Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download ""

Transkrypt

1

2

3

4

5

6 1. Wektory E i B są zawsze prostopadłe do kierunku rozchodzenia się fali. 2. Wektor natężenia pola elektrycznego jest zawsze prostopadły do wektora indukcja pola magnetycznego. 3. Iloczyn wektorowy E x B zawsze wyznacza kierunek rozchodzenia się fali. 4. Natężenie pola elektrycznego i indukcja pola magnetycznego zmieniają się zawsze sinusoidalnie

7 Rozchodzenie się fali elektromagnetycznej opis jakościowy Na podstawie wprowadzonych równań Maxwell wykazał, że wzajemnie sprzężone pola elektryczne i magnetyczne tworzą falę poprzeczną i obliczył prędkość fali. W fali elekromagnetycznej wektory E i B są prostopadłe do siebie i do kierunku rozchodzenia się fali. Dla fali rozchodzącej się wzdłuż osi x zależność natężenia pola B i E od czasu i położenia ma postać następującą: E m - amplituda E B m - amplituda B częstość kołowa k liczba falowa

8 Wszystkie fale elektromagnetyczne, w tym również światło widzialne, rozchodzą się w próżni z taką samą prędkością prędkość fali ~ m/s Prędkość fali c jest związana z amplitudami E m i B m stosunek amplitud wartości E i B są zawsze, w każdej chwili i w każdym punkcie, związane ze sobą zależnością stosunek wartości

9 Falę elektromagnetyczną możemy przedstawić podając jej kierunek rozchodzenia się (promień) albo czoła fali (umowne powierzchnie, na których wartość natężenia pola elektrycznego jest taka sama), albo obie te charakterystyki równocześnie. Odległość pomiędzy dwoma czołami fali jest równa jednej długości fali l (= 2p/k). (Fale rozchodzące się w przybliżeniu w tym samym kierunku tworzą wiązkę, na przykład wiązkę laserową).

10 Rozchodzenie się fali elektromagnetycznej opis ilościowy Środek prostokąta o bokach dx i h, nakreślonego linią przerywaną na płaszczyźnie xy, pokrywa się z punktem P na osi x. W miarę jak fala elektromagnetyczna przemieszcza się w prawo, strumień magnetyczny F B przenikający przez prostokąt zmienia się i zgodnie z prawem indukcji Faradaya w obszarze obejmowanym przez prostokąt pojawia się indukowane pole elektryczne.

11 E dl db dt E dl ( E de) h Eh hde Strumień pola magnetycznego przechodzący przez powierzchnię prostokąta (płaszczyzna xz) wynosi: F B Bhdx B jest długością wektora B w prostokącie

12 Różniczkowanie po czasie daje de dx db dt Na podstawie prawa Faradaya stąd hde hdx B dt de dx db dt E x B t

13 E i B są funkcjami dwóch zmiennych, x oraz t. Jednak przy obliczaniu de/dx zakładamy, że t jest stałe oraz przy obliczaniu db/dt zakładamy, że x jest stałe. Znak minus w równaniu jest prawidłowy i konieczny, bo E rośnie wraz z x w prostokącie, a B maleje wraz z czasem t. k E B m m k c

14 prawo Ampera B dl 0 0 de dt Całkując to równanie po obwodzie prostokąta o bokach h i dx w płaszczyźnie xy otrzymujemy: Bdl B dbh Bh hdb Strumień pola elektrycznego przechodzący przez ten prostokąt wynosi: E E hdx Różniczkując powyższe po czasie otrzymujemy: d E dt hdx de dt B 0 0 x E t

15 stąd kxt E coskxt kbmcos 0 0 m E B m m k 0 0 Eliminując E m /B m otrzymamy: c c p 10 T m / A[ C / N m ] s m c - prędkość światła w teorii elektromagnetyzmu. Maxwell przewidział ten związek przed odkryciem fal radiowych!

16 Przepływ energii Wektor Poyntinga W danej chwili energia dw zawarta w pudełku o objętości s. dx przenoszona przez falę elektromagnetyczną wynosi dw = dw E + dw B = (u E + u B )s. dx dw 1 0E B 2 sdx u E - gęstość pola E u B - gęstość pola B Wiemy, że E cb dw 1 0EcB 2 1 2μ B E c sdx 2 0 0c 1 2 c 0 0 EBsdx

17 oraz dt dx c c 1 Szybkość przepływu energii takiej fali przez jednostkową powierzchnię opisana jest przez wektor S, nazywany wektorem Poyntinga (od nazwiska fizyka Johna Henry'ego Poyntinga ( ), który pierwszy badał jego właściwości). Energia przepływająca przez jednostkową powierzchnię w jednostkowym czasie dw dt s EBsdx dx μ0cs c 1 μ 0 EB [ W 2 m ] S 1 0 E B S dw dts Kierunek wektora Poyntinga S fali elektromagnetycznej w każdym punkcie jest kierunkiem rozchodzenia się fali i kierunkiem przepływu energii w tym punkcie.

18 Polaryzacja Światło spolaryzowane Składowa wektora natężenia pola elektrycznego równoległa do kierunku polaryzacji jest przepuszczana przez folię polaryzującą (polaroid); składowa prostopadła do tego kierunku jest absorbowana.

