Grupa R51 Wykład 30 godzin Laboratorium w ramach lab USF. Prowadzący: prof. dr hab. inż. Małgorzata Kujawińska pok.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Grupa R51 Wykład 30 godzin Laboratorium w ramach lab USF. Prowadzący: prof. dr hab. inż. Małgorzata Kujawińska pok."

Transkrypt

1 Grupa R5 Wykład 3 godzin Laboratorium w ramach lab USF Prowadzący: prof. dr hab. inż. Małgorzata Kujawińska m.kujawinska@mchtr.pw.edu.pl pok.55 Zaliczenie wykładu - kolokwia (po 3 pkt) Konieczność zaliczenia każdego kolokwium min na 6pkt

2 Laboratorium SUF Badanie podstawowych parametrów światłowodu wielo- i jednomodowego, problemy sprzęgania z różnymi typami źródełświatła i z detektorami. Badanie wybranych elementów toru światłowodowego: złączki, sprzęgacza, izolatora i kontrolera polaryzacji. Realizacja i badania wybranych sensorów intensywnościowych i interferencyjnych. Badanie światłowodu utrzymującego stan polaryzacji i budowa czujnika polarymetrycznego Optoelektroniczne przesyłanie sygnału audio-video torem transmisji światłowodowej

3 Program wykładu. Wstęp - historia i główne problemy rozwoju techniki światłowodowej. Opis propagacji fali elektromagnetycznej w światłowodach analiza propagacji dyspersja tłumienie 3. Technologia wykonania światłowodów materiały metody wytwarzania

4 Program wykładu 4. Elementy toru światłowodowego kabel światłowodowy złącza sprzęgacze wzmacniacze modulatory elementy polaryzacyjne 5. Wybrane zastosowania - telekomunikacja światłowodowa - czujniki światłowodowe

5 LITERATURA. Szustakowski M.: Elementy techniki światłowodowej, Wyd. Naukowo- Techniczne, Warszawa, 99. Majewski A.: Podstawy techniki światłowodowej, Oficyna Wyd. PW, Warszawa 3. Smoliński A.: Optoelektronika światłowodowa, Wyd. Kom. Łaczności Warszawa Domański A.W.: Układy i urządzenia optoelektroniczne, Wyd. w ramach "Tempus Series in Applied Physics", Oficyna Wyd. PW, Warszawa Saleh A.E., Teich M.C.: Fundamentals of Photonics, J. Wiley & Sons, Inc. New York 99, rozdziały 8 i 6. Skrypt wykładowy, Fibre Optics Sensors,Cranfield Univ. red. R. Tatama 7. R. Jóźwicki Podstawy Inżynierii Fotonicznej, Oficyna Wyd. PW 6 8. Hecht J.:Understanding fiber optics components, kurs SPIE Udd E.: Fiber optic sensors, J.Wiley and Sons Inc., 99

6 Historia 87 J.Tyndal - prowadzenie światła w strumieniu wody 954 A.C. Van Heel propozycja światłowodu z płaszczem 96 T.H.Maiman laser rubinowy 963 zjawisko laserowe w półprzewodnikach 966 K.C.Kao pomysł systemu telekomunikacyjnego bazującego na prowadzeniu światła w kołowym dielektrycznym falowodzie w płaszczu 97 Corning Glass światłowód o tłumieniu < db/km 97 Corning Glass światłowód o tłumieniu < 5dB/km 977 pierwsze eksperymentalne systemy łączności

7 Rozwój techniki światłowodowej zmniejszenie tłumienności i dyspersji i dopasowanie ich charakterystyk widmowych wzmacniacze i lasery światłowodowe lasery półprzewodnikowe urządzenia zintegrowanej optyki światłowodowej techniki modulacji i detekcji

8 ETAPY ROZWOJU Telekomunikacji Swiatłowodowej etap I (975): światłowody pierwszej generacji: wielomodowe, źródło diody elektroluminescencyjne.87μm - etap II (978): zastosowano światłowody jednomodowe oraz źródła i detektory Dl dla.3μm. Osiągnięto iloczyn przepływności binarnej przez długość równą Gbit km/s - etap III (98): zmniejszono tłumienność w światłowodach trzeciej generacji. Zastosowano lasery dla fal o długości.55μm, uzyskano setki Gbit km/s - etap IV (984): światłowody czwartej generacji to światłowody utrzymujące stan polaryzacji. Pojawiły się koherentne systemy transmisji - etap V (989): w piątej generacji światłowodów wykorzystano zjawiska nieliniowe, uzyskano Gbit km/s. W przypadku symulowania transmisji na dużą odległość przy użyciu pętli i światłowodów aktywnych zwiększono tą wartość tysiąckrotnie. Wykonano bramkę Gb/s, a więc możliwe jest powiększenie przepływności binarnej. - etap VI (): w szóstej generacji wykorzystanie światłowodów fotonicznych, dalsze zmniejszenie strat

9 TECHNIKA ŚWIATŁOWODOWA Telekomunikacja Sensory OGÓLNE TENDENCJE DO: pełnej fotonizacji systemu teletransmisji: dążenie do przesyłania sygnału CYFROWEGO a nie analogowego automatyzacji systemów produkcyjnych, komercyjnych, medycznych, transportowych i innych TŚ techniką perspektywiczną bo: limit transmisji optycznej THz a długość impulsu ps ale obecnie ograniczenia elektr. Urządzeń przetwarzających ok. 6-GHz zastąpienie wzmacniaczy elektronicznych optycznymi zastąpienie odgałęzień elektronicznych - sprzęgaczami światłowodowymi sterowanie sygnałem optycznym - nieliniowe efekty optyczne kompatybilność ze zminiaturyzowanymi źródłami światła i z detektorami Tworzenie systemów all fiber Tworzenie systemów fotonicznych: światłowodowo-planarnych

