TERMODYNAMIKA PROCESOWA

Wielkość: px
Rozpocząć pokaz od strony:

Download "TERMODYNAMIKA PROCESOWA"

Transkrypt

1 TERMODYNAMIKA PROCESOWA Wykład I Sprawy formalne Przypomnienie podstawowych definicji i pojęć termodynamicznych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1

2 TERMODYNAMIKA PROCESOWA Sprawy formalne: Forma: Wykład w postaci prezentacji komputerowych Wymiar: 15 h/semestr (1 h/tydzień) Czas i miejsce: PT s. A3 L-1 Wykład dwugodzinny przez pierwsze 7 tygodni Przeznaczenie: studenci I roku Studium magisterskiego na Wydziale Mechaniczno Energetycznym specjalność Aparatura procesowa oraz inni studenci Politechniki Wrocławskiej Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 2

3 TERMODYNAMIKA PROCESOWA Sprawy formalne cd.: Obecność: nieobowiązkowa (sprawdzana dotyczy wykładu) Obecność na wykładzie będzie premiowana dodatkowymi punktami przy ocenie egzaminu: brak nieobecności 5 pkt., jedna nieobecność 3 pkt., dwie nieobecności 1 pkt. Zaliczenie: Egzamin w czasie sesji Egzamin jest pisemny i składa się z dwu części. Część pierwsza to test wielokrotnego wyboru, natomiast część drugą stanowią tradycyjne pytania ogólne lub szczegółowe. Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 3

4 TERMODYNAMIKA PROCESOWA Sprawy formalne cd.: Kontakt: p. 115 C-6, tel Konsultacje: Środa godz Informacje internetowe: Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 4

5 Literatura zasadnicza 1. S. Michałowski, K. Wańkowicz: Termodynamika procesowa. WNT Warszawa J. Szarawara: Termodynamika chemiczna stosowana. WNT Warszawa E. Kalinowski: Termodynamika. Wyd. Polit. Wroc., Wrocław J. Szargut: Termodynamika techniczna. PWN Warszawa 1991 (lub później). 5. S. R. Turns: Thermodynamics. Concepts and Applications. Cambridge University Press. Cambridge Prof. Antoni Kozioł,Wydział Chemiczny Politechniki Wrocławskiej 5

6 Literatura pomocnicza (uzupełniająca) 1. P. Atkins: Palec Galileusza. DW Rebis, Poznań (Rozdziały: 3 Energia i 4 Entropia) 2. B. Diu: Czy atomy naprawdę istnieją? PIW, Warszawa H. Buchowski, W. Ufnalski: Podstawy termodynamiki. WNT, Warszawa D.R. Olander: General Thermodynamics. CRC Press. Boca Raton Prof. Antoni Kozioł,Wydział Chemiczny Politechniki Wrocławskiej 6

7 Uwagi wstępne Termodynamika jest to dział fizyki zajmujący się zagadnieniami cieplno mechanicznymi w skali makroskopowej. Termo zjawiska, zagadnienia cieplne związane z chaotycznym ruchem cząsteczek materii - dynamika zjawiska, zagadnienia mechaniczne związane z uporządkowanym ruchem makroskopowych zbiorów materii Prof. Antoni Kozioł,Wydział Chemiczny Politechniki Wrocławskiej 7

8 Uwagi wstępne Istnieje wiele różnych podziałów i klasyfikacji dotyczących termodynamiki. Dla naszych celów całą termodynamiką możemy podzielić na: termodynamikę teoretyczną, którą nie będziemy się zajmować termodynamikę praktyczną, w ramach której można wyodrębnić termodynamikę techniczną często nazywaną techniką cieplną i termodynamikę procesową. Głównymi tematami termodynamiki technicznej są praktyczne zagadnienia związane z wzajemnymi przemianami energii cieplnej i mechanicznej. Z kolei głównym obszarem zainteresowania termodynamiki procesowej są metody wyznaczania i obliczania właściwości termodynamicznych różnego rodzaju ośrodków. Właściwości te są niezbędne przy opisie różnego rodzaju procesów technologicznych. Prof. Antoni Kozioł,Wydział Chemiczny Politechniki Wrocławskiej 8

9 Podstawowe pojęcia i definicje termodynamiki procesowej Podstawowymi pojęciami termodynamicznymi są pojęcia układu i otoczenia. Ciepło (energia cieplna) Praca (energia mechaniczna) Otoczenie Układ Masa Układ i otoczenie mogą wymieniać ze sobą energię i masę. Energia może być wymieniana na dwa sposoby: -jako ciepło, gdy wiąże się to z przekazywaniem termicznym, - lub jako praca gdy energia jest przekazywana mechanicznie w sposób uporządkowany Prof. Antoni Kozioł,Wydział Chemiczny Politechniki Wrocławskiej 9

10 Przykład układu termodynamicznego: cylinder w silniku spalinowym Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 0

11 RELACJE UKŁADU Z OTOCZENIEM W zależności od istnienia lub braku wymiany z otoczeniem układ określa się jako: adiabatyczny gdy nie ma wymiany ciepła w kontakcie termicznym gdy wymiana ciepła jest obecna izolowany mechanicznie gdy praca nie jest wykonywana w kontakcie mechanicznym gdy praca jest wykonywana zamknięty gdy nie ma wymiany masy otwarty gdy wymiana masy się odbywa Prof. Antoni Kozioł,Wydział Chemiczny Politechniki Wrocławskiej 11