19 Natężenie światła przechodzącego przez polaryzator Jeżeli wypadkowa składowa z zostaje zaabsorbowana, to początkowe natężenie światła padającego na płytkę I 0 zmniejszy się do połowy po przejściu przez polaryzator. Natężenie światła po przejściu przez polaryzator Prawo Malusa:

20 Odbicie i załamanie Na czarno-białej fotografii fala świetlna rozchodzi się wzdłuż linii prostych. Wąska wiązka światła (wiązka padająca) rozchodząca się w powietrzu na prawo w dół, dociera pod pewnym kątem do płaskiej powierzchni płytki szklanej. Część tej wiązki ulega odbiciu od powierzchni płytki, tworząc wiązkę odbitą skierowaną w prawo do góry. Pozostała część światła z wiązki padającej przechodzi przez powierzchnię płytki i rozchodzi się w szkle, tworząc wiązkę skierowaną na prawo w dół.

21 Odbicie i załamanie Załamanie światła przy przejściu z ośrodka o współczynniku załamania światła n 1 do ośrodka o współczynniku załamania światła n 2. a) Wiązka światła nie ulega odchyleniu, gdy n 2 = n 1 światło rozchodzi się wówczas bez odchylenia od pierwotnego kierunku (wzdłuż linii kropkowanej), zgodnego z kierunkiem promienia padającego. b). Wiązka załamuje się w kierunku do normalnej wtedy, gdy n 2 > n 1 w kierunku od normalnej c). Wiązka załamuje się w kierunku od normalnej wtedy, gdy n 2 < n 1

22 Odbicie i załamanie Zjawiskami odbicia i załamania rządzą dwa prawa Prawo odbicia: Promień odbity leży w płaszczyźnie padania, a kąt odbicia jest równy kątowi padania. Prawo załamania: Promień załamany leży w płaszczyźnie padania, a kąt załamania q 2 jest związany z kątem padania q 1 zależnością n 1 i n 2 współczynniki załamania światła

23 Odbicie i załamanie Współczynniki załamania światła n dla wybranych ośrodków optycznych (dla żółtej linii D sodu o długości fali l = 589 nm)

24 Odbicie i załamanie 1. Jeżeli n 1 jest równe n 2, to q 2 jest równe q 1. W takim przypadku załamanie nie następuje, promień nie zostaje odchylony od swojego pierwotnego kierunku, 2. Jeżeli n 2 jest większe od n 1, to q 2 jest mniejsze od q 1. W takim przypadku po załamaniu promień jest odchylany od swojego pierwotnego kierunku (od kierunku promienia padającego) w stronę do normalnej, 3. Jeżeli n 2 jest mniejsze od n 1, to q 2 jest większe od q 1. W takim przypadku po załamaniu promień jest odchylany od swojego pierwotnego kierunku (od kierunku promienia padającego) w stronę od normalnej,

25 Rozszczepienie światła Na wiązkę światła białego składają się wszystkie (albo nieomal wszystkie) barwy z zakresu widzialnego widma, z jednakowym w przybliżeniu natężeniem. Wiązkę taką widzimy jako białą bez wyróżnienia barw składowych. a). Wiązka światła białego pada od strony powietrza na powierzchnię graniczną powietrze-szkło. W wiązce załamanej pokazane zostały tylko skrajne składowe wiązki światła białego niebieska i czerwona. Składowa niebieska jest odchylana silniej, dlatego też jej kąt załamania q 2n jest mniejszy niż kąt załamania składowej czerwonej q 2c. b). Wiązka światła białego pada od strony szkła na powierzchnię graniczną szklł-powietrze. Składowa niebieska jest odchylna silniej niż składowa czerwona, ale teraz kąt q 2n j est większy od kata q 2c.

26 Rozszczepienie swiatła Rozdzielenie barw można zwiększyć, używając na przykład pryzmatu szklanego o trójkątnym przekroju poprzecznym. Rozszczepienie na pierwszej powierzchni załamującej zostaje następnie zwiększone przez rozszczepienie na drugiej powierzchni,

27 Rozszczepienie światła a). Tęcza ma zawsze kształt kolistego łuku utworzonego wokół kierunku, w którym patrzyłbyś wtedy, gdybyś spoglądał prosto od strony Słońca. W zwykłych warunkach ogląda się zazwyczaj tylko niezbyt długi fragment łuku. b). Rozdzielanie barw w wyniku załamania światła przy wnikaniu i wychodzeniu z kropli deszczu prowadzi do powiania tęczy. Na rysunku zilustrowano sytuację, w której Słońce jest na horyzoncie (promienie słoneczne są wówczas poziomej. Pokazane są kierunki promieni niebieskich i czerwonych z dwóch kropli. Nd obserwowane promienie niebieskie i czerwone składa się załamanie światła w wielu innych kroplach (i to samo dotyczy innych barw- pośrednich)

28 Zadanie Na rysunku wiązka światła monochromatycznego ulega odbiciu i załamaniu w punkcie A na powierzchni granicznej między ośrodkiem 1 o współczynniku załamania światła n 1 =1.33 i ośrodkiem 2 o współczynniku n 2 = Promień padający tworzy z powierzchnią graniczną kąt 50. Jaki jest kąt odbicia w punkcie A? Jaki jest w tym punkcie kąt załamania?