10 Zalety systemów światłowodowych bardzo duża przepływność i pojemność informacyjna długie odcinki międzyregeneratorowe brak zakłóceń powodowanych zewnętrznym polem elektromagnetycznym brak efektów zwarć wewnętrznych bezpieczeństwo transmisji danych małe rozmiary i masa dostępność materiału (kwarc) możliwości zastosowań w systemach pomiarowych

11 Zalety światłowodów Niewielka waga ok. kg 3m św. z pokryciem kabel koncentr. 4 kg 3m Mały wymiar Sw. Φ.cm - 33 światłowody (.75 mln rozmów tel.) KK Φcm Dobre zabezpieczenie przed podsłuchem/ ingerencją w przesyłane informacje Łatwość integracji toru światłowodowego z: (4.3 rozmów tel - elementami planarnymi (zintegrowane tory fotoniczne) - systemami konwencjonalnymi (możliwośc miniaturyzacji tych systemów)

12 Zalety światłowodów cd Elastyczność Nie pęka zginany na elemencie Φ3mm Odporny na szumy elektromagnetyczne Odporny na korozję, wysokie temperatury i wpływ ośrodków skażonych (szkodliwych dla zdrowia) Bezpieczny dla pracy w ośrodkach grożących wybuchem (brak zwarcia i iskrzenia przewodów) Niska tłumienność Dla λ.55μm tylko.6db/km wzmacnianie niezbędne po kilkuset km W kablach koncentrycznych 9dB/km i wzmacniacze co km

13 Zalety światłowodów cd Szerokie pasmo Dla światłowodu gradientowego od do GHz. Przepływność Gbit/s. Graniczna wartość kabli koncentrycznych 4Mbit/s Multipleksing Transmisja informacji tym samym światłowodem na różnych nośnikach - różne λ, różna polaryzacja

14 Modowość propagującego się promieniowania skokowa zmiana n wielomodowy step-index gradientowy wielomodowy skokowy jednomodowy Podstawowa wada: dyspersja ) materiałowa ) falowodowa 3) wielomodowa

15 Przykładowe parametry Typ Φ rdzenia Φ płaszcza NA Kąt akceptacji μm μm stopnie Skokowy Gradientowy Jednomodowy Włókno jednomodowe ma średnicę poniżej μm Im krótsza długość fali, tym mniejsza średnica Rozkłady intensywności dla różnych modów

16 Włókna bazujące na fotonicznych kryształach ach Światlowody fotoniczne Swiatłowód fotoniczny jest światłowodem z płaszczem wykonanym z kryształu fotonicznego a rdzeniem uformowanym w wyniku defektu w strukturze periodycznej kryształu

17 Propagacja fali w falowodzie -Powtórzenie płytkowy paskowy Falowody Kąt graniczny Fala prowadzona w falowodzie dla n >n sin i i > i ig i ig n n Brak spełnienia warunku fala częściowo wycieka poza falowód x n i n n z n

18 d x α n A i n α B z Mody falowodu Ponieważ n n Propagują się tylko te fale, które po dwóch odbiciach są w fazie z falą padającą Nazywamy je modami falowodu i warunek zgodności fazy α C d sinα AB ACcosα więc AC AB ( cos α ) d sinα lub n dcosi ϕ πm m k k n dsinα ϕ πm m,,,k gdyż + α. 5π ϕ jest skokiem fazy przy odbiciu różnym dla składowej równoległej i prostopadłej i,,,k

19 x d ϕ tg II ϕ tg n i n n n n ( n sini ) ( n sini ) n n cosi cosi n n z α Mody falowodu cd Kąt graniczny i g sin i Skoki fazy ϕ przy całkowitym wewnętrznym odbiciu ϕ tg II ϕ tg cos i g n n + α. 5π α cos sinαcos cos + α. 5π α cos sinα Zmiana α od do α g zmiana ϕ od π do i g α α α g g g g

20 Warunek zgodności fazy k Mody falowodu cd ndcosi πm ϕ m,,,k Dla składowej prostopadłej (ϕ ) można przepisać jako n d cos α cos α g tg π sinα.5m m,,,k λ sinα n Dla danego falowodu dane n, n, d i λ cos αg sinig n λ i oznaczając A jako stałą dla danego falowodu n d lewa strona równania ( α) L sin tg π sin α m A P prawa strona równania ( sinα) dla różnych m cos α cos sinα α g

21 π sinα L ( sinα) tg m P ( sinα) P II A Linia P Linie L cos α cos sinα α g m A sinα g sinα Na przecięciu się linii L i P mamy sinα m odpowiadające modowi m kąta α m Różne linie P dla składowych II i a więc różne kąty α m

22 Liczba modów propagujących się w falowodzie x n d n i pg n i p i n g α g z A λ n d M więc sinα A g M d λ n dn λ n cosi n g λ dn λ d NA n n ale gdyż gdzie NA sini pg sin i n g n n cosig n sinip sinipg jest aperturą numeryczną falowodu zdefiniowaną dla kąta granicznego i pg promienia wchodzącego do falowodu z powietrza

23 Rozkład propagującego się pola d x α m n -α m n n z Mamy dwie fale płaskie propagujące się pod kątem α m jak i -α m n wektory propagacji modu m Składowe wektorów propagacji w płaszczyźnie x-z dla α m k( nk sin αm,nk cosαm ) Fale te interferują w i -α k( nk sin αm, nk cosαm ) obszarze falowodu m Zgodnie z warunkiem zgodności fazy k nd cosi ϕ πm następuje przeskok fazy o π między sąsiednimi modami Dla m parzystych fale się dodają, a dla nieparzystych - odejmują

