugim, składa się z olbrzymiej, bo rzędu 10 23, liczby cząsteczek. Jak to możliwe, że ten sam układ jest jednocześnie jednoelementowy i zawierający nieprawdopodobnie wielką liczbę składników? Oczywiście prawdziwa jest liczba uświadamiana sobie przez termodynamikę. Jednak dla niektórych właściwości ta astronomiczna liczba elementów składowych nie ma większego znaczenia i układ może być traktowany jako jedno- lub kilkuelementowy. Na przykład jeśli jakiś przedmiot przemieszcza się w przestrzeni, ruch ten w jednakowym stopniu dotyczy wszystkich cząsteczek na ten przedmiot się składających. A zatem nie ma sensu brać pod uwagę subtelnej struktury obiektu. W praktyce przyjmujemy budowę ciała, jakby było jedną, gigantyczną makrocząsteczką. ak więc termodynamika zapewnia bardziej ścisłe podejście, ale jest sens je stosować jedynie do opisu tych właściwości, które bezpośrednio zależą od cząsteczkowej struktury materii. Nie są nimi na przykład parametry ruchu układu jako całości. 4. Z czego wynikają właściwości termodynamiczne czyli makroskopowe? Oczywiście z rzeczywistej struktury materii, a więc bezpośrednio z właściwości cząsteczek, ich ruchów i wzajemnych oddziaływań. Zatem na podstawie opisu cząsteczkowego powinniśmy móc wyrazić właściwości makroskopowe. Jest to zagadnienie czysto mechaniczne, ale niezmiernie utrudnione z powodu złożoności i olbrzymiej liczby elementów składowych układu. Formalnie rzecz biorąc, stan mechaniczny cząsteczki da się jednoznacznie przedstawić za pomocą jej trajektorii, tj. zależności położenia od czasu, rozumianej jako funkcja od czasu trzech współrzędnych położenia i prędkości (x,y,z; v x,v y,v z ). rajektoria taka wynika z rozwiązania równań Newtona, a więc do jej znalezienia potrzebna jest znajomość siły (trzy współrzędne) oraz warunki początkowe (położenie i prędkości - razem sześć wartości). Alternatywną formą równań Newtona są równania Hamiltona, w których trajektoria ruchu wynika bezpośrednio z całkowitej energii układu, czyli jego hamiltonianu (H), będącego sumą energii potencjalnej U, zależnej od wektora położenia x i kinetycznej K, zależnej od wektora prędkości v. 1

2 H(v,x) = U(x) + K(v) Równania Hamiltona mają następującą postać H dxi H dpi p dt x dt i gdzie p i jest współrzędną pędu i Aby znaleźć równania ruchu dla jednej cząsteczki, należy rozwiązać układ 6 równań różniczkowych pierwszego rzędu oraz znać początkowe położenia i pędy. o bardzo ważne sformułowanie. Wynika z niego, że to energia jednoznacznie definiuje mechaniczny stan układu. Dla układu N cząsteczek należy znać całkowitą energię (zależną od energii wszystkich N cząsteczek) i 6N warunków początkowych. Stan ten w sposób ciągły się zmienia i w każdej chwili 6N współrzędnych położenia i pędu (prędkości) określa go jednoznacznie. Nieprawdopodobna wprost liczba współrzędnych! Czy jednak rzeczywiście wszystkie one są niezbędne do określenia stanu makroskopowego układu? 5. I tutaj pojawia się zdumiewający aspekt. ak wielka liczba cząsteczek składających się na nasz układ, która wydawała się przynosić w pierwszej chwili jedynie utrudnienie w opisie, paradoksalnie sprawia, że ulega on znacznemu uproszczeniu. Oczywiście opis mikroskopowy, na poziomie cząsteczkowym, pozostaje niezwykle skomplikowany. Poszczególne cząsteczki pędzą na wszystkie strony po sobie tylko znanych trajektoriach. I jakkolwiek jego właściwości makroskopowe wynikają ze stanów cząsteczkowych, to przecież przy ich określaniu nie mają znaczenia losy poszczególnych cząsteczek. Kiedy badamy naczynie z cieczą w stabilnych warunkach, to nie obserwujemy żadnych zmian a przecież wszystko bez przerwy zmienia się na poziomie molekularnym. Ale z punktu widzenia właściwości makroskopowych jest wszystko jedno, czy określona cząsteczka znajduje się w lewym czy też w prawym rogu naczynia. Ważne jest co robią WSZYSKIE CZĄSECZKI! A więc istotne są wyłącznie parametry UŚREDNIONE. Co więcej, liczba tych parametrów okazuje się niezmiernie mała. Dla czystej substancji i bez występowania zewnętrznych pól siłowych, ich liczbę da się ograniczyć do zaledwie dwóch. ak więc do kilku parametrów makroskopowych, redukuje się ich wielka liczba współrzędnych występująca na poziomie cząsteczkowym 6. Jakie to są te właściwości makroskopowe, opisywane ilościowo za pomocą parametrów makroskopowych. Odwołajmy się tutaj do doświadczenia. Zmiana jakich właściwości spowoduje, że układ będzie "inny"? Mówimy raczej - "będzie w innym stanie". Na pewno jego wymiary makroskopowe, które w przypadku izotropii możemy wyrazić przez objętość. W tej samej objętości może być mniej lub więcej cząsteczek, cząsteczki mogą być różne, jeśli rozpatrujemy mieszaniny. ak więc jeszcze liczba moli poszczególnych składników. yle niezależnych parametrów ile różnych substancji w mieszaninie. Układ oddziałuje na otoczenie wywierając na nie określone ciśnienie. en kontakt jest oczywiście wzajemny. Szczególnie oczywisty w przypadku rozpatrywania naczynia z gazem. Ale i dla substancji skondensowanych, ciśnienie pozostaje ważnym parametrem, jakkolwiek jego wpływ staje się wyraźny dopiero przy większych jego różnicach. Ciśnienia nie musimy definiować. Zostało to zrobione już dawniej w mechanice. I to prawie wszystko. Okazuje się, że występuje jeszcze jeden parametr, który sprawia, że układy różniące się jego wartością są "inne". ym parametrem jest temperatura. Jest to właściwość szczególna, która nie ma odpowiednika w mechanice. W oczywisty sposób stan substancji "cieplejszej" będzie inny niż "chłodniejszej", co można sprawdzić za pomocą dotyku. Różnią się one zatem wartością jakiegoś parametru, który nazwany został temperaturą. Ponieważ stwierdzono wzrost objętości przy wzroście temperatury, praktyczny sposób pomiaru opiera się na zanotowaniu objętości stałej ilości jakiejś substancji wzorcowej - na przykład rtęci. Do pojęcia temperatury będziemy jeszcze wracać wielokrotnie, starając się je uściślić. I są to WSZYSKIE parametry makroskopowe, do których redukuje się 6N parametrów cząsteczkowych! Przypomnijmy jeszcze, że redukcja ta wynika z uśrednionego charakteru parametrów. 7. Nawet tak skromna liczba parametrów, którą zresztą można rozszerzać, biorąc ich kombinacje (np. możemy zdefiniować gęstość czy stężenia) tworzy dwie wyraźne grupy parametry intensywne - niezależne od wielkości układu (temperatura, ciśnienie a także stężenia) oraz parametry ekstensywne, które są proporcjonalne do wielkości układu (objętość, liczby moli). 8. O parametrach tych mówimy, że są parametrami stanu. o znaczy, że ich wartości jednoznacznie określają stan układu. Wartości, a nie na przykład historia ich zmian, to jest charakter procesów jakie zachodziły w układzie. Wyróżniamy również funkcje stanu, w zasadzie parametry bardziej złożone, wynikające z tych podstawowych. Ściśle mówiąc jednak, rozróżnienie pomiędzy funkcjami a parametrami stanu jest raczej zwyczajowe i można uważać je za synonimy. Z tego pozornie dość oczywistego i banalnego wymogu wynikają jednak bardzo ważne konsekwencje matematyczne 2