29 Całkowite wewnętrzne odbicie Całkowite wewnętrzne odbicie światła wysyłanego z punktowego źródła światła S umieszczonego w szkle zachodzi dla wszystkich kątów większych od kąta granicznego q gr. Przy kącie granicznym promień załamany ślizga się po powierzchni granicznej szkło-powietrze

30 Polaryzacja przy odbiciu Rozchodzący się w powietrzu promień światła niespolaryzowanego pada na powierzchnię szklaną pod kątem Brewstera q B. Pole elektryczne fali wzdłuż promienia zostało rozłożone na składowe: prostopadłą do płaszczyzny kartki (płaszczyzna padania, odbicia i załamania) i równoległą do płaszczyzny kartki. Światło odbite zawiera tylko składowe prostopadłe i wobec tego jest spolaryzowane w tym kierunku. Światło załamane zawiera pierwotne składowe równoległe do płaszczyzny kartki, a także składowe prostopadłe o mniejszym natężeniu; to światło jest częściowo spolaryzowane

31 Prawo Brewstera Dla światła padającego pod kątem Brewstera q B promień odbity i promień załamany są wzajemnie do siebie prostopadłe. Kąt odbicia jest równy q B, a kąt załamania q Z, zatem otrzymujemy Kąty łączy również Ostatecznie

32 OBRAZY Obraz rzeczywisty Obraz pozorny MIRAŻ

33 Zwierciadła płaskie Punktowe źródło światła P, nazywane przedmiotem, w odległości p od płaskiego zwierciadła. Promienie świetlne wychodzące z punktu P po osiągnięciu powierzchni zwierciadła ulegają odbiciu od niej. Jeżeli do twego oka trafia część tak odbitych promieni świetlnych, to widzisz punktowe źródło światła O za zwierciadłem w odległości o. Widziane przez ciebie źródło światła O jest obrazem pozornym przedmiotu P

34 Zwierciadło płaskie Promień Pa tworzy pewien kąt q z normalną do powierzchni zwierciadła. Promień Pb jest prostopadły do powierzchni zwierciadła Tylko niewielka część promieni świetlnych wychodzących z przedmiotu P dociera po odbiciu od zwierciadła do oka i tylko mały obszar powierzchni zwierciadła wokół punktu a uczestniczy w odbiciu odbieranych przez oko promieni. Oko odbiera te promienie tak, jakby wychodziły one z punktu O leżącego z drugiej strony zwierciadła

35 Zwierciadła sferyczne Zwierciadła wklęsłe 1. Środek krzywizny C (środek kuli, której wycinek stanowi powierzchnia zwierciadła) jest on znacznie bliżej niż w zwierciadle płaskim, ale nadal po stronie powierzchni odbijającej zwierciadła (z przodu zwierciadła). 2. Pole widzenia, czyli rozciągłość sceny odbijanej w stronę obserwatora jest zawężone w porównaniu z polem widzenia zwierciadła płaskiego. 3. Obraz w zwierciadle płaskim powstawał w takiej samej odległości poza zwierciadłem, w jakiej znajdował się przed zwierciadłem przedmiot; teraz w zwierciadle wklęsłym obraz jest dalej poza powierzchnią zwierciadła niż przedmiot przed zwierciadłem, tzn. o jest większe niż p. 4. Wysokość obrazu i przedmiotu były takie same, teraz w zwierciadle wklęsłym wysokość obrazu jest większa.

36 Zwierciadła sferyczne Zwierciadła wypukłe Zwierciadło wypukłe powstaje przez zakrzywienie powierzchni zwierciadła płaskiego tak, aby stała się ona powierzchnią wypukłą. 1) Przeniesienie środka krzywizny C poza zwierciadło 2) zwiększenie pola widzenia. 3) Obraz zostaje przesunięty bliżej do powierzchni zwierciadła 4) Obraz ulega zmniejszeniu (w porównaniu z odległością i wysokością przedmiotu w zwierciadle płaskim).

37 Ogniska zwierciadeł sferycznych Punkt F nazywa się ogniskiem zwierciadła, a jego odległość f od środka zwierciadła ogniskową zwierciadła. Zwierciadło sferyczne

38 Obrazy wytwarzane przez zwierciadła sferyczne

39 Obrazy wytwarzane przez zwierciadła sferyczne

40 x>2f F F Jeżeli przedmiot znajduje się przed soczewką skupiającą, w odległości większej od podwójnej ogniskowej x>2f, powstaje obraz rzeczywisty, odwrócony, pomniejszony, w odległości f<y<2f

41 x=2f F F Jeżeli przedmiot jest przed soczewką skupiającą w podwójnej ogniskowej x=2f to powstaje obraz rzeczywisty odwrócony tej samej wielkości co przedmiot w odległości y=2f

42 Jeżeli przedmiot jest przed soczewką skupiającą w odległości f<x<2f to powstaje obraz rzeczywisty odwrócony powiększony w odległości y>2f f<x<2f F F

43 x<f F F Jeżeli przedmiot jest przed soczewką, w odległości mniejszej od ogniskowej, powstaje obraz pozorny, prosty, powiększony, po tej samej stronie co przedmiot i przypisujemy mu ujemną odległość od soczewki.

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste: Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa

Bardziej szczegółowo

Optyka 2012/13 powtórzenie

Optyka 2012/13 powtórzenie strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Słońce w ciągu dnia przemieszcza się na niebie ze wschodu na zachód. W którym kierunku obraca się Ziemia? Zadanie 2. Na rysunku przedstawiono

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy: Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura 12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17

Bardziej szczegółowo

Fale elektromagnetyczne w dielektrykach

Fale elektromagnetyczne w dielektrykach Fale elektromagnetyczne w dielektrykach Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia

Bardziej szczegółowo

Załamanie na granicy ośrodków

Załamanie na granicy ośrodków Załamanie na granicy ośrodków Gdy światło napotyka na granice dwóch ośrodków przezroczystych ulega załamaniu tak jak jest to przedstawione na rysunku obok. Dla każdego ośrodka przezroczystego istnieje

Bardziej szczegółowo

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D. OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o

Bardziej szczegółowo

- pozorny, czyli został utworzony przez przedłużenia promieni świetlnych.