24 V α Dla m parzystych Dla m nieparzystych Ponieważ Rozkład propagującego się pola cd V p ( x,z) V α ( x,z) + V α ( x,z) ( x,z) V ( x,z) V ( x,z) V np ( x,z) V exp[ i( k x + k z) ] V exp[ in k ( x sinα + z α )] x z m cos Więc w obszarze falowodu V V p np ( x,z) ( x,z) V cos ( nk x sinαm ) ( x sinα ) isin n k Amplitudy modów (.5 ) i exp iπ m α α ( zcosα ) exp in k Propagacja w kierunku z m m stałe przesunięcie fazowe m,,4, L m,3,5, L

25 V V p np ( x) ( x) Rozkład amplitud propagującego się pola V cos sin ( nkx sin αm ) m,,4, ( n k x sin α ) m,3,5, L m L Wzory dotyczą rozkładu wewnątrz falowodu.5d < x <.5d x m 3 8 mody d z Jak pole wygląda poza obszarem falowodu?

Technika falo- i światłowodowa

Technika falo- i światłowodowa Technika falo- i światłowodowa Falowody elementy planarne (płytki, paski) Światłowody elementy cylindryczne (włókna światłowodowe) płytkowy paskowy włókno optyczne Rdzeń o wyższym współczynniku załamania

Bardziej szczegółowo

Czujniki światłowodowe

Czujniki światłowodowe Czujniki światłowodowe Pomiar wielkości fizycznych zaburzających propagację promieniowania Idea pomiaru Dioda System optyczny Odbiornik Wejście pośrednie przez modulator Wielkość mierzona wejście czujnik

Bardziej szczegółowo

Fotonika kurs magisterski grupa R41 semestr VII Specjalność: Inżynieria fotoniczna. Egzamin ustny: trzy zagadnienia do objaśnienia

Fotonika kurs magisterski grupa R41 semestr VII Specjalność: Inżynieria fotoniczna. Egzamin ustny: trzy zagadnienia do objaśnienia Dr inż. Tomasz Kozacki Prof. dr hab.inż. Romuald Jóźwicki Zakład Techniki Optycznej Instytut Mikromechaniki i Fotoniki pokój 513a ogłoszenia na tablicach V-tego piętra kurs magisterski grupa R41 semestr

Bardziej szczegółowo

TELEKOMUNIKACJA ŚWIATŁOWODOWA

TELEKOMUNIKACJA ŚWIATŁOWODOWA TELEKOMUNIKACJA ŚWIATŁOWODOWA ETAPY ROZWOJU TS etap I (1975): światłowody pierwszej generacji: wielomodowe, źródło diody elektroluminescencyjne 0.87μm l etap II (1978): zastosowano światłowody jednomodowe

Bardziej szczegółowo

Wykład 12: prowadzenie światła

Wykład 12: prowadzenie światła Fotonika Wykład 12: prowadzenie światła Plan: Mechanizmy prowadzenia światła Mechanizmy oparte na odbiciu całkowite wewnętrzne odbicie, odbicie od ośrodków przewodzących, fotoniczna przerwa wzbroniona

Bardziej szczegółowo

Zjawiska w niej występujące, jeśli jest ona linią długą: Definicje współczynników odbicia na początku i końcu linii długiej.

Zjawiska w niej występujące, jeśli jest ona linią długą: Definicje współczynników odbicia na początku i końcu linii długiej. 1. Uproszczony schemat bezstratnej (R = 0) linii przesyłowej sygnałów cyfrowych. Zjawiska w niej występujące, jeśli jest ona linią długą: odbicie fali na końcu linii; tłumienie fali; zniekształcenie fali;

Bardziej szczegółowo

Laboratorium techniki światłowodowej. Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd światłowodu

Laboratorium techniki światłowodowej. Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd światłowodu Laboratorium techniki światłowodowej Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie

Bardziej szczegółowo

Laboratorium techniki światłowodowej. Ćwiczenie 2. Badanie apertury numerycznej światłowodów

Laboratorium techniki światłowodowej. Ćwiczenie 2. Badanie apertury numerycznej światłowodów Laboratorium techniki światłowodowej Ćwiczenie 2. Badanie apertury numerycznej światłowodów Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie Światłowody

Bardziej szczegółowo

2007-10-27. NA = sin Θ = (n rdzenia2 - n płaszcza2 ) 1/2. L[dB] = 10 log 10 (NA 1 /NA 2 )

2007-10-27. NA = sin Θ = (n rdzenia2 - n płaszcza2 ) 1/2. L[dB] = 10 log 10 (NA 1 /NA 2 ) dr inż. Krzysztof Hodyr Technika Światłowodowa Część 2 Tłumienie i straty w światłowodach Pojęcie dyspersji światłowodów Technika zwielokrotnienia WDM Źródła strat tłumieniowych sprzężenia światłowodu

Bardziej szczegółowo

ZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH

ZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH ZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH 1. ODBICIE I ZAŁAMANIE ŚWIATŁA 1.1. PRAWO ODBICIE I ZAŁAMANIA ŚWIATŁA Gdy promień światła pada na granicę pomiędzy dwiema różnymi

Bardziej szczegółowo

Autokoherentny pomiar widma laserów półprzewodnikowych. autorzy: Łukasz Długosz Jacek Konieczny

Autokoherentny pomiar widma laserów półprzewodnikowych. autorzy: Łukasz Długosz Jacek Konieczny Autokoherentny pomiar widma laserów półprzewodnikowych autorzy: Łukasz Długosz Jacek Konieczny Systemy koherentne wstęp Systemy transmisji światłowodowej wykorzystujące podczas procesu transmisji światło

Bardziej szczegółowo

VI. Elementy techniki, lasery

VI. Elementy techniki, lasery Światłowody VI. Elementy techniki, lasery BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet a) Sprzęgacze czołowe 1. Sprzęgacze światłowodowe (czołowe, boczne, stałe, rozłączalne) Złącza,