3 9.1. Zmiana funkcji stanu (F) nie zależy od drogi przemiany, a tylko od stanu początkowego i końcowego. O funkcji tej mówimy, że jest bezpośrednio całkowalna B df F( B ) F( A) i oczywiście df 0 A 9.2. df jest różniczką zupełną, tzn. dla funkcji F(x 1,x 2,...,x n ) n F df dxi x i1 i 9.3. Kolejność różniczkowania drugich mieszanych pochodnych cząstkowych jest dowolna, czyli inaczej, spełnione są relacje Maxwella F x x F x x 2 2 i j j i dla każdej pary i,j 10. Celem termodynamiki jest znalezienie związków pomiędzy parametrami makroskopowymi dla pewnych stanów oraz procesów. Związki te (PRAWA) wynikają z dwóch metodologii. Mogą być wyprowadzone z mikroskopowych stanów cząsteczkowych poprzez odpowiednie uśrednienie. ylko takie podejście jest ścisłe i jest w stanie doprowadzić do rozwiązania, przynajmniej formalnego. a droga nosi nazwę termodynamiki statystycznej. Jest ona uniwersalna, ale złożona matematycznie i w historii nauki pojawiła się dopiero na pewnym etapie rozwoju termodynamiki. Okazuje się jednakże, że związki pomiędzy parametrami makroskopowymi (zdecydowaną większość, choć nie wszystkie!) można wyprowadzić bez odwoływania się do cząsteczkowej struktury materii. Założenie to staje się zbędne, jeśli przyjmiemy prawdziwość czterech aksjomatów zwanych Zasadami ermodynamiki. akie podejście reprezentuje termodynamika klasyczna czyli fenomenologiczna. Zwracam uwagę, że już na pierwszy rzut możliwość pominięcia prawdziwej struktury układu jest zdumiewająca, jeśli weźmie się pod uwagę niezwykle złożony charakter parametrów makroskopowych, będących przecież bardzo skomplikowaną funkcją parametrów podstawowych czyli cząsteczkowych. 11. Podstawowe definicje Układ - ta część świata, której badamy właściwości lub zjawiska w niej zachodzące. Pozostała część to otoczenie. otoczenie + układ = wszechświat układ zamknięty - taki, który nie wymienia masy (cząsteczek) z otoczeniem układ otwarty - taki, który wymienia masę z otoczeniem Pomiędzy układem a otoczeniem występuje granica, którą nazywamy osłoną lub przegrodą. Charakter osłony wpływa na rodzaj wzajemnych oddziaływań pomiędzy obiema częściami wszechświata. - osłona adiabatyczna - taka, że procesy w otoczeniu nie związane z wykonywaniem pracy, nie wpływają na stan układu; proces zachodzący w układzie ograniczonym taką osłoną, nosi nazwę procesu adiabatycznego. Inaczej mówiąc, jedyny kontakt pomiędzy układem i otoczeniem realizowany jest poprzez wykonywanie pracy. - osłona izolująca - zapewniająca brak jakiegokolwiek wzajemnego wpływu pomiędzy układem a otoczeniem; układ z taką osłoną nosi nazwę układu izolowanego. osłona termicznie przewodząca (diatermiczna) - taka, że dla trzech układów (A,B,C) ograniczonych taką osłoną, spełniona jest następująca relacja jeśli A jest w równowadze z B i B w równowadze z C, to C jest również w równowadze z A Równowagę taką nazywamy termiczną. Mówienie o równowadze w tym kontekście jest uzasadnione, ponieważ za wyjątkiem osłony izolującej, pomiędzy układem a otoczeniem występuje wzajemne oddziaływanie. Stan otoczenia wpływa na procesy zachodzące w układzie i na odwrót. Również parametry w stanie równowagi są z sobą powiązane, a charakter tego związku zależy od rodzaju osłony. Proszę zwrócić uwagę na wymienność terminów układ - otoczenie. Można również rozpatrywać szereg układów, dla każdego z nich wszystkie pozostałe stają się otoczeniem Równowaga względem jakiegoś procesu - stan, w którym proces ten makroskopowo nie zachodzi Faza - cześć układu o wyraźnych granicach, na których występują skokowe zmiany właściwości makroskopowych; wewnątrz fazy właściwości nie zmieniają się (faza jednolita) lub zmieniają się w sposób ciągły. układ jednofazowy = homogeniczny układ wielofazowy = heterogeniczny 3

4 11.5. Proces odwracalny (kwazystatyczny) - taki, że nieskończenie mała zmiana wartości parametrów wystarczy do odwrócenia jego kierunku. 12. Zasada Duhema i równanie stanu Stan jednofazowego i jednoskładnikowego układu zamkniętego jest jednoznacznie określony przez dwa parametry (spośród trzech - p,,v). ak więc istnieje równanie (równanie stanu), które wiąże te parametry f(p,v,) = 0 Najprostszy układ termodynamiczny to gaz doskonały równanie stanu gazu doskonałego: pv = nr 13. Różniczkowa praca objętościowa wyraża się wzorem dw = -p z dv gdzie p z jest ciśnieniem zewnętrznym. Gdy ciśnienie zewnętrzne zrówna się z ciśnieniem własnym układu (p z = p), wtedy pracę będzie można wyrazić jedynie poprzez parametry układu. aka praca nosi nazwę odwracalnej i charakteryzuje się ona maksymalną (bezwzględną) wartością i jednocześnie zachodzi z nieskończenie małą szybkością (!). W ogólnym przypadku zależy ona jednak także od stanu otoczenia. I tak przy gwałtownym rozprężaniu gazu do próżni praca objętościowa równa jest zeru, bo p z = 0! 14. Inne rodzaje pracy Praca objętościowa nie jest jedyną formą pracy spotykaną w układach termodynamicznych. W ogólnym przypadku możemy pracę (i zmianę energii) interpretować jako efekt deformacji dowolnego parametru ekstensywnego X i dw = F i dx i Występujący we wzorze parametr intensywny F i nosi nazwę siły uogólnionej. W przypadku deformacji objętości, siłą uogólnioną jest ciśnienie. Oto kilka przykładowych par (ulegający deformacji parametr ekstensywny - siła uogólniona) powierzchnia międzyfazowa - napięcie powierzchniowe ładunek elektryczny - potencjał elektryczny odległość od środka masy - siła przyciągania grawitacyjnego 15. Czy praca objętościowa jest funkcją stanu? Oczywiście pytanie jest bezprzedmiotowe dla pracy nieodwracalnej, która zależy również od parametrów otoczenia. A praca odwracalna? Ponieważ zgodnie z zasadą Duhema p i V mogą być parametrami niezależnymi, oznacza to że formalnie możemy w dowolny sposób poprowadzić przemianę (p 1,V 1 ) (p 2,V 2 ). W przypadku jednak różnych dróg przemiany, uzyskamy inne całki wartości pracy. ak więc i praca odwracalna zależy od drogi przemiany i nie jest funkcją stanu. pdv i różne 16. emperatura, podstawowy parametr termodynamiczny wymaga ścisłej definicji. W termodynamice klasycznej definiuje się temperaturę jako tzw. temperaturę empiryczną. W tym celu jednak trzeba najpierw wprowadzić pewien aksjomat zwany ZEROWĄ ZASADĄ ERMODYNAMIKI. reścią tej Zasady jest postulat istnienia osłony termicznie przewodzącej, czyli takiej, która spełnia relacje równowagowe w układach będących we wzajemnym kontakcie.(11.2) Jeśli prawdziwe jest zdanie: równowaga pomiędzy A i B, oraz pomiędzy A i C, implikuje równowagę pomiędzy B i C, to wynika z tego, że a) Dla każdej pary układów w stanie równowagi istnieje związek pomiędzy ich parametrami, tj. F AB (x A,x B ) = 0; F AC (x A,x C ) = 0; F BC (x B,x C ) = 0 gdzie x i jest wektorem parametrów i-tego układu. co jest możliwe jedynie, kiedy spełniona jest następująca równość f A (x A ) = f B (x B ) = f C (x C ) = const = 4

5 czyli istnieją funkcje zależne tylko od parametrów stanu każdego z układów i w stanie równowagi równają się temu samemu parametrowi. Parametr ten oznaczamy zwykle literą i nazywamy temperaturą. Powyższe równanie jest po prostu równaniem stanu każdego z układów. b) Równanie to można rozszerzyć do dowolnej liczby układów i sformułować następująco: wszystkie układy będące w równowadze termicznej z jakimś układem odniesienia (nazwijmy go termometrem), mają tę samą właściwość, którą nazywamy temperaturą. Pozostaje jeszcze kwestia zdefiniowania skali temperatur i sposobu jej pomiaru. Otóż temperaturę określa się poprzez wskazania termometru gazowego (a nie rtęciowego!), na podstawie następującego wzoru 1 lim ( pv) nr p0 gdzie n jest liczbą moli (gazu), stała R jest tak dobrana, aby temperatura punktu potrójnego wody wynosiła 273,16 K, a stałość temperatury przy której ekstrapolowany jest iloczyn pv oznacza stan równowagi termicznej. Oczywiście wzór ten oparty jest na równaniu stanu gazu doskonałego. Jego praktyczne znaczenie wiąże się przede wszystkim z faktem, że wskazania termometru gazowego nie zależą od rodzaju gazu. Wszystkie bowiem gazy rzeczywiste, w granicy, dla p 0 stają się gazami doskonałymi. B. I ZASADA ERMODYNAMIKI 17. Zasada zachowania energii w układach termodynamicznych. Jest to zasada zachowania energii, sformułowana poprzez funkcje termodynamiczne. Dla układu zamkniętego będzie to po prostu równoważność pracy i energii. W termodynamice klasycznej wymaga to zdefiniowania funkcji stanu, którą nazywamy energią wewnętrzną, będącą sumaryczną energią układu. Określenie "wewnętrzna" eliminuje energię układu jako całości, np. energię kinetyczną całego układu, który porusza się względem jakiegoś systemu współrzędnych. Energia wewnętrzna jest funkcją stanu, ponieważ w oczywisty sposób określa stan (energetyczny) układu. Mogłoby nam się wydawać, że równoważność energii i pracy powinna dawać w efekcie równość zmian energii wewnętrznej i pracy (np. objętościowej, jeśli tylko taka praca zachodzi w układzie). Czy aby rzeczywiście? Otóż nie! I jest to niezmiernie ważne i zaskakujące spostrzeżenie. Przecież sprawdziliśmy już, że praca objętościowa nie jest funkcją stanu, nie może zatem w ogólnym przypadku równać się zmianie funkcji stanu, jaką jest energia wewnętrzna! Czyżby zatem zasada zachowania energii nie obowiązywała? Nie, z pewnością obowiązuje. akże gdy rozważamy pracę mikroskopową, cząsteczkową, to zmiana energii musi równać się pracy. Rozbieżność pojawia się w momencie rozważania wielkości makroskopowych, jest więc konsekwencją wielkości układu. Na razie ograniczmy się do konstatacji zjawiska, bez wyjaśniania jego przyczyn. Wniosek jest oczywisty. Oznacza to, że musi istnieć przynajmniej jeszcze jeden sposób przenoszenia energii, tak aby suma zmian energii przenoszonej w ów tajemniczy sposób (oznaczmy ją przez Q) i pracy makroskopowej, równała się zmianie energii wewnętrznej. Chyba, że odrzucamy Zasadę Zachowania Energii. Podkreślmy jeszcze, że nasze rozważania (praca, przepływ energii), dotyczą interakcji pomiędzy układem a otoczeniem. Wzrost energii wewnętrznej układu kosztem otoczenia i na odwrót. Praca wykonana jest przez układ na otoczeniu (praca ujemna) lub przez otoczenie na układzie (praca dodatnia). Wzajemny kontakt pomiędzy układem a otoczeniem może być regulowany za pomocą odpowiedniej osłony. Jeśli osłona jest adiabatyczna, to zgodnie z jej definicją, ów kontakt realizowany jest jedynie przez pracę. Żaden inny sposób przekazywania energii nie jest możliwy, nawet ów tajemniczy sposób Q. A zatem? Dla przemiany adiabatycznej, zmiana energii wewnętrznej musi równać się pracy makroskopowej. Wniosek ten pozwala zdefiniować energię wewnętrzną na gruncie termodynamiki klasycznej. Definicja ta nosi nazwę I Zasady ermodynamiki. 18. I ZASADA ERMODYNAMIKI Postuluje się istnienie funkcji stanu, zwanej energią wewnętrzną (U), która ma następujące własności 1. Jest funkcją ekstensywną 2. Jej różniczka zupełna równa się różniczkowej pracy w przemianie adiabatycznej w układzie zamkniętym du = (dw) ad 19. Co możemy z kolei powiedzieć o nowym sposobie przenoszenia energii? Oczywiście dla przemiany nieadiabatycznej równoważność zmian energii wewnętrznej i pracy nie zachodzi. Mamy wtedy du (dw) Zasada zachowania energii wymusza konieczność istnienia innego sposobu przenoszenia energii. Po jego uwzględnieniu mamy du = dq + dw Nie jest to jednak w żadnym wypadku sformułowanie I Zasady ermodynamiki! 5