- pozorny, czyli został utworzony przez przedłużenia promieni świetlnych. Zjawisko odbicia Zgodnie z zasadą Fermata światło zawsze wybiera taką drogę między dwoma punktami, aby czas potrzebny na jej przebycie był najkrótszy (dla ścisłości: lub najdłuższy). Konsekwencją tego

Bardziej szczegółowo

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,

Bardziej szczegółowo

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B.

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B. Imię i nazwisko Pytanie 1/ Zaznacz właściwą odpowiedź: Fale elektromagnetyczne są falami poprzecznymi podłużnymi Pytanie 2/ Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka

Bardziej szczegółowo

Zasada Fermata mówi o tym, że promień światła porusza się po drodze najmniejszego czasu.

Zasada Fermata mówi o tym, że promień światła porusza się po drodze najmniejszego czasu. Pokazy 1. 2. 3. 4. Odbicie i załamanie światła laser, tarcza Kolbego. Ognisko w zwierciadle parabolicznym: dwa metalowe zwierciadła paraboliczne, miernik temperatury, żarówka 250 W. Obrazy w zwierciadłach:

Bardziej szczegółowo

Wykład XI. Optyka geometryczna

Wykład XI. Optyka geometryczna Wykład XI Optyka geometryczna Jak widzimy? Aby przedmiot był widoczny, musi wysyłać światło w wielu kierunkach. Na podstawie światła zebranego przez oko mózg lokalizuje położenie obiektu. Niekiedy promienie

Bardziej szczegółowo

ŚWIATŁO I JEGO ROLA W PRZYRODZIE

ŚWIATŁO I JEGO ROLA W PRZYRODZIE ŚWIATŁO I JEGO ROLA W PRZYRODZIE I. Optyka geotermalna W tym rozdziale poznasz właściwości światła widzialnego, prawa rządzące jego rozchodzeniem się w przestrzeni oraz sposoby wykorzystania tych praw

Bardziej szczegółowo

ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II

ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II Piotr Ludwikowski XI. POLE MAGNETYCZNE Lp. Temat lekcji Wymagania konieczne i podstawowe. Uczeń: 43 Oddziaływanie

Bardziej szczegółowo

+OPTYKA 3.stacjapogody.waw.pl K.M.

+OPTYKA 3.stacjapogody.waw.pl K.M. Zwierciadło płaskie, prawo odbicia. +OPTYKA.stacjapogody.waw.pl K.M. Promień padający, odbity i normalna leżą w jednej płaszczyźnie, prostopadłej do płaszczyzny zwierciadła Obszar widzialności punktu w

Bardziej szczegółowo

Materiały pomocnicze 14 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 14 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 4 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej. Zwierciadło płaskie. Zwierciadło płaskie jest najprostszym przyrządem optycznym. Jest to wypolerowana płaska powierzchnia

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela.

Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. I LO im. Stefana Żeromskiego w Lęborku 20 luty 2012 Stolik optyczny

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 1.  Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III Drgania i fale mechaniczne Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

Spis treści. Od Autorów... 7

Spis treści. Od Autorów... 7 Spis treści Od Autorów... 7 Drgania i fale Ruch zmienny... 10 Drgania... 17 Fale mechaniczne... 25 Dźwięk... 34 Przegląd fal elektromagnetycznych... 41 Podsumowanie... 49 Optyka Odbicie światła... 54 Zwierciadła

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 7 Temat: Pomiar kąta załamania i kąta odbicia światła. Sposoby korekcji wad wzroku. 1. Wprowadzenie Zestaw ćwiczeniowy został

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

SPRAWDZIAN NR Na zwierciadło sferyczne padają dwa promienie światła równoległe do osi optycznej (rysunek).

SPRAWDZIAN NR Na zwierciadło sferyczne padają dwa promienie światła równoległe do osi optycznej (rysunek). SPRAWDZIAN NR 1 JOANNA BOROWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Na zwierciadło sferyczne padają dwa promienie światła równoległe do osi optycznej (rysunek). Dokończ zdanie. Wybierz stwierdzenie A albo

Bardziej szczegółowo

OPTYKA W INSTRUMENTACH GEODEZYJNYCH

OPTYKA W INSTRUMENTACH GEODEZYJNYCH OPTYKA W INSTRUMENTACH GEODEZYJNYCH Prawa Euklidesa: 1. Promień padający i odbity znajdują się w jednej płaszczyźnie przechodzącej przez prostopadłą wystawioną do powierzchni zwierciadła w punkcie odbicia.

Bardziej szczegółowo

Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R 1 i R 2.

Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R 1 i R 2. Optyka geometryczna dla soczewek Autorzy: Zbigniew Kąkol, Piotr Morawski Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R i R 2. Nasze rozważania własności

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 8 Janusz Andrzejewski Fale przypomnienie Fala -zaburzenie przemieszczające się w przestrzeni i w czasie. y(t) = Asin(ωt- kx) A amplituda fali kx ωt faza fali k liczba falowa ω częstość

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2

35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2 Włodzimierz Wolczyński Załamanie światła 35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2 ZAŁAMANIE ŚWIATŁA. SOCZEWKI sin sin Gdy v 1 > v 2, więc gdy n 2 >n 1, czyli gdy światło wchodzi do ośrodka gęstszego optycznie,

Bardziej szczegółowo

34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1

34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1 Włodzimierz Wolczyński 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1 ODBICIE ŚWIATŁA. ZWIERCIADŁA Do analizy obrazów w zwierciadle sferycznym polecam aplet fizyczny http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=48

Bardziej szczegółowo

Dodatek 1. C f. A x. h 1 ( 2) y h x. powrót. xyf

Dodatek 1. C f. A x. h 1 ( 2) y h x. powrót. xyf B Dodatek C f h A x D y E G h Z podobieństwa trójkątów ABD i DEG wynika z h x a z trójkątów DC i EG ' ' h h y ' ' to P ( ) h h h y f to ( 2) y h x y x y f ( ) i ( 2) otrzymamy to yf xy xf f f y f h f yf

Bardziej szczegółowo

ELEKTROSTATYKA. Ze względu na właściwości elektryczne ciała dzielimy na przewodniki, izolatory i półprzewodniki.

ELEKTROSTATYKA. Ze względu na właściwości elektryczne ciała dzielimy na przewodniki, izolatory i półprzewodniki. ELEKTROSTATYKA Ładunkiem elektrycznym nazywamy porcję elektryczności. Ładunkiem elementarnym e nazywamy najmniejszą wartość ładunku zaobserwowaną w przyrodzie. Jego wartość jest równa wartości ładunku

Bardziej szczegółowo

XXXI. FALE ELEKTROMAGNETYCZNE

XXXI. FALE ELEKTROMAGNETYCZNE XXXI. FALE ELEKTROMAGNETYCZNE 31.1. Fale elektromagnetyczne Dotychczas poznane fale wymagają istnienia ośrodka materialnego, przez który lub wzdłuż którego mogą rozchodzić się. Fale elektromagnetyczne

Bardziej szczegółowo

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Cel ćwiczenia: Zapoznanie się ze zjawiskiem Faradaya. Wyznaczenie stałej Verdeta dla danej próbki. Wyznaczenie wartości ładunku właściwego elektronu

Bardziej szczegółowo

Szczegółowe kryteria oceniania z fizyki w gimnazjum. kl. III

Szczegółowe kryteria oceniania z fizyki w gimnazjum. kl. III Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. III Semestr I Drgania i fale Rozpoznaje ruch drgający Wie co to jest fala Wie, że w danym ośrodku fala porusza się ze stałą szybkością Zna pojęcia:

Bardziej szczegółowo

SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach

SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach Scenariusz lekcji : Soczewki i obrazy otrzymywane w soczewkach Autorski konspekt lekcyjny Słowa kluczowe: soczewki, obrazy Joachim Hurek, Publiczne Liceum Ogólnokształcące z Oddziałami Dwujęzycznymi w

Bardziej szczegółowo

Optyka geometryczna - 2 Tadeusz M.Molenda Instytut Fizyki, Uniwersytet Szczeciński. Zwierciadła niepłaskie

Optyka geometryczna - 2 Tadeusz M.Molenda Instytut Fizyki, Uniwersytet Szczeciński. Zwierciadła niepłaskie Optyka geometryczna - 2 Tadeusz M.Molenda Instytut Fizyki, Uniwersytet Szczeciński Zwierciadła niepłaskie Obrazy w zwierciadłach niepłaskich Obraz rzeczywisty zwierciadło wklęsłe Konstrukcja obrazu w zwierciadłach

Bardziej szczegółowo

WYMAGANIA ZGODNIE Z PROGRAMEM NAUCZANIA G-11/09/10 Osiągnięcia konieczne Osiągnięcia podstawowe Osiągnięcia rozszerzone Osiągnięcia dopełniające

WYMAGANIA ZGODNIE Z PROGRAMEM NAUCZANIA G-11/09/10 Osiągnięcia konieczne Osiągnięcia podstawowe Osiągnięcia rozszerzone Osiągnięcia dopełniające WYMAGANIA ZGODNIE Z PROGRAMEM NAUCZANIA G-11/09/10 Osiągnięcia konieczne Osiągnięcia podstawowe Osiągnięcia rozszerzone Osiągnięcia dopełniające zna pojęcia położenia równowagi, wychylenia, amplitudy;

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Ćw. 20. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego

Ćw. 20. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego 0 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 0. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego Wprowadzenie Światło widzialne jest

Bardziej szczegółowo

Uwzględniając związek między okresem fali i jej częstotliwością T = prędkość fali można obliczyć z zależności:

Uwzględniając związek między okresem fali i jej częstotliwością T = prędkość fali można obliczyć z zależności: 1. Fale elektromagnetyczne. Światło. Fala elektromagnetyczna to zaburzenie pola elektromagnetycznego rozprzestrzeniające się w przestrzeni ze skończoną prędkością i unoszące energię. Fale elektromagnetyczne

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. Maria Majewska. Ocena niedostateczna: uczeń nie opanował wymagań na ocenę dopuszczającą.