Bardziej szczegółowo

3. Umiejętność obsługi prostych przyrządów optycznych (UMIEJĘTNOŚĆ)

3. Umiejętność obsługi prostych przyrządów optycznych (UMIEJĘTNOŚĆ) Zał. nr 4 do ZW 33/01 WYDZIAŁ PPT KARTA PRZEDMIOTU Nazwa w języku polskim: Światłowody Nazwa w języku angielskim Optical waveguides Kierunek studiów (jeśli dotyczy): Inżynieria Kwantowa Specjalność (jeśli

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 6, 0.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 5 - przypomnienie ciągłość

Bardziej szczegółowo

Wykład 2: Wprowadzenie do techniki światłowodowej

Wykład 2: Wprowadzenie do techniki światłowodowej Sieci optoelektroniczne Wykład 2: Wprowadzenie do techniki światłowodowej Światłowód - definicja Jest to medium transmisyjne stanowiące czyste szklane włókno kwarcowe, otoczone nieprzezroczystym płaszczem

Bardziej szczegółowo

Wprowadzenie do optyki nieliniowej

Wprowadzenie do optyki nieliniowej Wprowadzenie do optyki nieliniowej Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania

Bardziej szczegółowo

Podstawy inżynierii fotonicznej

Podstawy inżynierii fotonicznej Podstawy inżynierii fotonicznej Prof.dr hab.inż. Romuald Jóźwicki Instytut Mikromechaniki i Fotoniki Pokój 513B tylko konsultacje Rok III, semestr V, wykład 30 godz., laboratorium 15 godz. Zaliczenie wykładu

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim: ŚWIATŁOWODY, ŚWIATŁOWODY Nazwa w języku angielskim: OPTICAL FIBERS Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE

UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE Projekt Zintegrowany UMCS Centrum Kształcenia i Obsługi Studiów, Biuro ds. Kształcenia Ustawicznego telefon: +48 81 537 54 61 Podstawowe informacje o przedmiocie

Bardziej szczegółowo

III. Opis falowy. /~bezet

III. Opis falowy.  /~bezet Światłowody III. Opis falowy BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet Równanie falowe w próżni Teoria falowa Równanie Helmholtza Równanie bezdyspersyjne fali płaskiej, rozchodzącej

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr 4 do ZW 33/01 WYDZIAŁ PPT KARTA PRZEDMIOTU Nazwa w języku polskim: Światłowody Nazwa w języku angielskim Optical fibers Kierunek studiów (jeśli dotyczy): Fizyka Techniczna Specjalność (jeśli dotyczy):

Bardziej szczegółowo

Uniwersytet Warszawski Wydział Fizyki. Światłowody

Uniwersytet Warszawski Wydział Fizyki. Światłowody Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Światłowody Pracownia Fizyczna dla Zaawansowanych ćwiczenie L6 w zakresie Optyki Streszczenie Celem wykonanego na Pracowni Fizycznej dla Zaawansowanych

Bardziej szczegółowo

Propagacja światła we włóknie obserwacja pól modowych.

Propagacja światła we włóknie obserwacja pól modowych. Propagacja światła we włóknie obserwacja pól modowych. Przy pomocy optyki geometrycznej łatwo można przedstawić efekty propagacji światła tylko w ośrodku nieograniczonym. Nie ukazuje ona jednak interesujących

Bardziej szczegółowo

Światłowodowe Sensory interferencyjne: zasady pracy i konfiguracje

Światłowodowe Sensory interferencyjne: zasady pracy i konfiguracje Światłowodowe Sensory interferencyjne: zasady pracy i konfiguracje Sensory interferencyjne Modulacja fazy: Int. Mach-Zehndera Int. Sagnacą Int. Michelsona RF włókna odniesienia SF włókno sygnałowe Int.

Bardziej szczegółowo

Obecnie są powszechnie stosowane w

Obecnie są powszechnie stosowane w ŚWIATŁOWODY Definicja Światłowód - falowód służący do przesyłania promieniowania świetlnego. Pierwotnie miał postać metalowych rurek o wypolerowanych ściankach, służących do przesyłania wyłącznie promieniowania

Bardziej szczegółowo

2. Światłowody. 2. TELEKOMUNIKACJA OPTOFALOWA: Światłowody Strona 1

2. Światłowody. 2. TELEKOMUNIKACJA OPTOFALOWA: Światłowody Strona 1 TELEKOMUNIKACJA OPTOFALOWA. Światłowody Spis treści:.1. Wprowadzenie... Światłowody wielo- i jednomodowe..3. Tłumienie światłowodów..4. Dyspersja światłowodów..5. Pobudzanie i łączenie światłowodów..6.

Bardziej szczegółowo

KATEDRA TELEKOMUNIKACJI I FOTONIKI

KATEDRA TELEKOMUNIKACJI I FOTONIKI ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I FOTONIKI OPROGRAMOWANIE DO MODELOWANIA SIECI ŚWIATŁOWODOWYCH PROJEKTOWANIE FALOWODÓW PLANARNYCH (wydrukować

Bardziej szczegółowo

Światłowody telekomunikacyjne

Światłowody telekomunikacyjne Światłowody telekomunikacyjne Parametry i charakteryzacja światłowodów Kolejny wykład będzie poświęcony metodom pomiarowym Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie

Bardziej szczegółowo

OPTOTELEKOMUNIKACJA. dr inż. Piotr Stępczak 1

OPTOTELEKOMUNIKACJA. dr inż. Piotr Stępczak 1 OPTOTELEKOMUNIKACJA dr inż. Piotr Stępczak 1 Falowa natura światła E H z z ( ) ± jmθ j( ωt βz ) r e e k = E o n 1 z LP 01 = H z ( ) ± jmθ j( ωt βz ) r e e LP 11 k o V = 2πa λ 2π ω = = o λ c λ 0 lim ω ω