6 Różniczkową energię przenoszoną w ten sposób definiujemy następująco dq = du - dw I jest to definicja CIEPŁA. Definicja jest pełna, ponieważ wcześniej zdefiniowaliśmy już energię wewnętrzną, a praca jest pojęciem określonym już w mechanice. Skoro energia wewnętrzna jest funkcją stanu a praca nią nie jest, to i ciepło w ogólnym przypadku nie może być funkcją stanu (dlaczego?). 20. Inne argumenty przemawiające za istnieniem dodatkowej formy przekazywania energii. Możemy czuć się rozczarowani taką definicją ciepła. Wprawdzie określenie jest formalnie wyczerpujące, ale nie mówi nam wiele o "istocie" tej wielkości. Prawdopodobnie wolelibyśmy bardziej opisową definicję tłumaczącą czym "naprawdę" jest ciepło. Niestety jest to wszystko co może nam zaoferować termodynamika klasyczna. Jedynie odwołanie się do faktu istnienia cząsteczek, może dać nam dodatkowe informacje na ten temat. Na gruncie cząsteczkowej struktury materii, oczywisty jest fakt występowania innego niż praca objętościowa sposobu przekazywania energii. Przecież cząsteczki układu i otoczenia mogą wzajemnie na siebie oddziaływać (o ile pozwoli na to rodzaj osłony) poprzez zderzenia jak również oddziaływania dalszego zasięgu. en proces nie musi wcale wiązać się z wykonywaniem pracy objętościowej, ponieważ tego typu oddziaływania będą zachodzić także w stałej objętości. Zauważmy jednak, że na poziomie cząsteczkowym energia zawsze zamienia się na pracę. Pojawienie się ciepła wynika ze szczególnej definicji pracy makroskopowej, w której uczestniczą tylko niektóre cząsteczki. I tak podczas rozszerzania się układu zostanie wykonana praca objętościowa tylko kosztem tych cząsteczek, które mają składowe prędkości skierowane na zewnątrz układu. 21. Wprowadzamy jeszcze jedną ekstensywną funkcję stanu, ENALPIĘ (H) H = U + pv 22. Różniczki zupełne energii wewnętrznej i entalpii. Dla układu zamkniętego wykonującego jedynie pracę objętościową, na podstawie I Zasady, można napisać następujące różniczki zupełne: du = dq - p z dv dh = dq + Vdp - (p z -p)dv 23. Efekt cieplny w ogólnym przypadku nie jest funkcją stanu. Dla dwóch procesów jednak zachodzi wyjątek. A mianowicie: - dla V = const (proces izochoryczny) dq = du - dla p = const = p z (proces izobaryczny) dq = dh W obu przypadkach efekt cieplny jako równy zmianie funkcji stanu, sam jest funkcją stanu i nie zależy od drogi przemiany. Wniosek ten nosi nazwę PRAWA HESSA. Prawo Hessa podaje uzasadnienie, dlaczego w ogóle wprowadzono funkcję nazwaną entalpią. Wynika to z faktu, że efekty cieplne są dość łatwo mierzalne, a większość procesów badanych przez nas to procesy izobaryczne, zachodzące pod ciśnieniem atmosferycznym. o pochodzenie entalpii ukryte jest nawet w literze H, powszechnie używanej na oznaczenie tej funkcji (z angielskiego heat content, czyli zawartość ciepła). 24. Efekty cieplne zwykle mierzy się pośrednio, poprzez pomiar zmian temperatury. Do tego celu konieczna jest znajomość tzw. pojemności cieplnych, czyli pochodnych dq cx d x Pochodna taka jednak nie może być jednoznacznie określona, jeśli Q nie jest funkcją stanu (dlaczego?). W związku z tym definiujemy jedynie pojemności cieplne pod stałym ciśnieniem i w stałej objętości - c p, c v c p H p c V U V 6

7 C. PODSAWY ERMOCHEMII 25. Praktyczne konsekwencje prawa Hessa - czyli ERMOCHEMIA Wykorzystuje się stabelaryzowane wartości zmian entalpii dla reagentów w celu obliczenia zmiany entalpii dla reakcji chemicznej. a z kolei jest efektem cieplnym w procesie izobarycznym. Reakcję chemiczną definiuje się w sposób najbardziej ogólny jako proces substraty produkty Podstawowym celem termochemii jest obliczenie standardowej entalpii reakcji, czyli zmiany entalpii dla reakcji spełniającej pewne wymogi. Dotyczą one jednoznacznej definicji stanu początkowego i końcowego, jako jedynych czynników wpływających na zmianę funkcji stanu (tutaj entalpii). Standardowa entalpia reakcji jest zatem zmianą entalpii dla reakcji standardowej. a z kolei musi spełniać następujące warunki a) Reakcja biegnie do końca. b) Bierze w niej udział liczba moli reagentów wynikająca z równania stechiometrycznego. c) emperatura oraz ciśnienie w stanie początkowym (substraty) i końcowym (produkty) są takie same. d) Reagenty występują w stanach standardowych. e cztery punkty określają jednoznacznie: jakie są substancje w stanie początkowym i końcowym (a,d); w jakich ilościach występują (b) i w jakich warunkach fizycznych (c,d). Opis musi być jeszcze uzupełniony definicją stanu standardowego. W stanie standardowym ciśnienie wynosi p = 1 bar, a ponadto - gazy czyste gazy doskonałe; - substancje skondensowane (czyste lub w roztworze, poza jonami) czyste składniki; - jony w roztworze roztwór doskonały o stężeniu 1 mol/ 1000 g rozpuszczalnika. Zauważmy, że w reakcji standardowej ciśnienie zawsze wynosi 1 bar, podczas gdy temperatura może być różna, ale zawsze ściśle określona i taka sama dla substratów i produktów. 26. Podstawowe dane do obliczeń standardowych entalpii dowolnej reakcji, to standardowe entalpie tworzenia i standardowe entalpie spalania. Standardowa entalpia tworzenia (H f ) związku chemicznego jest standardową entalpią następującej reakcji pierwiastki w stanach termodynamicznie trwałych 1 mol związku np. standardowa reakcja tworzenia ciekłego cykloheksanu, będzie standardową entalpią następującej reakcji 6C (grafit) + 6H 2(g) C 6 H 12(c) Standardowa entalpia spalania (H sp związku chemicznego zawierającego jedynie C, O lub H) jest standardową entalpią następującej reakcji 1 mol związku + no 2(g) mco 2((*) + kh 2 O (*) * Właściwy stan skupienia wynika z temperatury, praktycznie jest to zawsze (g) dla CO 2 i (c) albo (g) dla H 2O. 27. Standardową entalpię każdej reakcji można wyrazić poprzez standardowe entalpie tworzenia H = i H fi oraz poprzez standardowe entalpie spalania (o ile te ostatnie można zdefiniować dla wszystkich reagentów) H = - i H spi Uwaga! Posługujemy się tutaj uogólnionym pojęciem współczynnika stechiometrycznego. Zgodnie z nim, współczynniki stechiometryczne mają znak - ujemny dla substratów (bo ich ubywa) i dodatni dla produktów (bo ich przybywa w trakcie reakcji). Jest to zgodne z ogólną konwencją, w której wszelkie zmiany rozpatrujemy z punktu widzenia układu. Według tej notacji, dowolną reakcję chemiczną zapisalibyśmy za pomocą formuły: i R i = 0 7