Wymagania programowe na poszczególne oceny. Maria Majewska. Ocena niedostateczna: uczeń nie opanował wymagań na ocenę dopuszczającą. Wymagania programowe na poszczególne oceny klasa III Maria Majewska Ocena niedostateczna: uczeń nie opanował wymagań na ocenę dopuszczającą. Ocena dopuszczająca [1] - zna pojęcia: położenie równowagi,

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE WSEiZ W WARSZAWIE WYDZIAŁ.. LABORATORIUM FIZYCZNE Ćw. nr 8 BADANIE ŚWIATŁA SPOLARYZOWANEGO: SPRAWDZANIE PRAWA MALUSA Warszawa 29 1. Wstęp Wiemy, że fale świetlne stanowią niewielki wycinek widma fal elektromagnetycznych

Bardziej szczegółowo

36P5 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY

36P5 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY 36P5 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V Drgania Fale Akustyka Optyka geometryczna POZIOM PODSTAWOWY Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

Bardziej szczegółowo

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d.

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d. Nazwisko Data Nr na liście Imię Wydział Dzień tyg Godzina Ćwiczenie 373 Wyznaczanie stężenia roztworu cukru za pomocą polarymetru Stężenie roztworu I d [g/dm 3 ] Rodzaj cieczy Położenie analizatora [w

Bardziej szczegółowo

Fale elektromagnetyczne

Fale elektromagnetyczne Fale elektromagnetyczne Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia fali elektromagnetycznej

Bardziej szczegółowo

Przyrząd słuŝy do wykonywania zasadniczych ćwiczeń uczniowskich z optyki geometrycznej.

Przyrząd słuŝy do wykonywania zasadniczych ćwiczeń uczniowskich z optyki geometrycznej. STOLIK OPTYCZNY V 7-19 Przyrząd słuŝy do wykonywania zasadniczych ćwiczeń uczniowskich z optyki geometrycznej. Na drewnianej podstawie (1) jest umieszczona mała Ŝaróweczka (2) 3,5 V, 0,2 A, którą moŝna

Bardziej szczegółowo

Wykłady z Fizyki. Optyka

Wykłady z Fizyki. Optyka Wykłady z Fizyki 09 Optyka Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje.

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Działanie obrazujące soczewek lub układu soczewek wygodnie

Bardziej szczegółowo

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek

Bardziej szczegółowo

Optyka w fotografii Ciemnia optyczna camera obscura wykorzystuje zjawisko prostoliniowego rozchodzenia się światła skrzynka (pudełko) z małym okrągłym otworkiem na jednej ściance i przeciwległą ścianką

Bardziej szczegółowo

TEST nr 1 z działu: Optyka

TEST nr 1 z działu: Optyka Grupa A Testy sprawdzające TEST nr 1 z działu: Optyka imię i nazwisko W zadaniach 1. 17. wstaw krzyżyk w kwadracik obok wybranej odpowiedzi. klasa data 1 Gdy światło rozchodzi się w próżni, jego prędkć

Bardziej szczegółowo

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową.

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej. LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone

Bardziej szczegółowo

Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.

Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. . Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. Rozwiązywanie zadań wykorzystujących poznane prawa I LO im. Stefana Żeromskiego w Lęborku 27 luty 2012 Dyfrakcja światła laserowego

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

Przedmiotowy system oceniania do części 2 podręcznika Klasy 3 w roku szkolnym 2013-2014 sem I

Przedmiotowy system oceniania do części 2 podręcznika Klasy 3 w roku szkolnym 2013-2014 sem I Przedmiotowy system oceniania do części 2 podręcznika Klasy 3 w roku szkolnym 2013-2014 sem I Tabela wymagań programowych i kategorii celów poznawczych Temat lekcji w podręczniku 22. Ruch drgający podać

Bardziej szczegółowo

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 8 Polarymetria

Metody Optyczne w Technice. Wykład 8 Polarymetria Metody Optyczne w Technice Wykład 8 Polarymetria Fala elektromagnetyczna div D div B 0 D E rot rot E H B t D t J B J H E Fala elektromagnetyczna 2 2 E H 2 t 2 E 2 t H 2 v n 1 0 0 c n 0 Fala elektromagnetyczna

Bardziej szczegółowo

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI ZADANIE DOŚWIADCZALNE 2 DWÓJŁOMNOŚĆ MIKI W tym doświadczeniu zmierzysz dwójłomność miki (kryształu szeroko używanego w optycznych elementach polaryzujących). WYPOSAŻENIE Oprócz elementów 1), 2) i 3) powinieneś

Bardziej szczegółowo

Fizyka program nauczania gimnazjum klasa III 2014/2015

Fizyka program nauczania gimnazjum klasa III 2014/2015 Fizyka program nauczania gimnazjum klasa III 2014/2015 Roman Grzybowski wydawnictwo OPERON Program nauczania do nowej podstawy programowej Treści nauczania i osiągnięcia szczegółowe ucznia Fale mechaniczne

Bardziej szczegółowo

Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią?

Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią? Własności optyczne materii Jak zachowuje się światło w zetknięciu z materią? Właściwości optyczne materiału wynikają ze zjawisk: Absorpcji Załamania Odbicia Rozpraszania Własności elektrycznych Refrakcja

Bardziej szczegółowo

Rozdział 9. Optyka geometryczna

Rozdział 9. Optyka geometryczna Rozdział 9. Optyka geometryczna 206 Spis treści Optyka geometryczna i falowa - wstęp Widzenie barwne Odbicie i załamanie Prawo odbicia i załamania Zasada Fermata Optyka geometryczna dla soczewek Warunki

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI DLA KLASY III Gimnazjum. Temat dopuszczający dostateczny dobry bardzo dobry

WYMAGANIA EDUKACYJNE Z FIZYKI DLA KLASY III Gimnazjum. Temat dopuszczający dostateczny dobry bardzo dobry Lekcja organizacyjna. Zapoznanie z systemem oceniania i wymaganiami edukacyjnymi z oraz warunkami i trybem otrzymywania oceny wyższej niż przewidywana. Pole elektryczne wie, co to jest pole elektryczne