Bardziej szczegółowo

LASERY NA CIELE STAŁYM BERNARD ZIĘTEK

LASERY NA CIELE STAŁYM BERNARD ZIĘTEK LASERY NA CIELE STAŁYM BERNARD ZIĘTEK TEK Lasery na ciele stałym lasery, których ośrodek czynny jest: -kryształem i ciałem amorficznym (również proszkiem), - dielektrykiem i półprzewodnikiem. 2 Podział

Bardziej szczegółowo

http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet

http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet IV. Światłowody BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet Literatura 2 3 Historia i uwarunkowania Podstawowe elementy: 1. Rozwój techniki laserowej (lasery półprzewodnikowe, modulacja,

Bardziej szczegółowo

W p r o w a d z e n i e dr hab. inż. Sergiusz Patela

W p r o w a d z e n i e dr hab. inż. Sergiusz Patela Optoelektronika i technika światłowodowa W p r o w a d z e n i e dr hab. inż. Sergiusz Patela Wprowadzenie do techniki światłowodowej i optoelektroniki 1 Światłowód do Słońca i w 24 godziny do środka Ziemi

Bardziej szczegółowo

Pomiar tłumienności światłowodów włóknistych

Pomiar tłumienności światłowodów włóknistych LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 4 Pomiar tłumienności światłowodów włóknistych Cel ćwiczenia: Zapoznanie studentów z parametrem tłumienności światłowodów oraz ze sposobem jego pomiaru Badane elementy:

Bardziej szczegółowo

Media transmisyjne w sieciach komputerowych

Media transmisyjne w sieciach komputerowych Media transmisyjne w sieciach komputerowych Andrzej Grzywak Media transmisyjne stosowane w sieciach komputerowych Rys. 1. kable i przewody miedziane światłowody sieć energetyczna (technologia PLC) sieci

Bardziej szczegółowo

Współczynnik załamania Całkowite wewnętrzne odbicie Co to jest światłowód i jak działa? Materiały na światłowody Zjawiska zachodzące w światłowodach

Współczynnik załamania Całkowite wewnętrzne odbicie Co to jest światłowód i jak działa? Materiały na światłowody Zjawiska zachodzące w światłowodach Współczynnik załamania Całkowite wewnętrzne odbicie Co to jest światłowód i jak działa? Materiały na światłowody Zjawiska zachodzące w światłowodach i ich pomiary Światłowody specjalne Podsumowanie 18/11/2010

Bardziej szczegółowo

Systemy i Sieci Radiowe

Systemy i Sieci Radiowe Systemy i Sieci Radiowe Wykład 3 Media transmisyjne część 1 Program wykładu transmisja światłowodowa transmisja za pomocą kabli telekomunikacyjnych (DSL) transmisja przez sieć energetyczną transmisja radiowa

Bardziej szczegółowo

Parametry i technologia światłowodowego systemu CTV

Parametry i technologia światłowodowego systemu CTV Parametry i technologia światłowodowego systemu CTV (Światłowodowe systemy szerokopasmowe) (c) Sergiusz Patela 1998-2002 Sieci optyczne - Parametry i technologia systemu CTV 1 Podstawy optyki swiatlowodowej:

Bardziej szczegółowo

Telekomunikacja światłowodowa

Telekomunikacja światłowodowa KATEDRA OPTOELEKTRONIKI I SYSTEMÓW ELEKTRONICZNYCH Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska 80-233 GDAŃSK, ul.g.narutowicza 11/12, tel.(48)(58) 347 1584, fax.(48)(58) 347

Bardziej szczegółowo

Politechnika Wrocławska Wydział Podstawowych Problemów Techniki

Politechnika Wrocławska Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wydział Podstawowych Problemów Techniki specjalność FOTONIKA 3,5-letnie studia stacjonarne I stopnia (studia inżynierskie) FIZYKA TECHNICZNA Charakterystyka wykształcenia: - dobre

Bardziej szczegółowo

Teoria falowa Równania Maxwella

Teoria falowa Równania Maxwella Teoria falowa Równania Maxwella Oś falowodu oś z Równania Maxwella E B, t H J D t, D, B 0. Jeżeli E x,y,z,t Re E x,y,z e i t 1 2 E x,y,z e i t E x,y,z e i t, 1 W postaci zespolonej: E i B, prawo indukcji

Bardziej szczegółowo

Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej. Zakład Optoelektroniki. Laboratorium Elementów i Systemów Optoelektronicznych

Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej. Zakład Optoelektroniki. Laboratorium Elementów i Systemów Optoelektronicznych Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej Zakład Optoelektroniki Laboratorium Elementów i Systemów Optoelektronicznych Instrukcja do ćwiczenia: BADANIE PARAMETRÓW PASYWNYCH

Bardziej szczegółowo

Sprzęg światłowodu ze źródłem światła

Sprzęg światłowodu ze źródłem światła Sprzęg światłowodu ze źródłem światła Oczywistym problemem przy sprzęganiu światłowodu ze źródłami światła jest w pierwszym rzędzie umieszczenie wiazki w wewnatrz apertury numeryczne światłowodu. W przypadku

Bardziej szczegółowo

ŚWIATŁOWODOWY TOR PRZESYŁANIA INFORMACJI

ŚWIATŁOWODOWY TOR PRZESYŁANIA INFORMACJI Optomechatronika - Laboratorium Ćwiczenie 3 ŚWIATŁOWODOWY TOR PRZESYŁANIA INFORMACJI 3.1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową, zasadą działania i właściwościami światłowodowego toru