8 28. Za pomocą stabelaryzowanych standardowych entalpii tworzenia lub spalania możemy policzyć standardową entalpię reakcji w tej temperaturze, dla której dysponujemy danymi tablicowymi. A co z innymi temperaturami? Pojawia się zatem problem zależności zmian entalpii od temperatury. Zależność tę, poprzez pochodną temperaturową, wyraża PRAWO KIRCHHOFFA H c c p p i p i Obliczenie zmian entalpii dla dowolnej temperatury wymaga scałkowania powyższego równania. Formalnie można to zapisać jako H( ) H( 0 ) cpd 0 Obliczenie całki jest nieco złożone, jeśli funkcja podcałkowa nie jest ciągła w przedziale < 0,>. Sytuacja taka występuje dosyć często w obliczeniach fizykochemicznych, a punkty nieciągłości odpowiadają przejściom fazowym. Niech jedno takie przejście ma miejsce w temperaturze 0 < f <. Wtedy całkę należy obliczać oddzielnie w przedziałach < 0, f > i < f,> i ostatecznie wyrażenie na zależność temperaturową zmiany entalpii przyjmuje postać: f H( ) H( ) c d H c d 0 0 p p f gdzie indeksy i oznaczają fazę nisko- i wysokotemperaturową, a H jest zmianą entalpii dla przejścia fazowego. W szczególnym przypadku, zmiana entalpii i pojemności cieplne mogą być standardowe, co wyraża się poprzez odpowiedni indeks. ak więc aby obliczyć zmianę entalpii (standardowej entalpii) w dowolnej temperaturze, musimy znać wartość zmiany w temperaturze odniesienia o oraz zależności temperaturowe pojemności cieplnych. 29. Niekiedy interesuje nas efekt cieplny reakcji w stałej objętości. W tym przypadku równy on jest zmianie energii wewnętrznej a nie entalpii. Podstawową zatem funkcją będzie standardowa energia wewnętrzna (U ). Związek pomiędzy U a H wynika z definicji entalpii, tj. U = H - (p V ) co przy pominięciu zmian objętości substancji skondensowanych, prowadzi do U = H - n g R i n g jest zmianą liczby moli reagentów gazowych. Równanie powyższe można zapisać również i tak U = H - ig R (sumowanie współczynników stechiometrycznych dotyczy tylko reagentów gazowych) 30. ermochemiczna energia wiązań. W przypadku braku właściwych danych można dokonać oszacowania efektów cieplnych posługując się jedną z wielu metod przybliżonych. Z reguły są one oparte na addytywności udziałów pochodzących od wiązań chemicznych. Wymaga to uprzedniego założenia, że energia potrzebna do powstania/ rozerwania określonego wiązania, nie zależy od sąsiednich wiązań oraz atomów, w wiązaniu tym nie uczestniczących. W niektórych przypadkach jest to założenie mocno odbiegające od rzeczywistości (np. układy aromatyczne), często jednak może być stosowane jako zupełnie dobre przybliżenie. ermochemiczną energię wiązania X-Y (E X-Y ) definiuje się jako energię potrzebną do rozerwania 1 mola wiązań X-Y w następującej reakcji 1 mol wiązań X-Y w stanie standardowym dla gazu 1 mol X i 1 mol Y w stanach standardowych dla gazu 31. Związek pomiędzy rzeczywistym a standardowym efektem cieplnym. Standardowy efekt cieplny dotyczy pewnej hipotetycznej reakcji, używany jest jednak do oszacowania rzeczywistego efektu cieplnego albo też stanowi podstawę do jego wyliczenia. Różnica pomiędzy standardowym a rzeczywistym efektem cieplnym wynika z faktu, że ten ostatni nie musi spełniać warunków (25). Przeliczenie efektu standardowego na rzeczywisty, w sytuacji gdy reakcja nie biegnie do końca lub też bierze w niej inna ilość reagentów niż wynikająca ze stechiometrii, nie powoduje trudności ze względu na ekstensywność entalpii. W innych przypadkach a) Reakcja zachodzi pod ciśnieniem innym niż 1 bar. 8

9 Wpływ ciśnienia na entalpię jest niewielki (mniej istotny niż temperatury) zarówno dla gazów jak i substancji skondensowanych (szczególnie). W obu jednak przypadkach można ten wpływ obliczyć na podstawie znajomości właściwego równania stanu. b) Reagenty nie są w stanach standardowych. Wpływ ciśnienia został skomentowany powyżej. Pozostaje do wyjaśnienia jeszcze - Różnica pomiędzy gazem rzeczywistym a doskonałym: Sprowadza się w gruncie rzeczy do wpływu ciśnienia (niskie ciśnienie - gaz doskonały, im ciśnienie wyższe, tym większe odchylenia od doskonałości). Niemniej jednak zawsze, dysponując równaniem stanu możemy tę różnicę obliczyć. - Różnica pomiędzy czystą substancją a składnikiem mieszaniny, czyli tak zwany efekt mieszania. Jest zerowy jedynie dla gazów doskonałych oraz roztworów doskonałych (ich mieszaniu nie towarzyszy zmiana entalpii, czyli efekt cieplny, jeśli rozpatrujemy proces izobaryczny). Jego znajomość pozwala na dokładne przeliczenia, jednak z reguły dla ciekłych roztworów nieelektrolitów nie przekracza on 1 kj/mol i może być pominięty. c) Reakcja biegnie w stałej objętości. Szacuje się efekt cieplny za pomocą standardowej energii wewnętrznej reakcji (U ). Pojawia się jednak wątpliwość. U jest zmianą energią wewnętrznej dla reakcji standardowej, a więc zachodzącej izobarycznie - p = const = p. Czy rzeczywiście możemy ją utożsamić ze zmianą energii dla procesu izochorycznego? Proces izochoryczny da się przedstawić jako złożenie poniższych dwóch przemian U (p = const ) U (p, V const) =? (p o, V o,) (p o,v 1,) (p 1,V o,) przy czym reakcja chemiczna zachodzi podczas pierwszego etapu (tj. izobarycznie). Pierwszemu procesowi towarzyszy zmiana standardowej energii wewnętrznej. Zmiana energii wewnętrznej dla drugiego etapu dotyczy wyłącznie mieszaniny reagentów (produktów). Polega na sprężeniu (lub rozprężeniu) produktów do objętości V o, w wyniku czego ciśnienie będzie wynosić p 1. Można ten udział policzyć na podstawie równania stanu. Dla gazu doskonałego równa się zeru i jest pomijalnie mały dla reagentów występujących postaci gazu i jako fazy skondensowane (chociaż w obu przypadkach z innych powodów). D. II ZASADA ERMODYNAMIKI 32. Spełnienie I Zasady ermodynamiki jest warunkiem koniecznym zachodzenia jakiegokolwiek procesu w przyrodzie. Nie jest jednak warunkiem dostatecznym. Z obserwacji wynika, że - Procesy zachodzące w przyrodzie są nieodwracalne, to znaczy, że układ nie wraca spontanicznie ("sam z siebie") do stanu początkowego. - Nie widać bezpośrednio logicznej przyczyny, dla której nie mógłby zajść proces odwrotny do procesu nieodwracalnego, np. cudowne sklejenie się rozbitego wazonu. ak jednak się nie dzieje, jak uczy nas doświadczenie. Niemożność zachodzenia tych procesów wydaje się być dla nas oczywistością, ale brakuje nam jasnego wyjaśnienia takiego stanu rzeczy. Dlaczego zatem przemiany nie mogą ulec odwróceniu? Konsekwencją nieodwracalności procesów jest istnienie czasu. Nazywamy go czasem termodynamicznym. Oczekujemy jednak od termodynamiki, że ta da nam jakąś regułę określającą kierunek zachodzenia procesów oraz opis stanu równowagi, który jest naturalnym kresem wszystkich spontanicznych przemian. Już począwszy od początku XIX wieku ten problem frapował uczonych. Pierwszą próbą jego rozwiązania była propozycja przeniesienia z mechaniki kryterium najmniejszej energii. Zgodnie z nim, możliwe by były tylko takie procesy, które wiązałyby się z zmniejszaniem energii (a więc energii wewnętrznej), która z kolei powinna osiągnąć minimum w stanie równowagi. Zauważmy, że oznaczałoby to, że wśród spontanicznych procesów izochorycznych zachodzą tylko przemiany egzotermiczne (bo mamy du = dq < 0), a endotermiczne są niemożliwe. Okazało się jednak niebawem, że procesy endotermiczne, chociaż mniej liczne, to jednak również zachodzą spontanicznie. Przykładem jest rozpuszczanie niektórych soli w wodzie z pochłonięciem energii i obserwowanym oziębieniem układu (np. Na 2 S 2 O 3 ). 33. Wyjaśnienie kierunku zachodzenia procesów w przyrodzie na gruncie rozważań molekularnych, zawdzięczamy przede wszystkim austriackiemu fizykowi Ludwigowi Boltzmannowi ( ). Powtórzymy w uproszczonej formie jego rozumowanie. Najpierw podsumujmy już to co zostało powiedziane o związkach pomiędzy stanami mikroskopowymi (cząsteczkowymi) a stanem makroskopowym. a) Stan mikroskopowy określony jest jednoznacznie poprzez energię (jako funkcję prędkości (pędu) i położenia). b) Każdemu stanowi makroskopowemu odpowiada ogromna liczba stanów mikroskopowych. Układ jest dynamiczny i pozostając w tym samym stanie makroskopowym, przechodzi w sposób ciągły przez wiele stanów mikroskopowych. c) Liczba stanów mikroskopowych, chociaż olbrzymia, jest jednak skończona, bowiem energia może przybierać tylko niektóre wartości (jest skwantowana). Dla liczby moli równej N = N A, liczba stanów mikroskopowych jest rzędu 10 N! d) A zatem obserwowany parametr makroskopowy jest średnią po wszystkich możliwych konfiguracjach, czyli stanach mikroskopowych zgodnych z założonym stanem makroskopowym. 9