12 RÓWNOWAGA TERMODYNAMICZNA Ze stanem równowagi mamy do czynienia wtedy, gdy występują dwie wzajemnie przeciwstawne tendencje, które się równoważą. Pojęcie równowagi jest stosowane w różnych dziedzinach nauki. Przykładowo w ekonomii ważnym pojęciem jest równowaga rynkowa polegająca na równoważeniu się podaży i popytu określonego towaru. W naukach ścisłych i technicznych zagadnienie równowagi występuje stosunkowo często. Najważniejsze rodzaje równowag to: 1. Równowaga mechaniczna polegająca na zrównoważeniu sił. 2. Równowaga termiczna polegająca na zrównoważeniu temperatur. 3. Równowaga chemiczna polegająca na zrównoważeniu szybkości reakcji chemicznych. Prof. Antoni Kozioł,Wydział Chemiczny Politechniki Wrocławskiej 12

13 RÓWNOWAGA TERMODYNAMICZNA Układ który jest w stanie równowagi cechuje się stałością w czasie parametrów opisujących jego stan. Oznacza to że nie zachodzą w nim żadne makroskopowe zmiany. Stan równowagi nie oznacza że w układzie nic się nie dzieje. Oznacza tylko tyle że procesy zachodzące w układzie nie dają efektów makroskopowych. Czasami (dosyć często) równowaga definiowana jest jako stan, w którym parametry makroskopowe są stałe w czasie. Jest to definicja równoważna gdyż stałość parametrów wynika ze zrównoważenia przeciwstawnych tendencji. Szczególną rolę odgrywa pojęcie równowagi termodynamicznej, która zachodzi wtedy gdy występują jednocześnie równowagi: mechaniczna, termiczna i chemiczna. Równoważna definicja tej równowagi mówi że występuje ona wtedy gdy parametry termodynamiczne opisujące dany układ termodynamiczny są stałe w czasie co występuje wtedy, gdy dany układ jest pozostawiony sobie przez czas dostatecznie długi. Prof. Antoni Kozioł,Wydział Chemiczny Politechniki Wrocławskiej 13

14 STAN UKŁADU I PRZEMIANA TERMODYNAMICZNA Stan układu termodynamicznego opisuje szereg wielkości fizycznych nazywanych parametrami lub funkcjami stanu. Jeżeli układ zmienia swój stan, to mówimy że odbywa się przemiana termodynamiczna Stan 1 Przemiana Stan 2 Prof. Antoni Kozioł,Wydział Chemiczny Politechniki Wrocławskiej 14

15 STAN UKŁADU I PRZEMIANA TERMODYNAMICZNA Przykładem przemiany termodynamicznej może być proces sprężania gazu w cylindrze silnika spalinowego: Prof. Antoni Kozioł,Wydział Chemiczny Politechniki Wrocławskiej 15

16 STAN UKŁADU I PRZEMIANA TERMODYNAMICZNA Przemianę termodynamiczną charakteryzują: a) przyrosty parametrów stanu b) wielkości opisujące wymianę między układem a otoczeniem (parametry przemiany) Prof. Antoni Kozioł,Wydział Chemiczny Politechniki Wrocławskiej 16

17 WIELKOŚCI EKSTENSYWNE I INTENSYWNE Wielkości termodynamiczne (zarówno parametry stanu jak i wielkości opisujące przemiany) dzielą się na dwie ważne grupy: Wielkości ekstensywne wielkości X spełniające następujące własności: 1 - są określone na zbiorach przestrzennych mają charakter globalny 2 - są addytywne (bilansowalne) tzn. spełniają relację X ( ) X ( 1) X ( 2) są jednorodne ze względu na masę substancji zawartej w układzie X ( m) X ( m) 0 Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 17

18 WIELKOŚCI EKSTENSYWNE I INTENSYWNE Wielkości intensywne wielkości x spełniające następujące własności: 1 - są określone dla punktów przestrzennych mają charakter lokalny x f ( M) M W przypadku gdy opisujemy wielkość intensywną układu termodynamicznego będącego zbiorem przestrzennym Ω zakłada się że: - albo dana wielkość x jest taka sama w każdym punkcie zbioru Ω (tzw. doskonałe wymieszanie), - albo też dla całego zbioru określa się wartość średnią: 1 x( ) x( M ) dv V ( ) Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 18

19 WIELKOŚCI EKSTENSYWNE I INTENSYWNE 2 - nie są addytywne (bilansowalne) tzn.: x( ) x( ) x( ) nie zależą od masy substancji zawartej w układzie x( m) x( m) 0 Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 19

20 WIELKOŚCI EKSTENSYWNE I INTENSYWNE Iloraz dwu wielkości ekstensywnych zawsze jest wielkością intensywną! X1( ) x( ) X ( ) 2 Iloraz lub iloczyn dwu wielkości intensywnych pozostaje zawsze wielkością intensywną! x 1 1 x2 x3 lub x3 x2 x Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 20

21 WIELKOŚCI MIERZALNE I KONCEPTUALNE Inny podział wielkości termodynamiczny wiąże się z możliwością ich eksperymentalnego pomiaru. Zgodnie z tym podziałem mamy wielkości mierzalne i konceptualne. Wielkości mierzalne to takie, które możemy bezpośrednio z odpowiednią dokładnością zmierzyć za pomącą odpowiednich przyrządów pomiarowych. Mierzalne są np. temperatura, ciśnienie i objętość. Wielkości konceptualne to takie dla których określenia konieczna jest pewna procedura zawierająca różne założenia i konwencje. Konceptualne są takie wielkości jak energia wewnętrzna, entropia czy fugatywność. Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 21