Bardziej szczegółowo

Ośrodki dielektryczne optycznie nieliniowe

Ośrodki dielektryczne optycznie nieliniowe Ośrodki dielektryczne optycznie nieliniowe Równania Maxwella roth rot D t B t = = przy czym tym razem wektor indukcji elektrycznej D ε + = ( ) Wektor polaryzacji jest nieliniową funkcją natężenia pola

Bardziej szczegółowo

IV. Transmisja. /~bezet

IV. Transmisja.  /~bezet Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.

Bardziej szczegółowo

V n. Profile współczynnika załamania. Rozmycie impulsu spowodowane dyspersją. Impuls biegnący wzdłuż światłowodu. Wejście Wyjście

V n. Profile współczynnika załamania. Rozmycie impulsu spowodowane dyspersją. Impuls biegnący wzdłuż światłowodu. Wejście Wyjście OPTOELEKTRONIKA dr hab. inż. S.M. Kaczmarek 1. DYSPERSJA 1.1. Dyspersja materiałowa i falowodowa. Dyspersja chromatyczna. 1.2. Dyspersja modowa w światłowodach a). o skokowej zmianie współczynnika załamania

Bardziej szczegółowo

Systemy operacyjne i sieci komputerowe Szymon Wilk Media transmisji 1

Systemy operacyjne i sieci komputerowe Szymon Wilk Media transmisji 1 i sieci komputerowe Szymon Wilk Media transmisji 1 1. Przesyłanie danych komunikacja w sieciach komputerowych wymaga kodowania danych w postać energii i przesłania jej dalej za pomocą ośrodka transmisji.

Bardziej szczegółowo

Interferencja promieniowania

Interferencja promieniowania nterferencja promieniowania Zastosowania Metrologia Nanotechnologie Czujniki szczególnie światłowodowe Elementy fotoniczne Wyjaśnianie: generacji modów w laserze propagacji modów w światłowodach Generacja

Bardziej szczegółowo

Równania Maxwella. roth t

Równania Maxwella. roth t , H wektory natężenia pola elektrycznego i magnetycznego D, B wektory indukcji elektrycznej i magnetycznej J gęstość prądu elektrycznego Równania Maxwella D roth t B rot+ t J Dla ośrodka izotropowego D

Bardziej szczegółowo

Seminarium Transmisji Danych

Seminarium Transmisji Danych Opole, dn. 21 maja 2005 Politechnika Opolska Wydział Elektrotechniki i Automatyki Kierunek: Informatyka Seminarium Transmisji Danych Temat: Światłowody Autor: Dawid Najgiebauer Informatyka, sem. III, grupa

Bardziej szczegółowo

Bernard Ziętek OPTOELEKTRONIKA

Bernard Ziętek OPTOELEKTRONIKA Uniwersytet Mikołaja Kopernika Bernard Ziętek OPTOELEKTRONIKA Wydanie III, uzupełnione i poprawione Toruń 2011 SPIS TREŚCI PRZEDMOWA DO III WYDANIA 1 PRZEDMOWA DO II WYDANIA 3 PRZEDMOWA DO I WYDANIA 4

Bardziej szczegółowo

Ćw.3. Wykrywanie źródeł infradźwięków

Ćw.3. Wykrywanie źródeł infradźwięków Ćw.3. Wykrywanie źródeł infradźwięków Wstęp Ćwiczenie przedstawia metodę wyszukiwania źródeł infradźwięków przy użyciu światłowodowego czujnika drań. Fale akustyczne poniżej dolnego częstotliwościowego

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 8 Polarymetria

Metody Optyczne w Technice. Wykład 8 Polarymetria Metody Optyczne w Technice Wykład 8 Polarymetria Fala elektromagnetyczna div D div B 0 D E rot rot E H B t D t J B J H E Fala elektromagnetyczna 2 2 E H 2 t 2 E 2 t H 2 v n 1 0 0 c n 0 Fala elektromagnetyczna

Bardziej szczegółowo

Włókna z cieczowym rdzeniem oraz włókna plastykowe. Liquid-Core and Polymer Optical Fibers

Włókna z cieczowym rdzeniem oraz włókna plastykowe. Liquid-Core and Polymer Optical Fibers Włókna z cieczowym rdzeniem oraz włókna plastykowe Liquid-Core and Polymer Optical Fibers Prowadzenie światła w falowodach cieczowych Zastosowanie falowodów cieczowych Włókna polimerowe Efekt propagacji

Bardziej szczegółowo

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość. Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali

Bardziej szczegółowo

Solitony i zjawiska nieliniowe we włóknach optycznych

Solitony i zjawiska nieliniowe we włóknach optycznych Solitony i zjawiska nieliniowe we włóknach optycznych Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone

Bardziej szczegółowo

Optotelekomunikacja. dr inż. Piotr Stępczak 1

Optotelekomunikacja. dr inż. Piotr Stępczak 1 Optotelekomunikacja dr inż. Piotr Stępczak 1 dr inż. Piotr Stępczak Falowa natura światła () ( ) () ( ) z t j jm z z z t j jm z z e e r H H e e r E E β ω β ω Θ ± Θ ± 1 0 0 1 0 1 1 zatem 0 n n n n gr λ

Bardziej szczegółowo

Typy światłowodów: Technika światłowodowa

Typy światłowodów: Technika światłowodowa Typy światłowodów: Skokowy wielomodowy Gradientowy wielomodowy Skokowy jednomodowy Zmodyfikowany dyspersyjnie jednomodowy Jednomodowy utrzymujący stan polaryzacji Swiatłowody fotoniczne Propagacja światła

Bardziej szczegółowo

Pomiary parametrów telekomunikacyjnych światłowodów jednomodowych. Na poprzednim wykładzie przedstawiono podstawowe parametry światłowodów