10 Fundamentalna praca Boltzmanna, ogłoszona w roku 1872, spotkała się z ostrą krytyką. Główny zarzut był jednocześnie krytyką teorii atomistycznej, którą uważano raczej za pewną strukturę formalną a nie odbicie rzeczywistości. Wielu utytułowanych i zasłużonych badaczy (Mach, Ostwald) uważało, że tak długo jak istnienie atomów nie zostanie bezpośrednio udowodnione (poprzez obserwację), ich właściwości nie mogą stanowić podstawy jakiejkolwiek teorii makroskopowej. Krytyka ta doprowadziła Boltzmanna do samobójstwa (w 1906 roku (!)), na dwa lata przed eksperymentalnym potwierdzeniem istnienia atomów (w ramach prac nad ruchami Browna). 34. Wyobraźmy sobie zbiór układów makroskopowych, będących w dokładnie takim samym stanie termodynamicznym (określonym z reguły przez trzy parametry, w tym jeden związany z liczbą cząsteczek). Każdy układ znajduje się w innym stanie mikroskopowym. Zatem liczba układów równa się liczbie wszystkich możliwych stanów cząsteczkowych. Zbiór ten nosi nazwę zespołu statystycznego. Wyróżnia się różne zespoły w zależności od zbioru parametrów termodynamicznych, z którymi stan mikroskopowy musi być zgodny. Postuluje się, że wartość parametru termodynamicznego (Y) stanowi uśrednienie po całym zespole parametrów mechanicznych, liczonych oddzielnie dla każdego układu z zespołu (Y i ). ak więc można zapisać Y = <Y> = P i Y i gdzie P i stanowi prawdopodobieństwo wystąpienia mikrostanu i. Głównym zadaniem termodynamiki statystycznej jest wyznaczenie prawdopodobieństw P i. Dla N cząsteczek, stan mikroskopowy określany jest poprzez 6N współrzędnych położenia i pędu. Przestrzeń opisywana za pomocą tych współrzędnych (jest to przestrzeń 6N wymiarowa!) nosi nazwę przestrzeni fazowej. Określony mikrostan będzie zatem reprezentowany przez punkt w przestrzeni fazowej. Wszelkie zmiany mikrostanów możemy sobie wyobrazić jako przemieszczanie się punktu w tej przestrzeni, a więc jako jego trajektorię. 35. Zakłada się, że dla zespołu, w którym określonymi parametrami termodynamicznymi są U,V,N (zespół ten nosi nazwę zespołu mikrokanonicznego), prawdopodobieństwo każdego mikrostanu jest takie same. Inaczej mówiąc, każdy z mikrostanów odpowiadający tym samym makroskopowym wartościom U,V i N, jest tak samo prawdopodobny i w związku z tym, rzeczywisty układ makroskopowy przebywa w każdym ze stanów mikroskopowych, średnio przez ten sam czas. Postulat ten nosi nazwę zasady równych prawdopodobieństw. Zasada równych prawdopodobieństw stanowi najsłabszy element termodynamiki statystycznej, a i w związku z tym termodynamiki jako takiej. Zasadę tę udowodniono tylko dla pewnej ograniczonej klasy układów. Zatem należy ją traktować jako postulat. Z drugiej strony, zgodne z doświadczeniem wyniki uzyskane za pomocą metod termodynamiki statystycznej, stanowią pośredni dowód na rzecz prawdziwości przyjętych reguł. ak więc dla zespołu mikrokanonicznego każde prawdopodobieństwo równa się P i = 1/ gdzie jest liczbą wszystkich możliwych mikrostanów dla tych samych wartości U,V,N 36. W ramach tych samych parametrów makroskopowych U,V,N wyróżnijmy dwa zbiory mikrostanów 1 i 2. Oczywiście będzie = Jeśli 1 < 2, to z większym prawdopodobieństwem układ wystąpi w jednym ze stanów 2 niż 1. A co się stanie, jeśli wystąpi olbrzymia różnica pomiędzy liczebnością obu zbiorów? Powiedzmy, że 2 >>> 1? Wtedy można powiedzieć, że stan 1 jest niezmiernie mało prawdopodobny. Jeśli więc z jakichś powodów na początku układ byłby w stanie 1, to natychmiast przeszedłby do znacznie bardziej prawdopodobnego stanu 2. Inaczej mówiąc, nastąpiłby spontaniczny i nieodwracalny proces 1 2! Jesteśmy już blisko rozwiązania problemu. Zauważmy, że uświadamiając sobie rzeczywistą strukturę układu, dochodzimy w gruncie rzeczy do oczywistego wniosku - a mianowicie, że spontaniczne procesy zachodzą w sposób nieodwracalny, od stanu mniej prawdopodobnego do stanu bardziej prawdopodobnego. Proces odwrotny nie może zajść. Czy aby na pewno? Skoro mówimy o prawdopodobieństwie, lepiej powiedzieć, że jest on mało prawdopodobny. Aby odpowiedzieć na pytanie, jak mało, musielibyśmy znać dokładne wartości prawdopodobieństwa. Otóż biorąc pod uwagę typowe układy termodynamiczne można śmiało powiedzieć - powrót jest niewyobrażalnie mało prawdopodobny, niemniej jednak nie jest niemożliwy. Dobrym układem modelowym obrazującym przedstawione rozumowanie jest talia kart, pierwotnie ułożona zgodnie ze starszeństwem kart w każdym kolorze oraz według starszeństwa kolorów - od dwójki trefl do asa pikowego. Istnieje tylko jeden taki układ kart. Rozpoczynamy tasowanie. Wszystkie rozkłady są jednakowo prawdopodobne, co oznacza, że przerywając tasowanie mamy szansę zaobserwować dowolną konfigurację z takim samym prawdopodobieństwem. Jaka jest szansa, że w wyniku tasowania powrócimy do stanu uporządkowanego? Doświadczenie uczy nas, że praktycznie żadna. Rzeczywiście, można wykazać, że proces: 10

11 uporządkowana talia kart nieuporządkowana talia kart możemy określić jako wybitnie nieodwracalny. Z kolei modelowym układem stricte termodynamicznym może być izolowany sztywny zbiornik zawierający jeden mol gazu doskonałego. Spełniony jest warunek U,V,N = const. Gaz znajduje się w jednej połowie zbiornika, odgrodzony przesuwalną przegrodą od drugiej, pustej części. W pewnej chwili usuwamy przegrodę. Obserwujemy spontaniczny, nieodwracalny proces przejścia cząsteczek gazu do pustej części i po pewnym czasie wyrównanie się liczby cząsteczek w obu połówkach. Bardzo łatwo można policzyć stosunek liczby mikrostanów odpowiadających obu sytuacjom - gaz w całym zbiorniku ( 2) i gaz w jednej połówce ( 1) (proszę to zrobić!). Wartość logarytmu ln( 2/ 1) wynosi N Aln2 (N A jest liczbą Avogadro), podczas gdy dla talii kart parametr ten wynosił tylko 156,36! A przecież nie mieliśmy wątpliwości, że proces związany z tasowaniem jest nieodwracalny! Proszę zauważyć, o ile rzędów bardziej nieodwracalne jest przemieszczanie się cząsteczek gazu. Wyciągnijmy też od razu wniosek praktyczny - ze względu na wielkie wartości liczby mikrostanów wygodniej jest się posługiwać logarytmami. Warto jeszcze raz podkreślić statystyczny i probabilistyczny charakter rozważań. Spośród procesów zgodnych z zasadą zachowania energii jedne mają miejsce a inne nie. Nie zachodzą, bowiem są niezmiernie mało prawdopodobne. Ale to nie znaczy, że są niemożliwe! W gruncie rzeczy wszystkie, nawet najbardziej fantastyczne zdarzenia niesprzeczne z I Zasadą, np. pojawienie się smoka zjadającego na śniadanie księżniczki, mogą się zdarzyć, chociaż najprawdopodobniej nie nastąpią. 37. Oczywiste jest olbrzymie znaczenie parametru (tj. liczby wszystkich mikrostanów odpowiadających określonemu stanowi makroskopowemu) przy określaniu kierunków wszelkich procesów. Rząd wielkości sugeruje użycie logarytmu. Zdefiniujmy zatem następującą funkcję S = k ln którą nazywa się ENROPIĄ. Parametr k nosi nazwę stałej Boltzmanna i na razie można go uznać po prostu za współczynnik proporcjonalności, zostawiając sobie na później przypisanie mu konkretnej wartości. Ponadto każdy spośród mikrostanów odnosi się do tych samych wartości U,V i N. Wzór ten stanowi statystyczną definicję entropii. Entropia ma następujące własności: a) Jest funkcją ekstensywną, bo dzieląc arbitralnie układ na dwie części otrzymuje się = 1 2, co zamienia się na addytywność logarytmów. b) Istnieje bliski związek pomiędzy energią a entropią. Znalezienie liczby mikrostanów dla określonej wartości energii U, to inaczej zadanie, na ile sposobów można rozmieścić energię na różnych kwantowych poziomach energetycznych. Im większa wartość energii (dla V,N = const) tym większa będzie liczba możliwości. ak więc pochodna entropii po energii wewnętrznej musi być dodatnia. Intuicyjnie przyjmijmy, że może mieć ona duże znaczenie i wprowadźmy parametr z nią związany S U V, N 1 0 Parametr nazwany został temperaturą lub EMPERAURĄ ERMODYNAMICZNĄ. Istnieje bezpośredni związek pomiędzy entropią a "nieuporządkowaniem" układu, tak że często mówi się, że entropia jest miarą owego nieuporządkowania. Widać to dobrze na przykładzie z kartami, w którym stan początkowy, najbardziej uporządkowany, charakteryzował się najmniejszą entropią ( = 1 i S = 0). Wzrost nieuporządkowania można rozumieć jako zmniejszenie liczby ograniczeń narzucanych na dostępne mikrostany. Oczywiste jest, że jego konsekwencją będzie wzrost ich liczby i wzrost entropii. Wzór S = k ln znajduje się wypisany na grobie Boltzmanna. Jakby chciano przez to powiedzieć, że w sporze Boltzmanna z ówczesnym światem naukowym, racja jest po jego stronie (33). eraz, po z górą 100 latach, my również nie mamy co do tego wątpliwości. 38. Wprowadzenie entropii umożliwia sformułowanie prawa, stwierdzającego kierunek procesów zachodzących w przyrodzie. W układzie spełniającym warunek U,V,N = const możliwy jest tylko taki proces, któremu towarzyszy wzrost entropii. W stanie równowagi, entropia osiąga maksimum. o twierdzenie nosi nazwę ZASADY WZROSU ENROPII. 11