22 PARAMETRY STANU 1. Temperatura T, [K] parametr intensywny, wielkość mierzalna Temperatura jest to podstawowy parametr stanu określający zdolność układu do przekazywania ciepła czyli energii chaotycznego ruchu cząsteczek. 2. Ciśnienie p, [Pa] parametr intensywny, wielkość mierzalna Ciśnienie jest to drugi podstawowy parametr stanu określający zdolność układu do wykonywania pracy tzn. do przekazywania energii na sposób mechaniczny. 3. Objętość V, [m 3 ] parametr ekstensywny, wielkość mierzalna Objętość układu jest określona przez objętość przestrzeni zajmowanej przez układ. Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 22

23 PARAMETRY STANU 4. Energia wewnętrzna U, [J] parametr ekstensywny, wielkość konceptualna. Energia wewnętrzna jest to całkowita energia zawarta w układzie pomniejszona o jego energię kinetyczną związaną z ruchem i potencjalną związaną z położeniem całego układu. U E c ( E E ) p k Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 23

24 PARAMETRY STANU W skład energii wewnętrznej wchodzą m.in.: - sumaryczna energia kinetyczna wszelkich chaotycznych ruchów poszczególnych cząsteczek i atomów, - sumaryczna energia stanów elektronowych wszystkich cząsteczek i atomów, - sumaryczna energia potencjalna oddziaływań między wszystkimi cząsteczkami i atomami, - sumaryczna energia jądrowa związana z możliwością przebiegu reakcji jądrowych. Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 24

25 PARAMETRY STANU 5. Entalpia H, [J] parametr ekstensywny, wielkość konceptualna. Entalpia jest pomocniczą wielkością energetyczną układu zaproponowaną przez Gibbsa, której definicja jest następująca: H U pv Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 25

26 PARAMETRY STANU cd. 6. Entropia S, [J/K] parametr ekstensywny Entropia jest to fundamentalny parametr termodynamiczny wprowadzony przez Clausiusa. Entropia ma dwie interpretacje. Klasyczna definicja Clausiusa określa zmianę entropii w różniczkowej przemianie odwracalnej: ds Q T Q - elementarne ciepło wymienione podczas przemiany różniczkowej Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 26

27 Rudolf Clausius Niemiecki fizyk, jeden z twórców klasycznej termodynamiki Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 27

28 PARAMETRY STANU cd. Druga definicja entropii zaproponowana przez Boltzmanna wiąże się ze statystycznym rozkładem poziomów energetycznych cząstek zawartych w układzie. Popularnie, aczkolwiek nie całkiem ściśle, entropia jest określana jako miara nieuporządkowania (chaosu) w układzie. S k ln( ) E E - liczba dostępnych mikrostanów na które może się rozkładać energia wewnętrzna układu k J K - stała Boltzmanna Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 28

29 PARAMETRY STANU cd. Ludwig Boltzmann Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 29

30 PARAMETRY STANU cd. Słynny wzór definiujący entropię został wyryty na jego nagrobku na cmentarzu w Wiedniu Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 30

31 PARAMETRY STANU cd. 7. Energia swobodna A, [J] parametr ekstensywny Energia swobodna, nazywana też energią Helmholtza jest to pochodna wielkość energetyczna określona wzorem: A U TS Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 31

32 PARAMETRY STANU cd. Herman von Helmholtz Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 32

33 PARAMETRY STANU cd. 8. Entalpia swobodna G, [J] parametr ekstensywny Entalpia swobodna, nazywana też energią Gibbsa jest to pochodna wielkość energetyczna określona wzorem: G H TS Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 33

34 PARAMETRY STANU cd. Willard Gibbs Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 34

35 PARAMETRY PRZEMIANY Przemianę termodynamiczną opisują: 1. Ciepło przemiany Q, [J] wielkość ekstensywna. Ciepło przemiany jest to wymieniona między układem a otoczeniem ilość energii chaotycznego (termicznego) ruchu cząstek. Dla przemiany różniczkowej ilość tę oznaczamy przez δq. Powszechnie przyjęta konwencja określa ciepło dostarczone do układu jako dodatnie. Q Q Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 35

36 PARAMETRY PRZEMIANY 2. Praca przemiany W, [J] wielkość ekstensywna. Praca przemiany jest to wymieniona między układem a otoczeniem ilość energii mechanicznej związanej z uporządkowanym ruchem pewnej części układu. Dla przemiany różniczkowej ilość tę oznaczamy przez δw. Istnieją dwie konwencje określające znak pracy. W termodynamice technicznej za dodatnią uważa się pracę wykonaną przez układ na otoczeniu. Przy pracy dodatniej w takiej umowie energię traci układ a zyskuje otoczenie. W termodynamice chemicznej oraz w chemii fizycznej konwencja jest odwrotna. Za dodatnią uważa się tam pracę wykonaną przez otoczenie na układzie. Ja w dalszym układzie będę stosował konwencję pierwszą. W W Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 36

37 PARAMETRY PRZEMIANY Praca przemiany termodynamicznej ma bardzo duże znaczenie w technice cieplnej. Praca jest to uporządkowany sposób wymiany energii między układem a otoczeniem. Praca może być wykonywana na dwa sposoby: objętościowy, gdy układ zwiększa lub zmniejsza swoją objętość przesuwając swoje granice co przy niezerowym ciśnieniu zewnętrznym wywołuje powstanie przesuwającej się siły i wykonanie pracy, elektryczny, gdy układ wywołuje powstanie uporządkowanego ruchu elektronów lub gdy uporządkowany ruch elektronów jest wywoływany przez otoczenie. W dalszym ciągu naszych rozważań będziemy zakładać, że praca ma charakter objętościowy. Przy takim założeniu w przemianie różniczkowej elementarna praca jest określona prostym wzorem: W pdv Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 37