Pomiary parametrów telekomunikacyjnych światłowodów jednomodowych. Na poprzednim wykładzie przedstawiono podstawowe parametry światłowodów Pomiary parametrów telekomunikacyjnych światłowodów jednomodowych Na poprzednim wykładzie przedstawiono podstawowe parametry światłowodów Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze

Bardziej szczegółowo

FMZ10 S - Badanie światłowodów

FMZ10 S - Badanie światłowodów FMZ10 S - Badanie światłowodów Materiały przeznaczone dla studentów Informatyki Stosowanej w Instytucie Fizyki Uniwersytetu Jagiellońskiego 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie apertury numerycznej,

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów

Bardziej szczegółowo

O p i s s p e c j a l n o ś c i

O p i s s p e c j a l n o ś c i Optoelektronika i technika światłowodowa O p i s s p e c j a l n o ś c i Wprowadzenie do techniki światłowodowej i optoelektroniki 1 Co i kto, albo sylwetka absolwenta Nowoczesna technika powszechnie stosuje

Bardziej szczegółowo

Podstawy prowadzenia światła we włóknach oraz ich budowa. Light-Guiding Fundamentals and Fiber Design

Podstawy prowadzenia światła we włóknach oraz ich budowa. Light-Guiding Fundamentals and Fiber Design Podstawy prowadzenia światła we włóknach oraz ich budowa Light-Guiding Fundamentals and Fiber Design Rozchodzenie się liniowo-spolaryzowanego światła w światłowodzie Robocza definicja długości fali odcięcia

Bardziej szczegółowo

Światłowody, zasada działania, budowa i zastosowanie

Światłowody, zasada działania, budowa i zastosowanie Światłowody, zasada działania, budowa i zastosowanie Ratajczak Arkadiusz Recki Dawid Elbląg 2005 Spis treści: 1 Wstęp...3 2 Zasada działania światłowodu 4 3 Budowa światłowodu..8 4 Zastosowanie światłowodów...11

Bardziej szczegółowo

Dyspersja światłowodów Kompensacja i pomiary

Dyspersja światłowodów Kompensacja i pomiary Dyspersja światłowodów Kompensacja i pomiary Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem

Bardziej szczegółowo

WSTĘP DO OPTYKI FOURIEROWSKIEJ

WSTĘP DO OPTYKI FOURIEROWSKIEJ 1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne

Bardziej szczegółowo

Dominik Kaniszewski Sebastian Gajos. Wyznaczenie parametrów geometrycznych światłowodu. Określenie wpływu deformacji światłowodu na transmisję.

Dominik Kaniszewski Sebastian Gajos. Wyznaczenie parametrów geometrycznych światłowodu. Określenie wpływu deformacji światłowodu na transmisję. Ćwiczenie Numer 88 27 05 2004 r. 1 WYZNACZANIE PARAMETRÓW : GEOMETRYCZNYCH I OPTYCZNYCH ŚWIATŁOWODÓW Dominik Kaniszewski Sebastian Gajos II - Rok studiów dziennych Kierunek : Fizyka ; gr. I CEL ĆWICZENIA

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Model pasmowy półprzewodników. 2. Zasada działania lasera półprzewodnikowego

Bardziej szczegółowo

Ćwiczenie 3. Badanie wpływu makrozagięć światłowodów na ich tłumienie.

Ćwiczenie 3. Badanie wpływu makrozagięć światłowodów na ich tłumienie. LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 3 Badanie wpływu makrozagięć światłowodów na ich tłumienie. Cel ćwiczenia: Zapoznanie studentów z wpływem mikro- i makrozgięć światłowodów włóknistych na ich tłumienność.

Bardziej szczegółowo

falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi

falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

Media sieciowe. Omówimy tutaj podstawowe media sieciowe i sposoby ich łączenia z różnymi urządzeniami sieciowymi. Kabel koncentryczny

Media sieciowe. Omówimy tutaj podstawowe media sieciowe i sposoby ich łączenia z różnymi urządzeniami sieciowymi. Kabel koncentryczny Media sieciowe Wszystkie media sieciowe stanowią fizyczny szkielet sieci i służą do transmisji danych między urządzeniami sieciowymi. Wyróżnia się: media przewodowe: przewody miedziane (kabel koncentryczny,

Bardziej szczegółowo

Wzmacniacze optyczne

Wzmacniacze optyczne Wzmacniacze optyczne Wzmocnienie sygnału optycznego bez konwersji na sygnał elektryczny. Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim.

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr 4 do ZW 33/01 WYDZIAŁ PPT KARTA PRZEDMIOTU Nazwa w języku polskim: Podstawy optyki fizycznej i instrumentalnej Nazwa w języku angielskim Fundamentals of Physical and Instrumental Optics Kierunek

Bardziej szczegółowo

Światłowodowe elementy polaryzacyjne

Światłowodowe elementy polaryzacyjne Światłowodowe elementy polaryzacyjne elementy wykorzystujące własności przenoszenia polaryzacji w światłowodach jednorodnych i dwójłomnych polaryzatory izolatory optyczne depolaryzatory kompensatory i

Bardziej szczegółowo

TŁUMIENIE ŚWIATŁA W OŚRODKACH OPTYCZNYCH

TŁUMIENIE ŚWIATŁA W OŚRODKACH OPTYCZNYCH TŁUMIENIE ŚWIATŁA W OŚRODKACH OPTYCZNYCH Jednym z parametrów opisujących właściwości optyczne światłowodów jest tłumienność. W wyniku zjawiska tłumienia, energia fali elektromagnetycznej niesionej w światłowodzie

Bardziej szczegółowo

Właściwości transmisyjne

Właściwości transmisyjne Właściwości transmisyjne Straty (tłumienność) Tłumienność np. szkła technicznego: około 1000 db/km, szkło czyszczone 300 db/km Do 1967 r. tłumienność ok. 1000 db/km. Problem Na wyjściu światłowodu chcemy

Bardziej szczegółowo

Optotelekomunikacja 1

Optotelekomunikacja 1 Optotelekomunikacja 1 Zwielokrotnienie optyczne zwielokrotnienie falowe WDM Wave Division Multiplexing zwielokrotnienie czasowe OTDM Optical Time Division Multiplexing 2 WDM multiplekser demultiplekser

Bardziej szczegółowo

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość. Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali

Bardziej szczegółowo

Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia

Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Laboratorium techniki światłowodowej Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

Transmisja bezprzewodowa

Transmisja bezprzewodowa Sieci komputerowe Wykład 6: Media optyczne Transmisja bezprzewodowa Wykład prowadzony przez dr inż. Mirosława Hajdera dla studentów 3 roku informatyki, opracowany przez Joannę Pliś i Piotra Lasotę, 3 FD.