12 39. rzeba określić jeszcze wartość liczbową stałej Boltzmanna oraz relacje pomiędzy temperaturą termodynamiczną i entropią a parametrami makroskopowymi. Okazuje się, że porównując związki parametrów makroskopowych wynikających z I Zasady z wnioskami sformułowanymi na gruncie termodynamiki statystycznej, można udowodnić następujące, niezmiernie ważne relacje (a) ds = dq odw (b) równoważność temperatury termodynamicznej i empirycznej, jeśli zdefiniuje się stałą Boltzmanna jako k = R/N A (co oczywiście natychmiast czynimy). 40. Związek pomiędzy różniczką zupełną entropii a różniczkowym ciepłem w przemianie odwracalnej sugeruje pytanie o analogiczny związek dla ciepła w przemianie nieodwracalnej. Ponieważ U jest funkcją stanu, jej przyrost różniczkowy nie zależy od rodzaju procesu - będzie taki sam dla przemiany odwracalnej i nieodwracalnej, czyli du = dw odw + dq odw = dw + dq Ponieważ dw dw odw dq dq odw = ds ak więc w ogólnym przypadku będzie ds dq/ 41. Zdefiniowaliśmy pojęcie entropii posługując się ujęciem cząsteczkowym. W termodynamice klasycznej ta droga jest oczywiście zamknięta i entropię z jej właściwościami definiuje się poprzez II ZASADĘ ERMODYNAMIKI. Jest ona równoważna Zasadzie Wzrostu Entropii. Oto jej najczęściej przyjmowana forma Postuluje się istnienie funkcji stanu, zwanej entropią (S), która ma następujące właściwości: 1. Jest funkcją ekstensywną. 2. Jej różniczka zupełna wyraża się wzorem dqodw ds 3. Dla każdej dowolnej przemiany w przyrodzie zachodzi związek dq ds Właściwości entropii oraz II Zasada zostały odgadnięte kilkadziesiąt lat przed wyprowadzeniem sformułowania statystycznego. Podstawą były rozważania na temat silników cieplnych. (R. Clausius, 1850). II Zasada podaje, podobnie jak Zasada Wzrostu Entropii, pewien wymóg, który musi być spełniony dla każdego spontanicznego procesu w przyrodzie. Jest nim ostra nierówność Natomiast stan równowagi musi spełniać warunek Konsekwencje II Zasady 1. Różniczka zupełna energii wewnętrznej równa się du = -pdv + ds Jest ona prawdziwa niezależnie od rodzaju przemiany, ale jedynie dla procesu odwracalnego pierwszy wyraz jest różniczkową pracą objętościową, a drugi różniczkowym ciepłem. W bilansie energii, który w pewnym stopniu wyraża to równanie, ds ma klasyczną postać, taką samą jak różne rodzaje pracy (14), tj. jest w postaci iloczynu deformacji parametru ekstensywnego (ds) i intensywnej siły uogólnionej (). Zatem temperatura może być interpretowana jako siła uogólniona odpowiadająca ciepłu. Ponieważ dla układu zamkniętego energia wewnętrzna zależy dokładnie od dwóch parametrów stanu, stanowi to jednocześnie dowód Zasady Duhema (12). 2. Dla procesu adiabatycznego nierówność 41.3 będzie miała postać ds 0 Co oznacza, że entropia musi wzrastać i osiąga maksimum w stanie równowagi. Ponieważ dla U,V,N = const, z I Zasady wynika dq = 0, sformułowanie to jest równoważne Zasadzie Wzrostu Entropii. Przyjmuje się często, że Wszechświat jako całość spełnia warunek U,V,N = const. Oznacza to, że 12

13 - entropia Wszechświata cały czas rośnie (co jednak może być kwestionowane ze względu na wątpliwości co do rzeczywistych właściwości Wszechświata); - dla każdego procesu zachodzącego w układzie spełniona jest następująca nierówność ds układ + ds otoczenie 0 wynikająca z addytywności (ekstensywności) entropii. 3. Rozpatrujemy dwa układy kontaktujące się ze sobą i różniące się temperaturami - i '. Zakładamy, że oba układy mogą przekazywać wzajemnie energię za wyjątkiem pracy (objętościowej). Oznacza to, że energia przenoszona jest jedynie na sposób ciepła. Każdy z dwóch układów spełnia warunek V,N = const, a oba razem także U = const. Dla zachodzącego procesu zachodzi zatem nierówność ds + ds' 0 S U du S ' U du 1 du 1 ' du ' 0 ' ' V V a ponieważ sumaryczna energia jest stała du + du' = 0 i powyższe równanie można zapisać jako du ' Jak widać, w stanie równowagi musi być spełniony warunek = '. Dla każdego spontanicznego procesu mamy ostrą nierówność. Rozpatrzmy dwa przypadki: dq > 0 (i du > 0 ) < ' dq< 0 (i du < 0 ) > ' A zatem przepływ energii na sposób ciepła następuje od układu o wyższej temperaturze do układu o temperaturze niższej. 4. Paradoksy i kontrowersje związane z II Zasadą. II Zasada, ze względu na swoje fundamentalne znaczenie dla zrozumienia otaczającego świata, jest wciąż obiektem zarówno sporów jak i nieporozumień. Omówmy kilka z nich. a) Panuje dość szeroko rozpowszechniony pogląd, że dla każdego spontanicznego procesu w przyrodzie entropia musi rosnąć. Nie jest to prawdziwe, albo przynajmniej nie do końca prawdziwe. W układzie mogą zachodzić spontaniczne procesy, którym towarzyszy zmniejszanie się entropii, jeśli nie jest spełniony wymóg U,V,N = const. Jednak zmniejszenie entropii w układzie zawsze będzie rekompensowane z naddatkiem jej wzrostem w otoczeniu w tak sposób, aby sumaryczna entropia wzrosła. b) Entropia jest parametrem makroskopowym i wskazuje kierunek procesu w ujęciu makroskopowym. Na poziomie mikroskopowym obserwujemy zachowania, które są sprzeczne z II Zasadą. W gruncie rzeczy jednak lepiej powiedzieć, że do układów złożonych z małej liczby cząsteczek, II Zasada po prostu się nie stosuje. Czasami takie "nie-termodynamiczne" zachowania się małych układów mogą być obserwowalne w makroświecie. Dobrym przykładem są tu fluktuacje gęstości atmosfery, które sprawiają, że niebo jest niebieskie (a nie czarne (!)), a o wschodzie i zachodzie Słońca, dociera do nas nadmiar promieniowania o czerwonej barwie. c) Należy sobie uświadamiać pewne ograniczenia związane z równowagowym charakterem definiowanych wielkości. W spontanicznym procesie wiemy coś więcej jedynie o dwóch stanach równowagi - stanie początkowym (A), który był stanem równowagi, ale pod wpływem jakiejś zmiany parametrów przestał nim być, natomiast stał się nim inny stan (B), stan końcowy rozważanego procesu. Potrafimy jedynie powiedzieć - proces zajdzie od A do B. Ale niewiele wiemy na temat tego co będzie się działo pomiędzy tymi dwoma etapami. Zajmuje się tym nowa gałąź termodynamiki nazywana termodynamiką procesów nierównowagowych, ale ciągle jeszcze jest ona w stadium dziecięctwa. o oczywiście wielkie ograniczenie. Chociaż umiemy zrozumieć pseudoświat stworzony przez nas w probówce czy reaktorze chemicznym, to jednak daleko nam do zrozumienia, tego co się wokół nas dzieje. Świat jest bowiem, w trakcie stawania się. Procesy, które obserwujemy w przyrodzie nie dochodzą do równowagi, one po prostu cały czas zachodzą. ak jest z życiem organizmów, które nie jest stanem równowagi ale ciągłym procesem wymiany masy i energii (dodalibyśmy jeszcze pewnie - informacji) z otoczeniem. Nawet stan śmierci organizmu, jakkolwiek znacznie bliższy równowadze niż życie, stanem równowagi też nie jest. Wiąże się z tym aspektem dość często podnoszony zarzut, że ewolucja i ciągłe doskonalenie się żywych organizmów jest sprzeczne z II Zasadą. ak oczywiście nie jest. Ewolucja jest procesem. Z pewnością w jej trakcie obserwujemy lokalne zmniejszenie entropii, co wymaga jakiegoś wyjaśnienia, ale nie ma tu sprzeczności z Zasadą. Pod warunkiem, że sumaryczna entropia Wszechświata będzie rosnąć. I jak dotychczas wszystko wskazuje, że 13

Tadeusz Hofman, WYKŁADY Z TERMODYNAMIKI TECHNICZNEJ I CHEMICZNEJ dla chemików

Tadeusz Hofman, WYKŁADY Z TERMODYNAMIKI TECHNICZNEJ I CHEMICZNEJ dla chemików Tadeusz Hofman, WYKŁADY Z TERMODYNAMIKI TECHNICZNEJ I CHEMICZNEJ dla chemików Adres internetowy: http://www.ch.pw.edu.pl/~hof/term_ttc.htm, gdzie można znaleźć: regulamin zaliczeń i egzaminów, tematy egzaminacyjne,

Bardziej szczegółowo

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach

Bardziej szczegółowo

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,

Bardziej szczegółowo

Wykład 3. Entropia i potencjały termodynamiczne

Wykład 3. Entropia i potencjały termodynamiczne Wykład 3 Entropia i potencjały termodynamiczne dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),

Bardziej szczegółowo

Krótki przegląd termodynamiki

Krótki przegląd termodynamiki Wykład I Przejścia fazowe 1 Krótki przegląd termodynamiki Termodynamika fenomenologiczna oferuje makroskopowy opis układów statystycznych w stanie równowagi termodynamicznej bądź w stanach jemu bliskich.

Bardziej szczegółowo

Przegląd termodynamiki II

Przegląd termodynamiki II Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

Termodynamiczny opis przejść fazowych pierwszego rodzaju

Termodynamiczny opis przejść fazowych pierwszego rodzaju Wykład II Przejścia fazowe 1 Termodynamiczny opis przejść fazowych pierwszego rodzaju Woda występuje w trzech stanach skupienia jako ciecz, jako gaz, czyli para wodna, oraz jako ciało stałe, a więc lód.

Bardziej szczegółowo

Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron

Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron Elementy termodynamiki i wprowadzenie do zespołów statystycznych Katarzyna Sznajd-Weron Wielkości makroskopowe - termodynamika Termodynamika - metoda fenomenologiczna Fenomenologia w fizyce: widzimy jak

Bardziej szczegółowo

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36 Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną

Bardziej szczegółowo

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Zagadka na początek wykładu Diagram fazowy wody w powiększeniu, problem metastabilności aktualny (Nature, 2011) Niższa temperatura topnienia

Bardziej szczegółowo

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Chemia Fizyczna Technologia Chemiczna II rok Wykład 1 Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Kontakt,informacja i konsultacje Chemia A ; pokój 307 Telefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl

Bardziej szczegółowo

TERMODYNAMIKA I TERMOCHEMIA

TERMODYNAMIKA I TERMOCHEMIA TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami

Bardziej szczegółowo

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Janusz Brzychczyk, Instytut Fizyki UJ Związek pomiędzy równaniem

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje

Bardziej szczegółowo

Ciepła tworzenia i spalania (3)

Ciepła tworzenia i spalania (3) Ciepła tworzenia i spalania (3) Standardowa entalpia tworzenia jest standardową entalpią związku 0 0 H = H Dla pierwiastków: Dla związków: H H 98 tw,98 0 tw, = C p ( ) d 98 0 0 tw, = Htw,98 + C p ( ) 98

Bardziej szczegółowo

Wykład 6. Klasyfikacja przemian fazowych

Wykład 6. Klasyfikacja przemian fazowych Wykład 6 Klasyfikacja przemian fazowych JS Klasyfikacja Ehrenfesta Ehrenfest klasyfikuje przemiany fazowe w oparciu o potencjał chemiczny. nieciągłość Przemiany fazowe pierwszego rodzaju pochodne potencjału

Bardziej szczegółowo

II Zasada Termodynamiki c.d.