38 PARAMETRY PRZEMIANY Wyprowadzenie wzoru określającego pracę elementarną. p,v dv F=pA dx p,v parametry gazu znajdującego się w cylindrze F siła działająca na tłok i powodująca jego przesunięcie dx różniczkowe przesunięcie tłoka w przemianie A powierzchnia przekroju cylindra i tłoka dv W Adx Fdx padx dx dv pa A dv A pdv Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 38

39 PARAMETRY PRZEMIANY W pdv Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 39

40 PARAMETRY PRZEMIANY cd. 3. Praca techniczna W t, [J] wielkość ekstensywna. Praca techniczna jest pomocniczą wielkością opisującą przemianę termodynamiczną określoną za pomocą wzoru W t W ( pv) W ( p2v2 p1v 1) Dla przemiany różniczkowej powyższy wzór ma postać: W t W d( pv) pdv ( pdv Vdp) Vdp W Vdp t Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 40

41 PARAMETRY PRZEMIANY cd. 4. Pojemność cieplna układu podczas przemiany C, [J/K] Pojemność cieplna układu podczas przemiany jest ściśle zdefiniowana tylko dla przemian różniczkowych. Zakładając, że w danej przemianie wymienione ciepło wynosi δq a przyrost temperatury dt, pojemność cieplną określa się jako: Q Q C lim dt T 0 T W przemianie całkowej pojemność cieplna może być stała ale też może się zmieniać od wartości początkowej do końcowej. Należy podkreślić, że pojemność cieplna nie jest funkcją stanu wobec tego dla tego samego układu może przybierać różne wartości w zależności od rodzaju danej przemiany. W pewnych szczególnych warunkach, które rozważymy później, pojemność cieplna może stać się funkcją stanu. Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 41

42 PARAMETRY PRZEMIANY cd. Znajomość pojemności cieplnej układu jest ważna, gdyż pozwala na obliczenie ciepła przemiany. Otóż z definicji pojemności cieplnej wynika wzór: Q CdT Dla dowolnej przemiany (nieróżniczkowej) całkowite jej ciepło Q można otrzymać dodając ciepła różniczkowe i przechodząc do granicy. Otrzymujemy zatem wzór: Q CdT CdT T T 2 1 Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 42

43 To tyle na dzisiaj Dziękuję Państwu za uwagę Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 43

Fizykochemiczne podstawy inżynierii procesowej

Fizykochemiczne podstawy inżynierii procesowej Fizykochemiczne podstawy inżynierii procesowej Wykład I - 1 Sprawy formalne 2 Fizykochemiczne podstawy inżynierii procesowej Sprawy formalne: Forma: Wykład w postaci prezentacji komputerowych Przeznaczenie:

Bardziej szczegółowo

Fizykochemiczne podstawy inżynierii procesowej

Fizykochemiczne podstawy inżynierii procesowej Fizykochemiczne podstawy inżynierii procesowej Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste przemiany termodynamiczne PRZYPOMNIENIE Z OSTATNIEGO

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

TERMODYNAMIKA FENOMENOLOGICZNA

TERMODYNAMIKA FENOMENOLOGICZNA TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N

Bardziej szczegółowo

Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron

Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron Elementy termodynamiki i wprowadzenie do zespołów statystycznych Katarzyna Sznajd-Weron Wielkości makroskopowe - termodynamika Termodynamika - metoda fenomenologiczna Fenomenologia w fizyce: widzimy jak

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach

Bardziej szczegółowo

Termodynamika (1) Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. poniedziałek, 23 października 2017

Termodynamika (1) Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. poniedziałek, 23 października 2017 Wykład 1 Termodynamika (1) Bogdan Walkowiak Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka Biofizyka 1 Zaliczenie Aby zaliczyć przedmiot należy: uzyskać pozytywną ocenę z laboratorium

Bardziej szczegółowo

TERMODYNAMIKA I TERMOCHEMIA

TERMODYNAMIKA I TERMOCHEMIA TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami

Bardziej szczegółowo

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,

Bardziej szczegółowo

Wykład 3. Entropia i potencjały termodynamiczne

Wykład 3. Entropia i potencjały termodynamiczne Wykład 3 Entropia i potencjały termodynamiczne dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

Elementy termodynamiki

Elementy termodynamiki Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 5 stycznia 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 5 stycznia 2019 1 / 27 Wielkości

Bardziej szczegółowo

Miejsce biofizyki we współczesnej nauce. Obszary zainteresowania biofizyki. - Powrót do współczesności. - obiekty mikroświata.

Miejsce biofizyki we współczesnej nauce. Obszary zainteresowania biofizyki. - Powrót do współczesności. - obiekty mikroświata. Zakład Biofizyki Miejsce biofizyki we współczesnej nauce - trochę historii - Powrót do współczesności Obszary zainteresowania biofizyki - ekosystemy - obiekty makroświata - obiekty mikroświata - język

Bardziej szczegółowo

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,

Bardziej szczegółowo

S ścianki naczynia w jednostce czasu przekazywany

S ścianki naczynia w jednostce czasu przekazywany FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Janusz Brzychczyk, Instytut Fizyki UJ Związek pomiędzy równaniem

Bardziej szczegółowo

Krótki przegląd termodynamiki

Krótki przegląd termodynamiki Wykład I Przejścia fazowe 1 Krótki przegląd termodynamiki Termodynamika fenomenologiczna oferuje makroskopowy opis układów statystycznych w stanie równowagi termodynamicznej bądź w stanach jemu bliskich.