Bardziej szczegółowo

Test sprawdzający wiedzę z fizyki z zakresu gimnazjum autor: Dorota Jeziorek-Knioła

Test sprawdzający wiedzę z fizyki z zakresu gimnazjum autor: Dorota Jeziorek-Knioła Spotkania z fizyką, część 4 Test 1 1. (1 p.) Na lekcji fizyki uczniowie demonstrowali zjawisko załamania światła na granicy wody i powietrza, po czym sporządzili rysunek przedstawiający bieg promienia

Bardziej szczegółowo

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla wszystkich rodzajów fal, we wszystkich ośrodkach, w których

Bardziej szczegółowo

C29. Na rysunku zaznaczono cztery łódki. Jeśli któraś z nich znajduje się pod mostem, to jest to łódka numer:

C29. Na rysunku zaznaczono cztery łódki. Jeśli któraś z nich znajduje się pod mostem, to jest to łódka numer: Przyjazne testy Fizyka dla gimnazjum Wojciech Dindorf, Elżbieta Krawczyk Informacje, dźwięki, światło, oko, ucho C27. Fale poprzeczne tym się różnią od fal podłużnych, że: (A) rozchodzą się w poprzek zamiast

Bardziej szczegółowo

PLAN WYNIKOWY Z FIZYKI KLASA III GIMNAZJUM ROK SZKOLNY 2013/2014

PLAN WYNIKOWY Z FIZYKI KLASA III GIMNAZJUM ROK SZKOLNY 2013/2014 PLAN WYNIKOWY Z FIZYKI KLASA III GIMNAZJUM ROK SZKOLNY 2013/2014 Liczba godzin do realizacji: 34 Realizujący: Anna Wojtak XI. ELEKTROMAGNETYZM 1. Temat lekcji: Magnesy i ich oddziaływanie. Bieguny magnesów

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 6 Temat: WYZNACZANIE DYSPERSJI OPTYCZNEJ PRYZMATU METODĄ POMIARU KĄTA NAJMNIEJSZEGO ODCHYLENIA Warszawa 009 WYZNACZANIE DYSPERSJI OPTYCZNEJ

Bardziej szczegółowo

A) 14 km i 14 km. B) 2 km i 14 km. C) 14 km i 2 km. D) 1 km i 3 km.

A) 14 km i 14 km. B) 2 km i 14 km. C) 14 km i 2 km. D) 1 km i 3 km. ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO Kod pracy Wypełnia Przewodniczący Wojewódzkiej Komisji Wojewódzkiego Konkursu Przedmiotowego z Fizyki Imię i nazwisko ucznia... Szkoła...

Bardziej szczegółowo

5.1. Powstawanie i rozchodzenie się fal mechanicznych.

5.1. Powstawanie i rozchodzenie się fal mechanicznych. 5. Fale mechaniczne 5.1. Powstawanie i rozchodzenie się fal mechanicznych. Ruch falowy jest zjawiskiem bardzo rozpowszechnionym w przyrodzie. Spotkałeś się z pewnością w życiu codziennym z takimi pojęciami

Bardziej szczegółowo

Soczewki konstrukcja obrazu. Krótkowzroczność i dalekowzroczność.

Soczewki konstrukcja obrazu. Krótkowzroczność i dalekowzroczność. Soczewki konstrukcja obrazu Krótkowzroczność i dalekowzroczność. SOCZEWKA jest to przezroczyste ciało ograniczone powierzchniami kulistymi Soczewki mogą być Wypukłe Wklęsłe i są najczęściej skupiające

Bardziej szczegółowo

ZAJĘCIA WYRÓWNAWCZE, CZĘSTOCHOWA, 2010/2011 Ewa Mandowska, Instytut Fizyki AJD, Częstochowa e.mandowska@ajd.czest.pl

ZAJĘCIA WYRÓWNAWCZE, CZĘSTOCHOWA, 2010/2011 Ewa Mandowska, Instytut Fizyki AJD, Częstochowa e.mandowska@ajd.czest.pl 1 ZAJĘCIA WYRÓWNAWCZE, CZĘSTOCHOWA, 2010/2011 Ewa Mandowska, Instytut Fizyki AJD, Częstochowa e.mandowska@ajd.czest.pl DZIAŁ 3 Optyka geometryczna i elementy optyki falowej. Budowa materii. 3.1. Optyka

Bardziej szczegółowo

PDF stworzony przez wersję demonstracyjną pdffactory

PDF stworzony przez wersję demonstracyjną pdffactory Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna

Bardziej szczegółowo

wskazuje w otoczeniu zjawiska elektryzowania przez tarcie formułuje wnioski z doświadczenia sposobu elektryzowania ciał objaśnia pojęcie jon

wskazuje w otoczeniu zjawiska elektryzowania przez tarcie formułuje wnioski z doświadczenia sposobu elektryzowania ciał objaśnia pojęcie jon Klasa III Elektryzowanie przez tarcie. Ładunek elementarny i jego wielokrotności opisuje budowę atomu i jego składniki elektryzuje ciało przez potarcie wskazuje w otoczeniu zjawiska elektryzowania przez

Bardziej szczegółowo

f = -50 cm ma zdolność skupiającą

f = -50 cm ma zdolność skupiającą 19. KIAKOPIA 1. Wstęp W oku miarowym wymiary struktur oka, ich wzajemne odległości, promienie krzywizn powierzchni załamujących światło oraz wartości współczynników załamania ośrodków, przez które światło