II Zasada Termodynamiki c.d. Wykład 5 II Zasada Termodynamiki c.d. Pojęcie entropii i temperatury absolutnej II zasada termodynamiki dla procesów nierównowagowych Równania Gibbsa dla procesów quasistatycznych Równania Eulera Relacje

Bardziej szczegółowo

Wykład Praca (1.1) c Całka liniowa definiuje pracę wykonaną w kierunku działania siły. Reinhard Kulessa 1

Wykład Praca (1.1) c Całka liniowa definiuje pracę wykonaną w kierunku działania siły. Reinhard Kulessa 1 1.6 Praca Wykład 2 Praca zdefiniowana jest jako ilość energii dostarczanej przez siłę działającą na pewnej drodze i matematycznie jest zapisana jako: W = c r F r ds (1.1) ds F θ c Całka liniowa definiuje

Bardziej szczegółowo

TERMODYNAMIKA FENOMENOLOGICZNA

TERMODYNAMIKA FENOMENOLOGICZNA TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N

Bardziej szczegółowo

WYKŁAD 12 ENTROPIA I NIERÓWNOŚĆ THERMODYNAMICZNA 1/10

WYKŁAD 12 ENTROPIA I NIERÓWNOŚĆ THERMODYNAMICZNA 1/10 WYKŁAD 12 ENROPIA I NIERÓWNOŚĆ HERMODYNAMICZNA 1/10 ENROPIA PŁYNU IDEALNEGO W PRZEPŁYWIE BEZ NIECIĄGŁOŚCI Załóżmy, że przepływ płynu idealnego jest gładki, tj. wszystkie pola wielkości kinematycznych i

Bardziej szczegółowo

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez

Bardziej szczegółowo

S ścianki naczynia w jednostce czasu przekazywany

S ścianki naczynia w jednostce czasu przekazywany FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

Wykład Temperatura termodynamiczna 6.4 Nierówno

Wykład Temperatura termodynamiczna 6.4 Nierówno ykład 8 6.3 emperatura termodynamiczna 6.4 Nierówność Clausiusa 6.5 Makroskopowa definicja entropii oraz zasada wzrostu entropii 6.6 Entropia dla czystej substancji 6.8 Cykl Carnota 6.7 Entropia dla gazu

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

Zasady termodynamiki

Zasady termodynamiki Zasady termodynamiki Energia wewnętrzna (U) Opis mikroskopowy: Jest to suma średnich energii kinetycznych oraz energii oddziaływań międzycząsteczkowych i wewnątrzcząsteczkowych. Opis makroskopowy: Jest

Bardziej szczegółowo

Warunki izochoryczno-izotermiczne

Warunki izochoryczno-izotermiczne WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura

Bardziej szczegółowo

Termochemia elementy termodynamiki

Termochemia elementy termodynamiki Termochemia elementy termodynamiki Termochemia nauka zajmująca się badaniem efektów cieplnych reakcji chemicznych Zasada zachowania energii Energia całkowita jest sumą energii kinetycznej i potencjalnej.

Bardziej szczegółowo

Wykład 3. Zerowa i pierwsza zasada termodynamiki:

Wykład 3. Zerowa i pierwsza zasada termodynamiki: Wykład 3 Zerowa i pierwsza zasada termodynamiki: Termodynamiczne funkcje stanu. Parametry extensywne i intensywne. Pojęcie równowagi termodynamicznej. Tranzytywność stanu równowagi i pojęcie temperatury

Bardziej szczegółowo

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1 Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare

Bardziej szczegółowo

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym). Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo

Bardziej szczegółowo

Termodynamika. Energia wewnętrzna ciał

Termodynamika. Energia wewnętrzna ciał ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy

Bardziej szczegółowo

Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna

Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna Wykład 8 i 9 Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW)

Bardziej szczegółowo

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Prawo zachowania energii: ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Ogólny zasób energii jest niezmienny. Jeżeli zwiększa się zasób energii wybranego układu, to wyłącznie kosztem

Bardziej szczegółowo

WYKŁAD 3 TERMOCHEMIA

WYKŁAD 3 TERMOCHEMIA WYKŁAD 3 TERMOCHEMIA Termochemia jest działem termodynamiki zajmującym się zastosowaniem pierwszej zasady termodynamiki do obliczania efektów cieplnych procesów fizykochemicznych, a w szczególności przemian

Bardziej szczegółowo

Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1

Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1 Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący 1. Obliczyć zmianę entalpii dla izobarycznej (p = 1 bar) reakcji chemicznej zapoczątkowanej

Bardziej szczegółowo

Wykład 7: Przekazywanie energii elementy termodynamiki

Wykład 7: Przekazywanie energii elementy termodynamiki Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne

Bardziej szczegółowo

Kontakt,informacja i konsultacje

Kontakt,informacja i konsultacje Kontakt,informacja i konsultacje Chemia A ; pokój 307 elefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl tablica ogłoszeń Katedry Chemii Fizycznej http://www.pg.gda.pl/chem/dydaktyka/ lub http://www.pg.gda.pl/chem/katedry/fizyczna

Bardziej szczegółowo

Wykład 10 Równowaga chemiczna

Wykład 10 Równowaga chemiczna Wykład 10 Równowaga chemiczna REAKCJA CHEMICZNA JEST W RÓWNOWADZE, GDY NIE STWIERDZAMY TENDENCJI DO ZMIAN ILOŚCI (STĘŻEŃ) SUBSTRATÓW ANI PRODUKTÓW RÓWNOWAGA CHEMICZNA JEST RÓWNOWAGĄ DYNAMICZNĄ W rzeczywistości

Bardziej szczegółowo

1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA

1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA . PIERWSZA I DRUGA ZASADA ERMODYNAMIKI ERMOCHEMIA Zadania przykładowe.. Jeden mol jednoatomowego gazu doskonałego znajduje się początkowo w warunkach P = 0 Pa i = 300 K. Zmiana ciśnienia do P = 0 Pa nastąpiła:

Bardziej szczegółowo

Termodynamika Część 3

Termodynamika Część 3 Termodynamika Część 3 Formy różniczkowe w termodynamice Praca i ciepło Pierwsza zasada termodynamiki Pojemność cieplna i ciepło właściwe Ciepło właściwe gazów doskonałych Ciepło właściwe ciała stałego

Bardziej szczegółowo

Elementy termodynamiki

Elementy termodynamiki Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 5 stycznia 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 5 stycznia 2019 1 / 27 Wielkości

Bardziej szczegółowo

Fizykochemiczne podstawy inżynierii procesowej

Fizykochemiczne podstawy inżynierii procesowej Fizykochemiczne podstawy inżynierii procesowej Wykład I - 1 Sprawy formalne 2 Fizykochemiczne podstawy inżynierii procesowej Sprawy formalne: Forma: Wykład w postaci prezentacji komputerowych Przeznaczenie:

Bardziej szczegółowo

Wykład 4. Przypomnienie z poprzedniego wykładu

Wykład 4. Przypomnienie z poprzedniego wykładu Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika

Bardziej szczegółowo

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1 Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare

Bardziej szczegółowo

Fizyka Termodynamika Chemia reakcje chemiczne

Fizyka Termodynamika Chemia reakcje chemiczne Termodynamika zajmuje się badaniem efektów energetycznych towarzyszących procesom fizykochemicznym i chemicznym. Termodynamika umożliwia: 1. Sporządzanie bilansów energetycznych dla reakcji chemicznych

Bardziej szczegółowo

Fizykochemiczne podstawy inżynierii procesowej

Fizykochemiczne podstawy inżynierii procesowej Fizykochemiczne podstawy inżynierii procesowej Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste przemiany termodynamiczne PRZYPOMNIENIE Z OSTATNIEGO

Bardziej szczegółowo

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,

Bardziej szczegółowo

Termodynamika (1) Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. poniedziałek, 23 października 2017

Termodynamika (1) Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. poniedziałek, 23 października 2017 Wykład 1 Termodynamika (1) Bogdan Walkowiak Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka Biofizyka 1 Zaliczenie Aby zaliczyć przedmiot należy: uzyskać pozytywną ocenę z laboratorium

Bardziej szczegółowo

Wykład 4. II Zasada Termodynamiki

Wykład 4. II Zasada Termodynamiki Wykład 4 II Zasada Termodynamiki Ogólne sformułowanie: istnienie strzałki czasu Pojęcie entropii i temperatury absolutnej Ćwiczenia: Formy różniczkowe Pfaffa 1 I sza Zasada Termodynamiki: I-sza zasada

Bardziej szczegółowo

Elementy rachunku różniczkowego i całkowego

Elementy rachunku różniczkowego i całkowego Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami

Bardziej szczegółowo

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej. 1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada

Bardziej szczegółowo

Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne

Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne Janusz Brzychczyk, Instytut Fizyki UJ Postulat Nernsta (1906):

Bardziej szczegółowo

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19)

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19) Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19) Uwaga! Uzyskane wyniki mogą się nieco różnić od podanych w materiałach, ze względu na uaktualnianie wartości zapisanych

Bardziej szczegółowo

13. Równania różniczkowe - portrety fazowe

13. Równania różniczkowe - portrety fazowe 13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /

Bardziej szczegółowo

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5 Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Czy przejście szkliste jest termodynamicznym przejściem fazowym?