Bardziej szczegółowo

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36 Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną

Bardziej szczegółowo

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Chemia Fizyczna Technologia Chemiczna II rok Wykład 1 Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Kontakt,informacja i konsultacje Chemia A ; pokój 307 Telefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl

Bardziej szczegółowo

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Zagadka na początek wykładu Diagram fazowy wody w powiększeniu, problem metastabilności aktualny (Nature, 2011) Niższa temperatura topnienia

Bardziej szczegółowo

Zasady termodynamiki

Zasady termodynamiki Zasady termodynamiki Energia wewnętrzna (U) Opis mikroskopowy: Jest to suma średnich energii kinetycznych oraz energii oddziaływań międzycząsteczkowych i wewnątrzcząsteczkowych. Opis makroskopowy: Jest

Bardziej szczegółowo

II Zasada Termodynamiki c.d.

II Zasada Termodynamiki c.d. Wykład 5 II Zasada Termodynamiki c.d. Pojęcie entropii i temperatury absolutnej II zasada termodynamiki dla procesów nierównowagowych Równania Gibbsa dla procesów quasistatycznych Równania Eulera Relacje

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,

Bardziej szczegółowo

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez

Bardziej szczegółowo

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje

Bardziej szczegółowo

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Prawo zachowania energii: ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Ogólny zasób energii jest niezmienny. Jeżeli zwiększa się zasób energii wybranego układu, to wyłącznie kosztem

Bardziej szczegółowo

Przegląd termodynamiki II

Przegląd termodynamiki II Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy

Bardziej szczegółowo

Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna

Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna Wykład 8 i 9 Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW)

Bardziej szczegółowo

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),

Bardziej szczegółowo

Fizyka Termodynamika Chemia reakcje chemiczne

Fizyka Termodynamika Chemia reakcje chemiczne Termodynamika zajmuje się badaniem efektów energetycznych towarzyszących procesom fizykochemicznym i chemicznym. Termodynamika umożliwia: 1. Sporządzanie bilansów energetycznych dla reakcji chemicznych

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

Podstawowe pojęcia 1

Podstawowe pojęcia 1 Tomasz Lubera Podstawowe pojęcia 1 Układ część przestrzeni wyodrębniona myślowo lub fizycznie z otoczenia Układ izolowany niewymieniający masy i energii z otoczeniem Układ zamknięty wymieniający tylko

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Termodynamika techniczna Rok akademicki: 2016/2017 Kod: CCE-1-602-s Punkty ECTS: 3 Wydział: Inżynierii Materiałowej i Ceramiki Kierunek: Ceramika Specjalność: - Poziom studiów: Studia I stopnia

Bardziej szczegółowo

Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Przedmiot A związany ze specjalnością (0310-CH-S2-001) Nazwa wariantu modułu: Termodynamika

Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Przedmiot A związany ze specjalnością (0310-CH-S2-001) Nazwa wariantu modułu: Termodynamika Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Przedmiot A związany ze specjalnością (0310-CH-S2-001) Nazwa wariantu modułu: Termodynamika 1. Informacje

Bardziej szczegółowo

Elementy termodynamiki

Elementy termodynamiki Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 11 marca 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 11 marca 2019 1 / 37 Dwa poziomy

Bardziej szczegółowo

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej. 1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada

Bardziej szczegółowo

Przemiany termodynamiczne

Przemiany termodynamiczne Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość

Bardziej szczegółowo

TERMOCHEMIA. TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki.

TERMOCHEMIA. TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki. 1 TERMOCHEMIA TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki. TERMODYNAMIKA: opis układu w stanach o ustalonych i niezmiennych w

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA

TERMODYNAMIKA PROCESOWA (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: TERMODYNAMIKA PROCESOWA 2. Kod przedmiotu: 3. Karta przedmiotu ważna od roku akademickiego:2011/2012 4. Forma kształcenia: studia pierwszego stopnia

Bardziej szczegółowo

Rok akademicki: 2012/2013 Kod: RBM s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2012/2013 Kod: RBM s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Termodynamika Rok akademicki: 2012/2013 Kod: RBM-1-303-s Punkty ECTS: 5 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Mechanika i Budowa Maszyn Specjalność: Poziom studiów: Studia

Bardziej szczegółowo

Termodynamika (oceanotechnika; studia stacjonarne); rok akad. 2015/2016 INFORMACJE ORGANIZACYJNE

Termodynamika (oceanotechnika; studia stacjonarne); rok akad. 2015/2016 INFORMACJE ORGANIZACYJNE Termodynamika (oceanotechnika; studia stacjonarne); rok akad. 2015/2016 INFORMACJE ORGANIZACYJNE 1. Wykłady i ćwiczenia poprowadzi prof. dr hab. inż. Leszek Malinowski; pok. 420; Zespół Maszyn Cieplnych,

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Kinetyczna teoria gazów AZ DOSKONAŁY Liczba rozważanych cząsteczek gazu jest bardzo duża. Średnia odległość między cząsteczkami jest znacznie większa niż ich rozmiar. Cząsteczki

Bardziej szczegółowo

Stany równowagi i zjawiska transportu w układach termodynamicznych

Stany równowagi i zjawiska transportu w układach termodynamicznych Stany równowagi i zjawiska transportu w układach termodynamicznych dr hab. Jerzy Nakielski Katedra Biofizyki i Biologii Komórki plan wykładu: 1. Funkcje stanu dla termodynamicznego układu otwartego 2.