Bardziej szczegółowo

Połączenia spawane światłowodów przystosowanych do multipleksacji falowej WDM

Połączenia spawane światłowodów przystosowanych do multipleksacji falowej WDM A-8/10.01 Marek Ratuszek, Jacek Majewski, Zbigniew Zakrzewski, Józef Zalewski, Zdzisław Drzycimski Instytut Telekomunikacji ATR Bydgoszcz Połączenia spawane światłowodów przystosowanych do multipleksacji

Bardziej szczegółowo

Wprowadzenie do światłowodowych systemów WDM

Wprowadzenie do światłowodowych systemów WDM Wprowadzenie do światłowodowych systemów WDM WDM Wavelength Division Multiplexing CWDM Coarse Wavelength Division Multiplexing DWDM Dense Wavelength Division Multiplexing Współczesny światłowodowy system

Bardziej szczegółowo

Zał. nr 4 do ZW. Wykład Ćwiczenia Laboratorium Projekt Seminarium

Zał. nr 4 do ZW. Wykład Ćwiczenia Laboratorium Projekt Seminarium WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: OPTYKA NIELINIOWA Nazwa w języku angielskim: Nonlinear optics Kierunek studiów (jeśli dotyczy): Fizyka Techniczna Specjalność

Bardziej szczegółowo

Metody Obliczeniowe Mikrooptyki i Fotoniki

Metody Obliczeniowe Mikrooptyki i Fotoniki Metody Obliczeniowe Mikrooptyki i Fotoniki Kod USOS: 1103-4Fot4 Wykład (30h): R. Kotyński Wtorki 9:15-11:00, s.1.38 lub B4.17(ul. Pasteura 5) Ćwiczenia (45h): Wtorki, w godz. 14.15-16.30, s.1.7 lub B4.17

Bardziej szczegółowo

A- 01 WPROWADZENIE DO TECHNIKI ŚWIATŁOWODOWEJ

A- 01 WPROWADZENIE DO TECHNIKI ŚWIATŁOWODOWEJ A- 01 WPROWADZENIE DO TECHNIKI ŚWIATŁOWODOWEJ INFORMACJE PODSTAWOWE Celem kursu jest przekazanie uczestnikom podstawowej wiedzy w zakresie techniki światłowodowej. SZKOLENIE PRZEZNACZONE DLA: Techników

Bardziej szczegółowo

Wzmacniacze optyczne ZARYS PODSTAW

Wzmacniacze optyczne ZARYS PODSTAW Wzmacniacze optyczne ZARYS PODSTAW REGENERATOR konwertuje sygnał optyczny na elektryczny, wzmacnia sygnał elektryczny, a następnie konwertuje wzmocniony sygnał elektryczny z powrotem na sygnał optyczny

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

Sieci optoelektroniczne

Sieci optoelektroniczne Sieci optoelektroniczne Wykład 6: Projektowanie systemów transmisji światłowodowej dr inż. Walery Susłow Podstawowe pytania (przed rozpoczęciem prac projektowych) Jaka jest maksymalna odległość transmisji?

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 3. Pomiar drgao przy pomocy interferometru Michelsona

Laboratorium techniki laserowej. Ćwiczenie 3. Pomiar drgao przy pomocy interferometru Michelsona Laboratorium techniki laserowej Ćwiczenie 3. Pomiar drgao przy pomocy interferometru Michelsona Katedra Optoelektroniki i Systemów Elektronicznych, WET, Politechnika Gdaoska Gdańsk 006 1. Wstęp Celem ćwiczenia

Bardziej szczegółowo

Problemy spawania telekomunikacyjnych jednomodowych włókien światłowodowych stosowanych w Polsce i pochodzących od różnych producentów

Problemy spawania telekomunikacyjnych jednomodowych włókien światłowodowych stosowanych w Polsce i pochodzących od różnych producentów C8.12 Marek Ratuszek, Zbigniew Zakrzewski, Jacek Majewski, Józef Zalewski Instytut Telekomunikacji ATR w Bydgoszczy, Bydgoszcz Problemy spawania telekomunikacyjnych jednomodowych włókien światłowodowych

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 7 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

Typowe parametry włókna MMF-SI

Typowe parametry włókna MMF-SI Techniki światłowodowe Standardy telekomunikacyjnych włókien światłowodowych Zbigniew Zakrzewski ver.1.0 N W 1 Typowe parametry włókna MMF-SI Parametr Wartość Średnica rdzenia 50 400 µm Średnica płaszcza

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

Zjawiska dyfrakcji. Propagacja dowolnych fal w przestrzeni

Zjawiska dyfrakcji. Propagacja dowolnych fal w przestrzeni Zjawiska dyfrakcji Propagacja dowolnych fal w przestrzeni W przestrzeni mogą się znajdować różne elementy siatki dyfrakcyjne układy optyczne przysłony filtry i inne Analizy dyfrakcyjne należą do najważniejszych

Bardziej szczegółowo