Bardziej szczegółowo

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

TARCZA KOLBEGO V 7-22

TARCZA KOLBEGO V 7-22 TARCZA KOLBEGO V 7-22 Przyrząd służy do zasadniczych pokazów z optyki geometrycznej, dotyczących odbicia i załamania światła. Ma on budowę wskazaną na rys. 1. Rys. 1. Na trójnożnej podstawie (1) jest umocowany

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 5 Badanie zjawisk optycznych przy użyciu zestawu Laser Kit Cel ćwiczenia: Zapoznanie studentów ze zjawiskami optycznymi. Badane elementy: Zestaw ćwiczeniowy Laser

Bardziej szczegółowo

SPRAWDZIAN NR 1. I promienie świetlne nadal są równoległe względem siebie, a po odbiciu od powierzchni II nie są równoległe względem siebie.

SPRAWDZIAN NR 1. I promienie świetlne nadal są równoległe względem siebie, a po odbiciu od powierzchni II nie są równoległe względem siebie. SPRAWDZIAN NR 1 ŁUKASZ CHOROŚ IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Na dwie różne powierzchnie światło pada pod tym samym kątem. Po odbiciu od powierzchni I promienie świetlne nadal są równoległe względem

Bardziej szczegółowo

LABORATORIUM OPTYKI GEOMETRYCZNEJ

LABORATORIUM OPTYKI GEOMETRYCZNEJ LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR OGNISKOWYCH SOCZEWEK CIENKICH 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania ogniskowych soczewek cienkich. 2. Zakres wymaganych zagadnieo: Prawa odbicia

Bardziej szczegółowo

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r.

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. 1. Po wirującej płycie gramofonowej idzie wzdłuż promienia mrówka ze stałą prędkością względem płyty. Torem ruchu mrówki

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1.1 Narysowanie toru ruchu ciała w rzucie ukośnym. Narysowanie wektora siły działającej na ciało w

Bardziej szczegółowo

W tym module rozpoczniemy poznawanie właściwości fal powstających w ośrodkach sprężystych (takich jak fale dźwiękowe),

W tym module rozpoczniemy poznawanie właściwości fal powstających w ośrodkach sprężystych (takich jak fale dźwiękowe), Fale mechaniczne Autorzy: Zbigniew Kąkol, Bartek Wiendlocha Ruch falowy jest bardzo rozpowszechniony w przyrodzie. Na co dzień doświadczamy obecności fal dźwiękowych i fal świetlnych. Powszechnie też wykorzystujemy

Bardziej szczegółowo

Ćwiczenie 53. Soczewki

Ćwiczenie 53. Soczewki Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.

Bardziej szczegółowo

Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum

Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum Szczegółowe wymagania na poszczególne stopnie (oceny) 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień

Bardziej szczegółowo

Fale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski

Fale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski Fale dźwiękowe Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski Podstawowe cechy dźwięku Ze wzrostem częstotliwości rośnie wysokość dźwięku Dźwięk o barwie złożonej składa się

Bardziej szczegółowo

Pole elektromagnetyczne

Pole elektromagnetyczne Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością

Bardziej szczegółowo

6.4. Dyfrakcja fal mechanicznych.

6.4. Dyfrakcja fal mechanicznych. 6.4. Dyfrakcja fal mechanicznych. W danym ośrodku fale rozchodzą soę po liniach prostych. Gdy jednak fala trafi na jakąś przeszkodę, kierunek jej rozchodzenia się ulega na ogół zmianie. Zmienia się też

Bardziej szczegółowo

Publiczne Gimnazjum im. Jana Deszcza w Miechowicach Wielkich. Opracowanie: mgr Michał Wolak

Publiczne Gimnazjum im. Jana Deszcza w Miechowicach Wielkich. Opracowanie: mgr Michał Wolak 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry wskazuje w otaczającej rzeczywistości przykłady ruchu drgającego opisuje przebieg i

Bardziej szczegółowo

Moment pędu fali elektromagnetycznej

Moment pędu fali elektromagnetycznej napisał Michał Wierzbicki Moment pędu fali elektromagnetycznej Definicja momentu pędu pola elektromagnetycznego Gęstość momentu pędu pola J w elektrodynamice definuje się za pomocą wzoru: J = r P = ɛ 0

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III Dział XI. DRGANIA I FALE (9 godzin lekcyjnych) Ocenę dopuszczającą otrzymuje uczeń, który: wskaże w otaczającej rzeczywistości przykłady

Bardziej szczegółowo

Wymagania edukacyjne na dana ocenę z fizyki dla klasy III do serii Spotkania z fizyką wydawnictwa Nowa Era

Wymagania edukacyjne na dana ocenę z fizyki dla klasy III do serii Spotkania z fizyką wydawnictwa Nowa Era Wymagania edukacyjne na dana ocenę z fizyki dla klasy III do serii Spotkania z fizyką wydawnictwa Nowa Era 1. Drgania i fale Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry

Bardziej szczegółowo

Optyka geometryczna z elementami optyki falowej. Marian Talar

Optyka geometryczna z elementami optyki falowej. Marian Talar Optyka geometryczna z elementami optyki falowej Marian Talar 21 lipca 2006 1 Informacje ogólne To, że światło jest falą elektromagnetyczną wiadomo było już od czasu gdy J. C. Maxwell (1831-1879) sformułował

Bardziej szczegółowo