Bardziej szczegółowo

Termodynamika Część 3

Termodynamika Część 3 Termodynamika Część 3 Formy różniczkowe w termodynamice Praca i ciepło Pierwsza zasada termodynamiki Pojemność cieplna i ciepło właściwe Ciepło właściwe gazów doskonałych Ciepło właściwe ciała stałego

Bardziej szczegółowo

Termodynamika cz.1. Ziarnista budowa materii. Jak wielka jest liczba Avogadro? Podstawowe definicje. Notes. Notes. Notes. Notes

Termodynamika cz.1. Ziarnista budowa materii. Jak wielka jest liczba Avogadro? Podstawowe definicje. Notes. Notes. Notes. Notes Termodynamika cz.1 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Termodynamika cz.1 Ziarnista budowa materii Ziarnista budowa

Bardziej szczegółowo

Kryteria samorzutności procesów fizyko-chemicznych

Kryteria samorzutności procesów fizyko-chemicznych Kryteria samorzutności procesów fizyko-chemicznych 2.5.1. Samorzutność i równowaga 2.5.2. Sens i pojęcie entalpii swobodnej 2.5.3. Sens i pojęcie energii swobodnej 2.5.4. Obliczanie zmian entalpii oraz

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Podstawy termodynamiki Rok akademicki: 2015/2016 Kod: MIC-1-206-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Ciepła Specjalność: - Poziom studiów:

Bardziej szczegółowo

Termodynamika (inżynieria bezpieczeństwa; studia stacjonarne); rok akad. 2016/2017 INFORMACJE ORGANIZACYJNE

Termodynamika (inżynieria bezpieczeństwa; studia stacjonarne); rok akad. 2016/2017 INFORMACJE ORGANIZACYJNE Termodynamika (inżynieria bezpieczeństwa; studia stacjonarne); rok akad. 2016/2017 INFORMACJE ORGANIZACYJNE 1. Wykłady i ćwiczenia poprowadzi prof. dr hab. inż. Leszek Malinowski; pok. 420; Zespół Maszyn

Bardziej szczegółowo

Zespół kanoniczny N,V, T. acc o n =min {1, exp [ U n U o ] }

Zespół kanoniczny N,V, T. acc o n =min {1, exp [ U n U o ] } Zespół kanoniczny Zespół kanoniczny N,V, T acc o n =min {1, exp [ U n U o ] } Zespół izobaryczno-izotermiczny Zespół izobaryczno-izotermiczny N P T acc o n =min {1, exp [ U n U o ] } acc o n =min {1, exp[

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5 Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Czy przejście szkliste jest termodynamicznym przejściem fazowym?

Bardziej szczegółowo

Termochemia elementy termodynamiki

Termochemia elementy termodynamiki Termochemia elementy termodynamiki Termochemia nauka zajmująca się badaniem efektów cieplnych reakcji chemicznych Zasada zachowania energii Energia całkowita jest sumą energii kinetycznej i potencjalnej.

Bardziej szczegółowo

Wykład 3. Zerowa i pierwsza zasada termodynamiki:

Wykład 3. Zerowa i pierwsza zasada termodynamiki: Wykład 3 Zerowa i pierwsza zasada termodynamiki: Termodynamiczne funkcje stanu. Parametry extensywne i intensywne. Pojęcie równowagi termodynamicznej. Tranzytywność stanu równowagi i pojęcie temperatury

Bardziej szczegółowo

Termodynamiczny opis przejść fazowych pierwszego rodzaju

Termodynamiczny opis przejść fazowych pierwszego rodzaju Wykład II Przejścia fazowe 1 Termodynamiczny opis przejść fazowych pierwszego rodzaju Woda występuje w trzech stanach skupienia jako ciecz, jako gaz, czyli para wodna, oraz jako ciało stałe, a więc lód.

Bardziej szczegółowo

Maszyny cieplne substancja robocza

Maszyny cieplne substancja robocza Maszyny cieplne cel: zamiana ciepła na pracę (i odwrotnie) pracują cyklicznie pracę wykonuje substancja robocza (np.gaz, mieszanka paliwa i powietrza) która: pochłania ciepło dostarczane ze źródła ciepła

Bardziej szczegółowo

Warunki izochoryczno-izotermiczne

Warunki izochoryczno-izotermiczne WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne

Bardziej szczegółowo

Rodzaje pracy mechanicznej

Rodzaje pracy mechanicznej Rodzaje pracy mechanicznej. Praca bezwzględna Jest to praca przekazana przez czynnik termodynamiczny na wewnętrzną stronę denka tłoka. Podczas beztarciowej przemiany kwazystatycznej praca przekazana oczeniu

Bardziej szczegółowo

Wykład Praca (1.1) c Całka liniowa definiuje pracę wykonaną w kierunku działania siły. Reinhard Kulessa 1

Wykład Praca (1.1) c Całka liniowa definiuje pracę wykonaną w kierunku działania siły. Reinhard Kulessa 1 1.6 Praca Wykład 2 Praca zdefiniowana jest jako ilość energii dostarczanej przez siłę działającą na pewnej drodze i matematycznie jest zapisana jako: W = c r F r ds (1.1) ds F θ c Całka liniowa definiuje

Bardziej szczegółowo

Co ma piekarz do matematyki?

Co ma piekarz do matematyki? Instytut Matematyki i Informatyki Politechnika Wrocławska Dolnośląski Festiwal Nauki Wrzesień 2009 x x (x 1, x 2 ) x (x 1, x 2 ) (x 1, x 2, x 3 ) x (x 1, x 2 ) (x 1, x 2, x 3 ) (x 1, x 2, x 3, x 4 ). x

Bardziej szczegółowo

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak

Bardziej szczegółowo

Wykład Temperatura termodynamiczna 6.4 Nierówno

Wykład Temperatura termodynamiczna 6.4 Nierówno ykład 8 6.3 emperatura termodynamiczna 6.4 Nierówność Clausiusa 6.5 Makroskopowa definicja entropii oraz zasada wzrostu entropii 6.6 Entropia dla czystej substancji 6.8 Cykl Carnota 6.7 Entropia dla gazu