Bardziej szczegółowo

Roztwory rzeczywiste (1)

Roztwory rzeczywiste (1) Roztwory rzeczywiste (1) Również w temp. 298,15K, ale dla CCl 4 () i CH 3 OH (). 2 15 1 5-5 -1-15 Τ S H,2,4,6,8 1 G -2 Chem. Fiz. TCH II/12 1 rzyczyny dodatnich i ujemnych odchyleń od prawa Raoulta konsekwencja

Bardziej szczegółowo

Kryteria samorzutności procesów fizyko-chemicznych

Kryteria samorzutności procesów fizyko-chemicznych Kryteria samorzutności procesów fizyko-chemicznych 2.5.1. Samorzutność i równowaga 2.5.2. Sens i pojęcie entalpii swobodnej 2.5.3. Sens i pojęcie energii swobodnej 2.5.4. Obliczanie zmian entalpii oraz

Bardziej szczegółowo

Miejsce biofizyki we współczesnej nauce. Obszary zainteresowania biofizyki. - Powrót do współczesności. - obiekty mikroświata.

Miejsce biofizyki we współczesnej nauce. Obszary zainteresowania biofizyki. - Powrót do współczesności. - obiekty mikroświata. Zakład Biofizyki Miejsce biofizyki we współczesnej nauce - trochę historii - Powrót do współczesności Obszary zainteresowania biofizyki - ekosystemy - obiekty makroświata - obiekty mikroświata - język

Bardziej szczegółowo

Pochodna funkcji odwrotnej

Pochodna funkcji odwrotnej Pochodna funkcji odwrotnej Niech będzie dana w przedziale funkcja różniczkowalna i różnowartościowa. Wiadomo, że istnieje wówczas funkcja odwrotna (którą oznaczymy tu : ), ciągła w przedziale (lub zależnie

Bardziej szczegółowo

Jak mierzyć i jak liczyć efekty cieplne reakcji?

Jak mierzyć i jak liczyć efekty cieplne reakcji? Jak mierzyć i jak liczyć efekty cieplne reakcji? Energia Zdolność do wykonywania pracy lub do produkowania ciepła Praca objętościowa praca siła odległość 06_73 P F A W F h N m J P F A Area A ciśnienie

Bardziej szczegółowo

Odwracalność przemiany chemicznej

Odwracalność przemiany chemicznej Odwracalność przemiany chemicznej Na ogół wszystkie reakcje chemiczne są odwracalne, tzn. z danych substratów tworzą się produkty, a jednocześnie produkty reakcji ulegają rozkładowi na substraty. Fakt

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Kinetyka reakcji chemicznych. Dr Mariola Samsonowicz

Kinetyka reakcji chemicznych. Dr Mariola Samsonowicz Kinetyka reakcji chemicznych Dr Mariola Samsonowicz 1 Czym zajmuje się kinetyka chemiczna? Badaniem szybkości reakcji chemicznych poprzez analizę eksperymentalną i teoretyczną. Zdefiniowanie równania kinetycznego

Bardziej szczegółowo

Termochemia efekty energetyczne reakcji

Termochemia efekty energetyczne reakcji Termochemia efekty energetyczne reakcji 1. Podstawowe pojęcia termodynamiki chemicznej a) Układ i otoczenie Układ, to wyodrębniony obszar materii, oddzielony od otoczenia wyraźnymi granicami (np. reagenty

Bardziej szczegółowo

Termodynamika. Cel. Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa. William Thomson 1. Baron Kelvin

Termodynamika. Cel. Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa. William Thomson 1. Baron Kelvin Cel Termodynamika Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa Nicolas Léonard Sadi Carnot 1796 1832 Rudolf Clausius 1822 1888 William Thomson 1. Baron Kelvin 1824 1907 i inni...

Bardziej szczegółowo

Elementy fizyki statystycznej

Elementy fizyki statystycznej 5-- lementy fizyki statystycznej ermodynamika Gęstości stanów Funkcje rozkładu Gaz elektronów ermodynamika [K] 9 wszechświat tuż po powstaniu ermodynamika to dział fizyki zajmujący się energią termiczną

Bardziej szczegółowo

Przemiany termodynamiczne

Przemiany termodynamiczne Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość

Bardziej szczegółowo

Podstawowe pojęcia 1

Podstawowe pojęcia 1 Tomasz Lubera Podstawowe pojęcia 1 Układ część przestrzeni wyodrębniona myślowo lub fizycznie z otoczenia Układ izolowany niewymieniający masy i energii z otoczeniem Układ zamknięty wymieniający tylko

Bardziej szczegółowo

TERMOCHEMIA. TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki.

TERMOCHEMIA. TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki. 1 TERMOCHEMIA TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki. TERMODYNAMIKA: opis układu w stanach o ustalonych i niezmiennych w

Bardziej szczegółowo

x 2 = a RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych 2. Proste równania kwadratowe Równanie kwadratowe typu:

x 2 = a RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych 2. Proste równania kwadratowe Równanie kwadratowe typu: RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych Przed rozpoczęciem nauki o równaniach kwadratowych, warto dobrze opanować rozwiązywanie zwykłych równań liniowych. W równaniach liniowych niewiadoma

Bardziej szczegółowo

Rozkłady statyczne Maxwella Boltzmana. Konrad Jachyra I IM gr V lab

Rozkłady statyczne Maxwella Boltzmana. Konrad Jachyra I IM gr V lab Rozkłady statyczne Maxwella Boltzmana Konrad Jachyra I IM gr V lab MODEL STATYCZNY Model statystyczny hipoteza lub układ hipotez, sformułowanych w sposób matematyczny (odpowiednio w postaci równania lub

Bardziej szczegółowo

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu Ćw. 4 Kinetyka reakcji chemicznych Zagadnienia do przygotowania: Szybkość reakcji chemicznej, zależność szybkości reakcji chemicznej

Bardziej szczegółowo

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach 1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Bardziej szczegółowo

I piętro p. 131 A, 138

I piętro p. 131 A, 138 CHEMIA NIEORGANICZNA Dr hab. Andrzej Kotarba Zakład Chemii Nieorganicznej Wydział Chemii I piętro p. 131 A, 138 WYKŁAD - 4 RÓWNOWAGA Termochemia i termodynamika funkcje termodynamiczne, prawa termodynamiki,

Bardziej szczegółowo

Wykład FIZYKA I. 15. Termodynamika statystyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 15. Termodynamika statystyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 15. Termodynamika statystyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html TERMODYNAMIKA KLASYCZNA I TEORIA

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ KALORYMETRIA - CIEPŁO ZOBOJĘTNIANIA WSTĘP Według pierwszej zasady termodynamiki, w dowolnym procesie zmiana energii wewnętrznej, U układu, równa się sumie ciepła wymienionego z otoczeniem, Q, oraz pracy,

Bardziej szczegółowo

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

Termodynamika cz.1. Ziarnista budowa materii. Jak wielka jest liczba Avogadro? Podstawowe definicje. Notes. Notes. Notes. Notes

Termodynamika cz.1. Ziarnista budowa materii. Jak wielka jest liczba Avogadro? Podstawowe definicje. Notes. Notes. Notes. Notes Termodynamika cz.1 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Termodynamika cz.1 Ziarnista budowa materii Ziarnista budowa

Bardziej szczegółowo

Podstawy fizyki sezon 1 X. Elementy termodynamiki

Podstawy fizyki sezon 1 X. Elementy termodynamiki Podstawy fizyki sezon 1 X. Elementy termodynamiki Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Temodynamika

Bardziej szczegółowo

Maszyny cieplne substancja robocza

Maszyny cieplne substancja robocza Maszyny cieplne cel: zamiana ciepła na pracę (i odwrotnie) pracują cyklicznie pracę wykonuje substancja robocza (np.gaz, mieszanka paliwa i powietrza) która: pochłania ciepło dostarczane ze źródła ciepła

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

powierzchnia rozdziału - dwie fazy ciekłe - jedna faza gazowa - dwa składniki

powierzchnia rozdziału - dwie fazy ciekłe - jedna faza gazowa - dwa składniki Przejścia fazowe. powierzchnia rozdziału - skokowa zmiana niektórych parametrów na granicy faz. kropeki wody w atmosferze - dwie fazy ciekłe - jedna faza gazowa - dwa składniki Przykłady przejść fazowych:

Bardziej szczegółowo

Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Równowagi fazowe Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Równowaga termodynamiczna Przemianom fazowym towarzyszą procesy, podczas których nie zmienia się skład chemiczny układu, polegają

Bardziej szczegółowo

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak

Bardziej szczegółowo

1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH

1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH 1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH Ośrodki materialne charakteryzują dwa rodzaje różniących się zasadniczo od siebie wielkości fizycznych: globalne (ekstensywne) przypisane obszarowi przestrzeni fizycznej,

Bardziej szczegółowo

Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15)

Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15) Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15) (Uwaga! Liczba w nawiasie przy odpowiedzi oznacza numer zadania (zestaw.nr), którego rozwiązanie dostępne

Bardziej szczegółowo

Elementy termodynamiki

Elementy termodynamiki Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 11 marca 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 11 marca 2019 1 / 37 Dwa poziomy

Bardziej szczegółowo

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach? 1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 kj nie jest jednostką a) entropii

Bardziej szczegółowo

TERMOCHEMIA SPALANIA

TERMOCHEMIA SPALANIA TERMOCHEMIA SPALANIA I ZASADA TERMODYNAMIKI dq = dh Vdp W przemianach izobarycznych: dp = 0 dq = dh dh = c p dt dq = c p dt Q = T 2 T1 c p ( T)dT Q ciepło H - entalpia wewnętrzna V objętość P - ciśnienie

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA

TERMODYNAMIKA PROCESOWA TERMODYNAMIKA PROCESOWA Wykład I Sprawy formalne Przypomnienie podstawowych definicji i pojęć termodynamicznych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 TERMODYNAMIKA PROCESOWA

Bardziej szczegółowo