Bardziej szczegółowo

Entropia - obliczanie. Podsumowanie

Entropia - obliczanie. Podsumowanie Chem. Fiz. CH II/4 Entropia - obliczanie. Podsumowanie 2 ) ( 2 V d C S S S 2 ) ( 2 P d C S S S S k S p S 2 2 ln ln V V R C S V + 2 2 ln ln P P R C S P w izobarze: Funkcja stanu! w izochorze: dla gazu doskonałego:

Bardziej szczegółowo

Biofizyka. wykład: dr hab. Jerzy Nakielski. Katedra Biofizyki i Morfogenezy Roślin

Biofizyka. wykład: dr hab. Jerzy Nakielski. Katedra Biofizyki i Morfogenezy Roślin Biofizyka wykład: dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Biofizyka - wykłady Biotechnologia III rok Tematyka (15 godz.): dr hab. Jerzy Nakielski dr Joanna Szymanowska-Pułka dr

Bardziej szczegółowo

Wykład 7: Przekazywanie energii elementy termodynamiki

Wykład 7: Przekazywanie energii elementy termodynamiki Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne

Bardziej szczegółowo

Wykład 4. Przypomnienie z poprzedniego wykładu

Wykład 4. Przypomnienie z poprzedniego wykładu Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika

Bardziej szczegółowo

Dr Andrzej Bąk Wykład KRIOGENIKA

Dr Andrzej Bąk Wykład KRIOGENIKA Dr Andrzej Bąk Wykład KRIOGENIKA KRIOGENIKA ZASTOSOWANIA TECHNICZNE 1. Droga do zera bezwzględnego rys historyczny 2. Termometria niskich temperatur termometry gazowe, ciśnieniowe, oporowe, magnetyczne,

Bardziej szczegółowo

Rok akademicki: 2017/2018 Kod: WIN s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2017/2018 Kod: WIN s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Termodynamika Rok akademicki: 2017/2018 Kod: WIN-1-404-s Punkty ECTS: 6 Wydział: Wiertnictwa, Nafty i Gazu Kierunek: Inżynieria Naftowa i Gazownicza Specjalność: - Poziom studiów: Studia

Bardziej szczegółowo

Termodynamika. Energia wewnętrzna ciał

Termodynamika. Energia wewnętrzna ciał ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy

Bardziej szczegółowo

Rok akademicki: 2016/2017 Kod: WIN s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2016/2017 Kod: WIN s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Termodynamika Rok akademicki: 2016/2017 Kod: WIN-1-404-s Punkty ECTS: 6 Wydział: Wiertnictwa, Nafty i Gazu Kierunek: Inżynieria Naftowa i Gazownicza Specjalność: Poziom studiów: Studia I

Bardziej szczegółowo

Plan wykładu. Termodynamika cz.1. Jak wielka jest liczba Avogadro? Ziarnista budowa materii

Plan wykładu. Termodynamika cz.1. Jak wielka jest liczba Avogadro? Ziarnista budowa materii Plan wykładu Termodynamika cz1 dr inż Ireneusz Owczarek CMF PŁ ireneuszowczarek@plodzpl http://cmfplodzpl/iowczarek 2012/13 1 Ziarnista budowa materii Liczba Avogadro 2 Temperatura termodynamiczna 3 Sposoby

Bardziej szczegółowo

Plan wykładu. Termodynamika cz.1. Jak wielka jest liczba Avogadro? Ziarnista budowa materii

Plan wykładu. Termodynamika cz.1. Jak wielka jest liczba Avogadro? Ziarnista budowa materii Plan wykładu Termodynamika cz1 dr inż Ireneusz Owczarek CMF PŁ ireneuszowczarek@plodzpl http://cmfplodzpl/iowczarek 2013/14 1 Ziarnista budowa materii Liczba Avogadro 2 Pomiary temperatury Temperatura

Bardziej szczegółowo

Termodynamiczny opis układu

Termodynamiczny opis układu ELEMENTY FIZYKI STATYSTYCZNEJ Przedmiot badań fizyki statystycznej układy składające się z olbrzymiej ilości cząstek (ujawniają się specyficzne prawa statystyczne). Termodynamiczny opis układu Opis termodynamiczny

Bardziej szczegółowo

Teoria kinetyczno cząsteczkowa

Teoria kinetyczno cząsteczkowa Teoria kinetyczno cząsteczkowa Założenie Gaz składa się z wielkiej liczby cząstek znajdujących się w ciągłym, chaotycznym ruchu i doznających zderzeń (dwucząstkowych) Cel: Wyprowadzić obserwowane (makroskopowe)

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA I TECHNICZNA

TERMODYNAMIKA PROCESOWA I TECHNICZNA ERMODYNAMIKA PROCESOWA I ECHNICZNA Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste rzemiany termodynamiczne Prof. Antoni Kozioł, Wydział Chemiczny

Bardziej szczegółowo

Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne

Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne Janusz Brzychczyk, Instytut Fizyki UJ Postulat Nernsta (1906):

Bardziej szczegółowo

Termodynamika. Cel. Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa. William Thomson 1. Baron Kelvin

Termodynamika. Cel. Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa. William Thomson 1. Baron Kelvin Cel Termodynamika Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa Nicolas Léonard Sadi Carnot 1796 1832 Rudolf Clausius 1822 1888 William Thomson 1. Baron Kelvin 1824 1907 i inni...

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA

TERMODYNAMIKA PROCESOWA TERMODYNAMIKA PROCESOWA Wykład III Podstawy termodynamiki nierównowagowej Prof. Antoni Kozioł Wydział Chemiczny Politechniki Wrocławskiej Uwagi ogólne Większość zagadnień związanych z przemianami różnych

Bardziej szczegółowo

Wykład z Termodynamiki II semestr r. ak. 2009/2010

Wykład z Termodynamiki II semestr r. ak. 2009/2010 Wykład z Termodynamiki II semestr r. ak. 2009/2010 Literatura do wykładu 1. F. Reif - "Fizyka Statystyczna- PWN 1971. 2. K. Zalewski, - "Wykłady z termodynamiki fenomenologicznej i statystycznej- PWN 1978.

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Transport Studia I stopnia

Karta (sylabus) modułu/przedmiotu Transport Studia I stopnia Karta (sylabus) modułu/przedmiotu Transport Studia I stopnia Przedmiot: Termodynamika Rodzaj przedmiotu: Podstawowy/obowiązkowy Kod przedmiotu: TR 1 N 0 3 30-0_1 Rok: II Semestr: 3 Forma studiów: Studia

Bardziej szczegółowo

PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.

PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. Pracę oznaczamy literą W Pracę obliczamy ze wzoru: W = F s W praca;

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/2018 I. Wymagania przekrojowe. Uczeń: 1) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych lub blokowych informacje kluczowe dla

Bardziej szczegółowo

Wykład 14. Termodynamika gazu fotnonowego

Wykład 14. Termodynamika gazu fotnonowego Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

Termodynamika materiałów

Termodynamika materiałów Termodynamika materiałów Plan wykładu 1. Funkcje termodynamiczne, pojemność cieplna. 2. Warunki równowagi termodynamicznej w układach jedno- i wieloskładnikowych, pojęcie potencjału chemicznego. 3. Modele

Bardziej szczegółowo

BIOTERMODYNAMIKA. PODSTAWY BIOENERGETYKI I TERMOKINETYKI

BIOTERMODYNAMIKA. PODSTAWY BIOENERGETYKI I TERMOKINETYKI BIOTERMODYNAMIKA. PODSTAWY BIOENERGETYKI I TERMOKINETYKI Rozdział 7 BIOTERMODYNAMIKA 7.1. Wstęp Feliks Jaroszyk Biotermodynamika jest dyscypliną naukową, wykorzystującą rozważania termodynamiki fenomenologicznej

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: 1. Ma podstawową wiedzę i umiejętności z zakresu matematyki i fizyki.

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: 1. Ma podstawową wiedzę i umiejętności z zakresu matematyki i fizyki. KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Termodynamika techniczna 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: pierwszego stopnia 4. ROK/ SEMESTR STUDIÓW: rok I / semestr 2 5. LICZBA PUNKTÓW

Bardziej szczegółowo

WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ

WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ Podstawowe pojęcia w termodynamice technicznej 1/1 WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ 1. WIADOMOŚCI WSTĘPNE 1.1. Przedmiot i zakres termodynamiki technicznej Termodynamika jest działem fizyki,

Bardziej szczegółowo

Wykład 5. Kalorymetria i przejścia fazowe

Wykład 5. Kalorymetria i przejścia fazowe Wykład 5 Kalorymetria Ciepło przemian fazowych Bilans cieplny Proces kwazistatyczny Procesy odwracalne i nieodwracalne Praca Energia wewnętrzna Podstawowe przemiany gazowe W. Dominik Wydział Fizyki UW

Bardziej szczegółowo

Rozkłady statyczne Maxwella Boltzmana. Konrad Jachyra I IM gr V lab

Rozkłady statyczne Maxwella Boltzmana. Konrad Jachyra I IM gr V lab Rozkłady statyczne Maxwella Boltzmana Konrad Jachyra I IM gr V lab MODEL STATYCZNY Model statystyczny hipoteza lub układ hipotez, sformułowanych w sposób matematyczny (odpowiednio w postaci równania lub

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział

Uniwersytet Śląski w Katowicach str. 1 Wydział Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Technologia chemiczna, pierwszy Sylabus modułu: Termodynamika techniczna i chemiczna () Nazwa wariantu modułu (opcjonalnie): 1. Informacje

Bardziej szczegółowo

Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1

Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1 Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący 1. Obliczyć zmianę entalpii dla izobarycznej (p = 1 bar) reakcji chemicznej zapoczątkowanej

Bardziej szczegółowo

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska UKŁADY RÓWNOWAGI FAZOWEJ Równowaga termodynamiczna pojęcie stosowane w termodynamice. Oznacza stan, w którym makroskopowe

Bardziej szczegółowo

FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania)

FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania) FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania) Temat Proponowana liczba godzin POMIARY I RUCH 12 Wymagania szczegółowe, przekrojowe i doświadczalne z podstawy

Bardziej szczegółowo

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych. TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:

Bardziej szczegółowo

Termodynamika I Thermodynamics I

Termodynamika I Thermodynamics I KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Termodynamika I Thermodynamics I A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają

Bardziej szczegółowo

KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE

KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE 1 3 4 6 7 8 8.0 Kod przedmiotu Nazwa przedmiotu Jednostka Punkty ECTS Język wykładowy Poziom przedmiotu Symbole efektów kształcenia Symbole efektów dla obszaru kształcenia Symbole efektów kierunkowych

Bardziej szczegółowo

Występują fluktuacje w stanie równowagi Proces przejścia do stanu równowagi jest nieodwracalny proces powrotny jest bardzo mało prawdopodobny.

Występują fluktuacje w stanie równowagi Proces przejścia do stanu równowagi jest nieodwracalny proces powrotny jest bardzo mało prawdopodobny. Wykład 14: Fizyka statystyczna Zajmuje sie układami makroskopowymi (typowy układ makroskopowy składa się z ok. 10 25 atomów), czyli ok 10 25 równań Newtona? Musimy dopasować inne pojęcia do opisu takich

Bardziej szczegółowo